blob: f208e3c9818fca3f5d1d54ea298471c883c64091 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Test of classes in the tracked_objects.h classes.
#include "base/tracked_objects.h"
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include "base/macros.h"
#include "base/process/process_handle.h"
#include "base/strings/stringprintf.h"
#include "base/threading/thread.h"
#include "base/time/time.h"
#include "base/tracking_info.h"
#include "testing/gtest/include/gtest/gtest.h"
const int kLineNumber = 1776;
const char kFile[] = "FixedUnitTestFileName";
const char kWorkerThreadName[] = "WorkerThread-*";
const char kMainThreadName[] = "SomeMainThreadName";
const char kStillAlive[] = "Still_Alive";
const int32_t kAllocOps = 23;
const int32_t kFreeOps = 27;
const int32_t kAllocatedBytes = 59934;
const int32_t kFreedBytes = 2 * kAllocatedBytes;
const int32_t kAllocOverheadBytes = kAllocOps * 8;
const int32_t kMaxAllocatedBytes = kAllocatedBytes / 2;
namespace tracked_objects {
class TrackedObjectsTest : public testing::Test {
protected:
TrackedObjectsTest() {
// On entry, leak any database structures in case they are still in use by
// prior threads.
ThreadData::ShutdownSingleThreadedCleanup(true);
test_time_ = 0;
ThreadData::now_function_for_testing_ = &TrackedObjectsTest::GetTestTime;
}
~TrackedObjectsTest() override {
// We should not need to leak any structures we create, since we are
// single threaded, and carefully accounting for items.
ThreadData::ShutdownSingleThreadedCleanup(false);
}
// Reset the profiler state.
void Reset() {
ThreadData::ShutdownSingleThreadedCleanup(false);
test_time_ = 0;
}
// Simulate a birth on the thread named |thread_name|, at the given
// |location|.
void TallyABirth(const Location& location, const std::string& thread_name) {
// If the |thread_name| is empty, we don't initialize system with a thread
// name, so we're viewed as a worker thread.
if (!thread_name.empty())
ThreadData::InitializeThreadContext(kMainThreadName);
// Do not delete |birth|. We don't own it.
Births* birth = ThreadData::TallyABirthIfActive(location);
if (ThreadData::status() == ThreadData::DEACTIVATED)
EXPECT_EQ(reinterpret_cast<Births*>(NULL), birth);
else
EXPECT_NE(reinterpret_cast<Births*>(NULL), birth);
}
// Helper function to verify the most common test expectations.
void ExpectSimpleProcessData(const ProcessDataSnapshot& process_data,
const std::string& function_name,
const std::string& birth_thread,
const std::string& death_thread,
int count,
int run_ms,
int queue_ms) {
ASSERT_EQ(1u, process_data.phased_snapshots.size());
auto it = process_data.phased_snapshots.find(0);
ASSERT_TRUE(it != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase = it->second;
ASSERT_EQ(1u, process_data_phase.tasks.size());
EXPECT_EQ(kFile, process_data_phase.tasks[0].birth.location.file_name);
EXPECT_EQ(function_name,
process_data_phase.tasks[0].birth.location.function_name);
EXPECT_EQ(kLineNumber,
process_data_phase.tasks[0].birth.location.line_number);
EXPECT_EQ(birth_thread,
process_data_phase.tasks[0].birth.sanitized_thread_name);
EXPECT_EQ(count, process_data_phase.tasks[0].death_data.count);
EXPECT_EQ(count * run_ms,
process_data_phase.tasks[0].death_data.run_duration_sum);
EXPECT_EQ(run_ms, process_data_phase.tasks[0].death_data.run_duration_max);
EXPECT_EQ(run_ms,
process_data_phase.tasks[0].death_data.run_duration_sample);
EXPECT_EQ(count * queue_ms,
process_data_phase.tasks[0].death_data.queue_duration_sum);
EXPECT_EQ(queue_ms,
process_data_phase.tasks[0].death_data.queue_duration_max);
EXPECT_EQ(queue_ms,
process_data_phase.tasks[0].death_data.queue_duration_sample);
EXPECT_EQ(death_thread,
process_data_phase.tasks[0].death_sanitized_thread_name);
EXPECT_EQ(base::GetCurrentProcId(), process_data.process_id);
}
// Sets time that will be returned by ThreadData::Now().
static void SetTestTime(unsigned int test_time) { test_time_ = test_time; }
int GetNumThreadData() {
int num_thread_data = 0;
ThreadData* current = ThreadData::first();
while (current) {
++num_thread_data;
current = current->next();
}
return num_thread_data;
}
private:
// Returns test time in milliseconds.
static unsigned int GetTestTime() { return test_time_; }
// Test time in milliseconds.
static unsigned int test_time_;
};
// static
unsigned int TrackedObjectsTest::test_time_;
TEST_F(TrackedObjectsTest, TaskStopwatchNoStartStop) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
// Check that creating and destroying a stopwatch without starting it doesn't
// crash.
TaskStopwatch stopwatch;
}
TEST_F(TrackedObjectsTest, MinimalStartupShutdown) {
// Minimal test doesn't even create any tasks.
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
EXPECT_FALSE(ThreadData::first()); // No activity even on this thread.
ThreadData* data = ThreadData::Get();
EXPECT_TRUE(ThreadData::first()); // Now class was constructed.
ASSERT_TRUE(data);
EXPECT_FALSE(data->next());
EXPECT_EQ(data, ThreadData::Get());
ThreadData::BirthMap birth_map;
ThreadData::DeathsSnapshot deaths;
data->SnapshotMaps(0, &birth_map, &deaths);
EXPECT_EQ(0u, birth_map.size());
EXPECT_EQ(0u, deaths.size());
// Clean up with no leaking.
Reset();
// Do it again, just to be sure we reset state completely.
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
EXPECT_FALSE(ThreadData::first()); // No activity even on this thread.
data = ThreadData::Get();
EXPECT_TRUE(ThreadData::first()); // Now class was constructed.
ASSERT_TRUE(data);
EXPECT_FALSE(data->next());
EXPECT_EQ(data, ThreadData::Get());
birth_map.clear();
deaths.clear();
data->SnapshotMaps(0, &birth_map, &deaths);
EXPECT_EQ(0u, birth_map.size());
EXPECT_EQ(0u, deaths.size());
}
TEST_F(TrackedObjectsTest, TinyStartupShutdown) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
// Instigate tracking on a single tracked object, on our thread.
const char kFunction[] = "TinyStartupShutdown";
Location location(kFunction, kFile, kLineNumber, NULL);
ThreadData::TallyABirthIfActive(location);
ThreadData* data = ThreadData::first();
ASSERT_TRUE(data);
EXPECT_FALSE(data->next());
EXPECT_EQ(data, ThreadData::Get());
ThreadData::BirthMap birth_map;
ThreadData::DeathsSnapshot deaths;
data->SnapshotMaps(0, &birth_map, &deaths);
EXPECT_EQ(1u, birth_map.size()); // 1 birth location.
EXPECT_EQ(1, birth_map.begin()->second->birth_count()); // 1 birth.
EXPECT_EQ(0u, deaths.size()); // No deaths.
// Now instigate another birth, while we are timing the run of the first
// execution.
// Create a child (using the same birth location).
// TrackingInfo will call TallyABirth() during construction.
const int32_t start_time = 1;
base::TimeTicks kBogusBirthTime = base::TimeTicks() +
base::TimeDelta::FromMilliseconds(start_time);
base::TrackingInfo pending_task(location, kBogusBirthTime);
SetTestTime(1);
TaskStopwatch stopwatch;
stopwatch.Start();
// Finally conclude the outer run.
const int32_t time_elapsed = 1000;
SetTestTime(start_time + time_elapsed);
stopwatch.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(pending_task, stopwatch);
birth_map.clear();
deaths.clear();
data->SnapshotMaps(0, &birth_map, &deaths);
EXPECT_EQ(1u, birth_map.size()); // 1 birth location.
EXPECT_EQ(2, birth_map.begin()->second->birth_count()); // 2 births.
EXPECT_EQ(1u, deaths.size()); // 1 location.
EXPECT_EQ(1, deaths.begin()->second.death_data.count); // 1 death.
// The births were at the same location as the one known death.
EXPECT_EQ(birth_map.begin()->second, deaths.begin()->first);
ProcessDataSnapshot process_data;
ThreadData::Snapshot(0, &process_data);
ASSERT_EQ(1u, process_data.phased_snapshots.size());
auto it = process_data.phased_snapshots.find(0);
ASSERT_TRUE(it != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase = it->second;
ASSERT_EQ(1u, process_data_phase.tasks.size());
EXPECT_EQ(kFile, process_data_phase.tasks[0].birth.location.file_name);
EXPECT_EQ(kFunction,
process_data_phase.tasks[0].birth.location.function_name);
EXPECT_EQ(kLineNumber,
process_data_phase.tasks[0].birth.location.line_number);
EXPECT_EQ(kWorkerThreadName,
process_data_phase.tasks[0].birth.sanitized_thread_name);
EXPECT_EQ(1, process_data_phase.tasks[0].death_data.count);
EXPECT_EQ(time_elapsed,
process_data_phase.tasks[0].death_data.run_duration_sum);
EXPECT_EQ(time_elapsed,
process_data_phase.tasks[0].death_data.run_duration_max);
EXPECT_EQ(time_elapsed,
process_data_phase.tasks[0].death_data.run_duration_sample);
EXPECT_EQ(0, process_data_phase.tasks[0].death_data.queue_duration_sum);
EXPECT_EQ(0, process_data_phase.tasks[0].death_data.queue_duration_max);
EXPECT_EQ(0, process_data_phase.tasks[0].death_data.queue_duration_sample);
EXPECT_EQ(kWorkerThreadName,
process_data_phase.tasks[0].death_sanitized_thread_name);
}
TEST_F(TrackedObjectsTest, DeathDataTestRecordDurations) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
std::unique_ptr<DeathData> data(new DeathData());
ASSERT_NE(data, nullptr);
EXPECT_EQ(data->run_duration_sum(), 0);
EXPECT_EQ(data->run_duration_max(), 0);
EXPECT_EQ(data->run_duration_sample(), 0);
EXPECT_EQ(data->queue_duration_sum(), 0);
EXPECT_EQ(data->queue_duration_max(), 0);
EXPECT_EQ(data->queue_duration_sample(), 0);
EXPECT_EQ(data->count(), 0);
EXPECT_EQ(nullptr, data->last_phase_snapshot());
int32_t run_ms = 42;
int32_t queue_ms = 8;
const int kUnrandomInt = 0; // Fake random int that ensure we sample data.
data->RecordDurations(queue_ms, run_ms, kUnrandomInt);
EXPECT_EQ(data->run_duration_sum(), run_ms);
EXPECT_EQ(data->run_duration_max(), run_ms);
EXPECT_EQ(data->run_duration_sample(), run_ms);
EXPECT_EQ(data->queue_duration_sum(), queue_ms);
EXPECT_EQ(data->queue_duration_max(), queue_ms);
EXPECT_EQ(data->queue_duration_sample(), queue_ms);
EXPECT_EQ(data->count(), 1);
EXPECT_EQ(nullptr, data->last_phase_snapshot());
data->RecordDurations(queue_ms, run_ms, kUnrandomInt);
EXPECT_EQ(data->run_duration_sum(), run_ms + run_ms);
EXPECT_EQ(data->run_duration_max(), run_ms);
EXPECT_EQ(data->run_duration_sample(), run_ms);
EXPECT_EQ(data->queue_duration_sum(), queue_ms + queue_ms);
EXPECT_EQ(data->queue_duration_max(), queue_ms);
EXPECT_EQ(data->queue_duration_sample(), queue_ms);
EXPECT_EQ(data->count(), 2);
EXPECT_EQ(nullptr, data->last_phase_snapshot());
}
TEST_F(TrackedObjectsTest, DeathDataTestRecordAllocations) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
std::unique_ptr<DeathData> data(new DeathData());
ASSERT_NE(data, nullptr);
EXPECT_EQ(data->alloc_ops(), 0);
EXPECT_EQ(data->free_ops(), 0);
EXPECT_EQ(data->allocated_bytes(), 0);
EXPECT_EQ(data->freed_bytes(), 0);
EXPECT_EQ(data->alloc_overhead_bytes(), 0);
EXPECT_EQ(data->max_allocated_bytes(), 0);
EXPECT_EQ(nullptr, data->last_phase_snapshot());
data->RecordAllocations(kAllocOps, kFreeOps, kAllocatedBytes, kFreedBytes,
kAllocOverheadBytes, kMaxAllocatedBytes);
EXPECT_EQ(data->alloc_ops(), kAllocOps);
EXPECT_EQ(data->free_ops(), kFreeOps);
EXPECT_EQ(data->allocated_bytes(), kAllocatedBytes);
EXPECT_EQ(data->freed_bytes(), kFreedBytes);
EXPECT_EQ(data->alloc_overhead_bytes(), kAllocOverheadBytes);
EXPECT_EQ(data->max_allocated_bytes(), kMaxAllocatedBytes);
// Record another batch, with a smaller max.
const int32_t kSmallerMaxAllocatedBytes = kMaxAllocatedBytes / 2;
data->RecordAllocations(kAllocOps, kFreeOps, kAllocatedBytes, kFreedBytes,
kAllocOverheadBytes, kSmallerMaxAllocatedBytes);
EXPECT_EQ(data->alloc_ops(), 2 * kAllocOps);
EXPECT_EQ(data->free_ops(), 2 * kFreeOps);
EXPECT_EQ(data->allocated_bytes(), 2 * kAllocatedBytes);
EXPECT_EQ(data->freed_bytes(), 2 * kFreedBytes);
EXPECT_EQ(data->alloc_overhead_bytes(), 2 * kAllocOverheadBytes);
EXPECT_EQ(data->max_allocated_bytes(), kMaxAllocatedBytes);
// Now with a larger max.
const int32_t kLargerMaxAllocatedBytes = kMaxAllocatedBytes * 2;
data->RecordAllocations(kAllocOps, kFreeOps, kAllocatedBytes, kFreedBytes,
kAllocOverheadBytes, kLargerMaxAllocatedBytes);
EXPECT_EQ(data->alloc_ops(), 3 * kAllocOps);
EXPECT_EQ(data->free_ops(), 3 * kFreeOps);
EXPECT_EQ(data->allocated_bytes(), 3 * kAllocatedBytes);
EXPECT_EQ(data->freed_bytes(), 3 * kFreedBytes);
EXPECT_EQ(data->alloc_overhead_bytes(), 3 * kAllocOverheadBytes);
EXPECT_EQ(data->max_allocated_bytes(), kLargerMaxAllocatedBytes);
// Saturate everything.
data->RecordAllocations(INT_MAX, INT_MAX, INT_MAX, INT_MAX, INT_MAX, INT_MAX);
EXPECT_EQ(data->alloc_ops(), INT_MAX);
EXPECT_EQ(data->free_ops(), INT_MAX);
EXPECT_EQ(data->allocated_bytes(), INT_MAX);
EXPECT_EQ(data->freed_bytes(), INT_MAX);
EXPECT_EQ(data->alloc_overhead_bytes(), INT_MAX);
EXPECT_EQ(data->max_allocated_bytes(), INT_MAX);
}
TEST_F(TrackedObjectsTest, DeathDataTest2Phases) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
std::unique_ptr<DeathData> data(new DeathData());
ASSERT_NE(data, nullptr);
const int32_t run_ms = 42;
const int32_t queue_ms = 8;
const int kUnrandomInt = 0; // Fake random int that ensure we sample data.
data->RecordDurations(queue_ms, run_ms, kUnrandomInt);
data->RecordDurations(queue_ms, run_ms, kUnrandomInt);
data->RecordAllocations(kAllocOps, kFreeOps, kAllocatedBytes, kFreedBytes,
kAllocOverheadBytes, kMaxAllocatedBytes);
data->OnProfilingPhaseCompleted(123);
EXPECT_EQ(data->run_duration_sum(), run_ms + run_ms);
EXPECT_EQ(data->run_duration_max(), 0);
EXPECT_EQ(data->run_duration_sample(), run_ms);
EXPECT_EQ(data->queue_duration_sum(), queue_ms + queue_ms);
EXPECT_EQ(data->queue_duration_max(), 0);
EXPECT_EQ(data->queue_duration_sample(), queue_ms);
EXPECT_EQ(data->count(), 2);
EXPECT_EQ(data->alloc_ops(), kAllocOps);
EXPECT_EQ(data->free_ops(), kFreeOps);
EXPECT_EQ(data->allocated_bytes(), kAllocatedBytes);
EXPECT_EQ(data->freed_bytes(), kFreedBytes);
EXPECT_EQ(data->alloc_overhead_bytes(), kAllocOverheadBytes);
EXPECT_EQ(data->max_allocated_bytes(), kMaxAllocatedBytes);
ASSERT_NE(nullptr, data->last_phase_snapshot());
EXPECT_EQ(123, data->last_phase_snapshot()->profiling_phase);
EXPECT_EQ(2, data->last_phase_snapshot()->death_data.count);
EXPECT_EQ(2 * run_ms,
data->last_phase_snapshot()->death_data.run_duration_sum);
EXPECT_EQ(run_ms, data->last_phase_snapshot()->death_data.run_duration_max);
EXPECT_EQ(run_ms,
data->last_phase_snapshot()->death_data.run_duration_sample);
EXPECT_EQ(2 * queue_ms,
data->last_phase_snapshot()->death_data.queue_duration_sum);
EXPECT_EQ(queue_ms,
data->last_phase_snapshot()->death_data.queue_duration_max);
EXPECT_EQ(queue_ms,
data->last_phase_snapshot()->death_data.queue_duration_sample);
EXPECT_EQ(kAllocOps, data->last_phase_snapshot()->death_data.alloc_ops);
EXPECT_EQ(kFreeOps, data->last_phase_snapshot()->death_data.free_ops);
EXPECT_EQ(kAllocatedBytes,
data->last_phase_snapshot()->death_data.allocated_bytes);
EXPECT_EQ(kFreedBytes, data->last_phase_snapshot()->death_data.freed_bytes);
EXPECT_EQ(kAllocOverheadBytes,
data->last_phase_snapshot()->death_data.alloc_overhead_bytes);
EXPECT_EQ(kMaxAllocatedBytes,
data->last_phase_snapshot()->death_data.max_allocated_bytes);
EXPECT_EQ(nullptr, data->last_phase_snapshot()->prev);
const int32_t run_ms1 = 21;
const int32_t queue_ms1 = 4;
data->RecordDurations(queue_ms1, run_ms1, kUnrandomInt);
data->RecordAllocations(kAllocOps, kFreeOps, kAllocatedBytes, kFreedBytes,
kAllocOverheadBytes, kMaxAllocatedBytes);
EXPECT_EQ(data->run_duration_sum(), run_ms + run_ms + run_ms1);
EXPECT_EQ(data->run_duration_max(), run_ms1);
EXPECT_EQ(data->run_duration_sample(), run_ms1);
EXPECT_EQ(data->queue_duration_sum(), queue_ms + queue_ms + queue_ms1);
EXPECT_EQ(data->queue_duration_max(), queue_ms1);
EXPECT_EQ(data->queue_duration_sample(), queue_ms1);
EXPECT_EQ(data->count(), 3);
EXPECT_EQ(data->alloc_ops(), 2 * kAllocOps);
EXPECT_EQ(data->free_ops(), 2 * kFreeOps);
EXPECT_EQ(data->allocated_bytes(), 2 * kAllocatedBytes);
EXPECT_EQ(data->freed_bytes(), 2 * kFreedBytes);
EXPECT_EQ(data->alloc_overhead_bytes(), 2 * kAllocOverheadBytes);
EXPECT_EQ(data->max_allocated_bytes(), kMaxAllocatedBytes);
ASSERT_NE(nullptr, data->last_phase_snapshot());
EXPECT_EQ(123, data->last_phase_snapshot()->profiling_phase);
EXPECT_EQ(2, data->last_phase_snapshot()->death_data.count);
EXPECT_EQ(2 * run_ms,
data->last_phase_snapshot()->death_data.run_duration_sum);
EXPECT_EQ(run_ms, data->last_phase_snapshot()->death_data.run_duration_max);
EXPECT_EQ(run_ms,
data->last_phase_snapshot()->death_data.run_duration_sample);
EXPECT_EQ(2 * queue_ms,
data->last_phase_snapshot()->death_data.queue_duration_sum);
EXPECT_EQ(queue_ms,
data->last_phase_snapshot()->death_data.queue_duration_max);
EXPECT_EQ(queue_ms,
data->last_phase_snapshot()->death_data.queue_duration_sample);
EXPECT_EQ(kAllocOps, data->last_phase_snapshot()->death_data.alloc_ops);
EXPECT_EQ(kFreeOps, data->last_phase_snapshot()->death_data.free_ops);
EXPECT_EQ(kAllocatedBytes,
data->last_phase_snapshot()->death_data.allocated_bytes);
EXPECT_EQ(kFreedBytes, data->last_phase_snapshot()->death_data.freed_bytes);
EXPECT_EQ(kAllocOverheadBytes,
data->last_phase_snapshot()->death_data.alloc_overhead_bytes);
EXPECT_EQ(kMaxAllocatedBytes,
data->last_phase_snapshot()->death_data.max_allocated_bytes);
EXPECT_EQ(nullptr, data->last_phase_snapshot()->prev);
}
TEST_F(TrackedObjectsTest, Delta) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
DeathDataSnapshot snapshot;
snapshot.count = 10;
snapshot.run_duration_sum = 100;
snapshot.run_duration_max = 50;
snapshot.run_duration_sample = 25;
snapshot.queue_duration_sum = 200;
snapshot.queue_duration_max = 101;
snapshot.queue_duration_sample = 26;
snapshot.alloc_ops = 95;
snapshot.free_ops = 90;
snapshot.allocated_bytes = 10240;
snapshot.freed_bytes = 4096;
snapshot.alloc_overhead_bytes = 950;
snapshot.max_allocated_bytes = 10240;
DeathDataSnapshot older_snapshot;
older_snapshot.count = 2;
older_snapshot.run_duration_sum = 95;
older_snapshot.run_duration_max = 48;
older_snapshot.run_duration_sample = 22;
older_snapshot.queue_duration_sum = 190;
older_snapshot.queue_duration_max = 99;
older_snapshot.queue_duration_sample = 21;
older_snapshot.alloc_ops = 45;
older_snapshot.free_ops = 40;
older_snapshot.allocated_bytes = 4096;
older_snapshot.freed_bytes = 2048;
older_snapshot.alloc_overhead_bytes = 450;
older_snapshot.max_allocated_bytes = 10200;
const DeathDataSnapshot& delta = snapshot.Delta(older_snapshot);
EXPECT_EQ(8, delta.count);
EXPECT_EQ(5, delta.run_duration_sum);
EXPECT_EQ(50, delta.run_duration_max);
EXPECT_EQ(25, delta.run_duration_sample);
EXPECT_EQ(10, delta.queue_duration_sum);
EXPECT_EQ(101, delta.queue_duration_max);
EXPECT_EQ(26, delta.queue_duration_sample);
EXPECT_EQ(50, delta.alloc_ops);
EXPECT_EQ(50, delta.free_ops);
EXPECT_EQ(6144, delta.allocated_bytes);
EXPECT_EQ(2048, delta.freed_bytes);
EXPECT_EQ(500, delta.alloc_overhead_bytes);
EXPECT_EQ(10240, delta.max_allocated_bytes);
}
TEST_F(TrackedObjectsTest, DeactivatedBirthOnlyToSnapshotWorkerThread) {
// Start in the deactivated state.
ThreadData::InitializeAndSetTrackingStatus(ThreadData::DEACTIVATED);
const char kFunction[] = "DeactivatedBirthOnlyToSnapshotWorkerThread";
Location location(kFunction, kFile, kLineNumber, NULL);
TallyABirth(location, std::string());
ProcessDataSnapshot process_data;
ThreadData::Snapshot(0, &process_data);
ASSERT_EQ(1u, process_data.phased_snapshots.size());
auto it = process_data.phased_snapshots.find(0);
ASSERT_TRUE(it != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase = it->second;
ASSERT_EQ(0u, process_data_phase.tasks.size());
EXPECT_EQ(base::GetCurrentProcId(), process_data.process_id);
}
TEST_F(TrackedObjectsTest, DeactivatedBirthOnlyToSnapshotMainThread) {
// Start in the deactivated state.
ThreadData::InitializeAndSetTrackingStatus(ThreadData::DEACTIVATED);
const char kFunction[] = "DeactivatedBirthOnlyToSnapshotMainThread";
Location location(kFunction, kFile, kLineNumber, NULL);
TallyABirth(location, kMainThreadName);
ProcessDataSnapshot process_data;
ThreadData::Snapshot(0, &process_data);
ASSERT_EQ(1u, process_data.phased_snapshots.size());
auto it = process_data.phased_snapshots.find(0);
ASSERT_TRUE(it != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase = it->second;
ASSERT_EQ(0u, process_data_phase.tasks.size());
EXPECT_EQ(base::GetCurrentProcId(), process_data.process_id);
}
TEST_F(TrackedObjectsTest, BirthOnlyToSnapshotWorkerThread) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
const char kFunction[] = "BirthOnlyToSnapshotWorkerThread";
Location location(kFunction, kFile, kLineNumber, NULL);
TallyABirth(location, std::string());
ProcessDataSnapshot process_data;
ThreadData::Snapshot(0, &process_data);
ExpectSimpleProcessData(process_data, kFunction, kWorkerThreadName,
kStillAlive, 1, 0, 0);
}
TEST_F(TrackedObjectsTest, BirthOnlyToSnapshotMainThread) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
const char kFunction[] = "BirthOnlyToSnapshotMainThread";
Location location(kFunction, kFile, kLineNumber, NULL);
TallyABirth(location, kMainThreadName);
ProcessDataSnapshot process_data;
ThreadData::Snapshot(0, &process_data);
ExpectSimpleProcessData(process_data, kFunction, kMainThreadName, kStillAlive,
1, 0, 0);
}
TEST_F(TrackedObjectsTest, LifeCycleToSnapshotMainThread) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
const char kFunction[] = "LifeCycleToSnapshotMainThread";
Location location(kFunction, kFile, kLineNumber, NULL);
TallyABirth(location, kMainThreadName);
const TrackedTime kTimePosted = TrackedTime::FromMilliseconds(1);
const base::TimeTicks kDelayedStartTime = base::TimeTicks();
// TrackingInfo will call TallyABirth() during construction.
base::TrackingInfo pending_task(location, kDelayedStartTime);
pending_task.time_posted = kTimePosted; // Overwrite implied Now().
const unsigned int kStartOfRun = 5;
const unsigned int kEndOfRun = 7;
SetTestTime(kStartOfRun);
TaskStopwatch stopwatch;
stopwatch.Start();
SetTestTime(kEndOfRun);
stopwatch.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(pending_task, stopwatch);
ProcessDataSnapshot process_data;
ThreadData::Snapshot(0, &process_data);
ExpectSimpleProcessData(process_data, kFunction, kMainThreadName,
kMainThreadName, 1, 2, 4);
}
TEST_F(TrackedObjectsTest, TwoPhases) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
const char kFunction[] = "TwoPhases";
Location location(kFunction, kFile, kLineNumber, NULL);
TallyABirth(location, kMainThreadName);
const TrackedTime kTimePosted = TrackedTime::FromMilliseconds(1);
const base::TimeTicks kDelayedStartTime = base::TimeTicks();
// TrackingInfo will call TallyABirth() during construction.
base::TrackingInfo pending_task(location, kDelayedStartTime);
pending_task.time_posted = kTimePosted; // Overwrite implied Now().
const unsigned int kStartOfRun = 5;
const unsigned int kEndOfRun = 7;
SetTestTime(kStartOfRun);
TaskStopwatch stopwatch;
stopwatch.Start();
SetTestTime(kEndOfRun);
stopwatch.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(pending_task, stopwatch);
ThreadData::OnProfilingPhaseCompleted(0);
TallyABirth(location, kMainThreadName);
const TrackedTime kTimePosted1 = TrackedTime::FromMilliseconds(9);
const base::TimeTicks kDelayedStartTime1 = base::TimeTicks();
// TrackingInfo will call TallyABirth() during construction.
base::TrackingInfo pending_task1(location, kDelayedStartTime1);
pending_task1.time_posted = kTimePosted1; // Overwrite implied Now().
const unsigned int kStartOfRun1 = 11;
const unsigned int kEndOfRun1 = 21;
SetTestTime(kStartOfRun1);
TaskStopwatch stopwatch1;
stopwatch1.Start();
SetTestTime(kEndOfRun1);
stopwatch1.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(pending_task1, stopwatch1);
ProcessDataSnapshot process_data;
ThreadData::Snapshot(1, &process_data);
ASSERT_EQ(2u, process_data.phased_snapshots.size());
auto it0 = process_data.phased_snapshots.find(0);
ASSERT_TRUE(it0 != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase0 = it0->second;
ASSERT_EQ(1u, process_data_phase0.tasks.size());
EXPECT_EQ(kFile, process_data_phase0.tasks[0].birth.location.file_name);
EXPECT_EQ(kFunction,
process_data_phase0.tasks[0].birth.location.function_name);
EXPECT_EQ(kLineNumber,
process_data_phase0.tasks[0].birth.location.line_number);
EXPECT_EQ(kMainThreadName,
process_data_phase0.tasks[0].birth.sanitized_thread_name);
EXPECT_EQ(1, process_data_phase0.tasks[0].death_data.count);
EXPECT_EQ(2, process_data_phase0.tasks[0].death_data.run_duration_sum);
EXPECT_EQ(2, process_data_phase0.tasks[0].death_data.run_duration_max);
EXPECT_EQ(2, process_data_phase0.tasks[0].death_data.run_duration_sample);
EXPECT_EQ(4, process_data_phase0.tasks[0].death_data.queue_duration_sum);
EXPECT_EQ(4, process_data_phase0.tasks[0].death_data.queue_duration_max);
EXPECT_EQ(4, process_data_phase0.tasks[0].death_data.queue_duration_sample);
EXPECT_EQ(kMainThreadName,
process_data_phase0.tasks[0].death_sanitized_thread_name);
auto it1 = process_data.phased_snapshots.find(1);
ASSERT_TRUE(it1 != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase1 = it1->second;
ASSERT_EQ(1u, process_data_phase1.tasks.size());
EXPECT_EQ(kFile, process_data_phase1.tasks[0].birth.location.file_name);
EXPECT_EQ(kFunction,
process_data_phase1.tasks[0].birth.location.function_name);
EXPECT_EQ(kLineNumber,
process_data_phase1.tasks[0].birth.location.line_number);
EXPECT_EQ(kMainThreadName,
process_data_phase1.tasks[0].birth.sanitized_thread_name);
EXPECT_EQ(1, process_data_phase1.tasks[0].death_data.count);
EXPECT_EQ(10, process_data_phase1.tasks[0].death_data.run_duration_sum);
EXPECT_EQ(10, process_data_phase1.tasks[0].death_data.run_duration_max);
EXPECT_EQ(10, process_data_phase1.tasks[0].death_data.run_duration_sample);
EXPECT_EQ(2, process_data_phase1.tasks[0].death_data.queue_duration_sum);
EXPECT_EQ(2, process_data_phase1.tasks[0].death_data.queue_duration_max);
EXPECT_EQ(2, process_data_phase1.tasks[0].death_data.queue_duration_sample);
EXPECT_EQ(kMainThreadName,
process_data_phase1.tasks[0].death_sanitized_thread_name);
EXPECT_EQ(base::GetCurrentProcId(), process_data.process_id);
}
TEST_F(TrackedObjectsTest, ThreePhases) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
const char kFunction[] = "ThreePhases";
Location location(kFunction, kFile, kLineNumber, NULL);
// Phase 0
{
TallyABirth(location, kMainThreadName);
// TrackingInfo will call TallyABirth() during construction.
SetTestTime(10);
base::TrackingInfo pending_task(location, base::TimeTicks());
SetTestTime(17);
TaskStopwatch stopwatch;
stopwatch.Start();
SetTestTime(23);
stopwatch.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(pending_task, stopwatch);
}
ThreadData::OnProfilingPhaseCompleted(0);
// Phase 1
{
TallyABirth(location, kMainThreadName);
SetTestTime(30);
base::TrackingInfo pending_task(location, base::TimeTicks());
SetTestTime(35);
TaskStopwatch stopwatch;
stopwatch.Start();
SetTestTime(39);
stopwatch.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(pending_task, stopwatch);
}
ThreadData::OnProfilingPhaseCompleted(1);
// Phase 2
{
TallyABirth(location, kMainThreadName);
// TrackingInfo will call TallyABirth() during construction.
SetTestTime(40);
base::TrackingInfo pending_task(location, base::TimeTicks());
SetTestTime(43);
TaskStopwatch stopwatch;
stopwatch.Start();
SetTestTime(45);
stopwatch.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(pending_task, stopwatch);
}
// Snapshot and check results.
ProcessDataSnapshot process_data;
ThreadData::Snapshot(2, &process_data);
ASSERT_EQ(3u, process_data.phased_snapshots.size());
auto it0 = process_data.phased_snapshots.find(0);
ASSERT_TRUE(it0 != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase0 = it0->second;
ASSERT_EQ(1u, process_data_phase0.tasks.size());
EXPECT_EQ(kFile, process_data_phase0.tasks[0].birth.location.file_name);
EXPECT_EQ(kFunction,
process_data_phase0.tasks[0].birth.location.function_name);
EXPECT_EQ(kLineNumber,
process_data_phase0.tasks[0].birth.location.line_number);
EXPECT_EQ(kMainThreadName,
process_data_phase0.tasks[0].birth.sanitized_thread_name);
EXPECT_EQ(1, process_data_phase0.tasks[0].death_data.count);
EXPECT_EQ(6, process_data_phase0.tasks[0].death_data.run_duration_sum);
EXPECT_EQ(6, process_data_phase0.tasks[0].death_data.run_duration_max);
EXPECT_EQ(6, process_data_phase0.tasks[0].death_data.run_duration_sample);
EXPECT_EQ(7, process_data_phase0.tasks[0].death_data.queue_duration_sum);
EXPECT_EQ(7, process_data_phase0.tasks[0].death_data.queue_duration_max);
EXPECT_EQ(7, process_data_phase0.tasks[0].death_data.queue_duration_sample);
EXPECT_EQ(kMainThreadName,
process_data_phase0.tasks[0].death_sanitized_thread_name);
auto it1 = process_data.phased_snapshots.find(1);
ASSERT_TRUE(it1 != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase1 = it1->second;
ASSERT_EQ(1u, process_data_phase1.tasks.size());
EXPECT_EQ(kFile, process_data_phase1.tasks[0].birth.location.file_name);
EXPECT_EQ(kFunction,
process_data_phase1.tasks[0].birth.location.function_name);
EXPECT_EQ(kLineNumber,
process_data_phase1.tasks[0].birth.location.line_number);
EXPECT_EQ(kMainThreadName,
process_data_phase1.tasks[0].birth.sanitized_thread_name);
EXPECT_EQ(1, process_data_phase1.tasks[0].death_data.count);
EXPECT_EQ(4, process_data_phase1.tasks[0].death_data.run_duration_sum);
EXPECT_EQ(4, process_data_phase1.tasks[0].death_data.run_duration_max);
EXPECT_EQ(4, process_data_phase1.tasks[0].death_data.run_duration_sample);
EXPECT_EQ(5, process_data_phase1.tasks[0].death_data.queue_duration_sum);
EXPECT_EQ(5, process_data_phase1.tasks[0].death_data.queue_duration_max);
EXPECT_EQ(5, process_data_phase1.tasks[0].death_data.queue_duration_sample);
EXPECT_EQ(kMainThreadName,
process_data_phase1.tasks[0].death_sanitized_thread_name);
auto it2 = process_data.phased_snapshots.find(2);
ASSERT_TRUE(it2 != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase2 = it2->second;
ASSERT_EQ(1u, process_data_phase2.tasks.size());
EXPECT_EQ(kFile, process_data_phase2.tasks[0].birth.location.file_name);
EXPECT_EQ(kFunction,
process_data_phase2.tasks[0].birth.location.function_name);
EXPECT_EQ(kLineNumber,
process_data_phase2.tasks[0].birth.location.line_number);
EXPECT_EQ(kMainThreadName,
process_data_phase2.tasks[0].birth.sanitized_thread_name);
EXPECT_EQ(1, process_data_phase2.tasks[0].death_data.count);
EXPECT_EQ(2, process_data_phase2.tasks[0].death_data.run_duration_sum);
EXPECT_EQ(2, process_data_phase2.tasks[0].death_data.run_duration_max);
EXPECT_EQ(2, process_data_phase2.tasks[0].death_data.run_duration_sample);
EXPECT_EQ(3, process_data_phase2.tasks[0].death_data.queue_duration_sum);
EXPECT_EQ(3, process_data_phase2.tasks[0].death_data.queue_duration_max);
EXPECT_EQ(3, process_data_phase2.tasks[0].death_data.queue_duration_sample);
EXPECT_EQ(kMainThreadName,
process_data_phase2.tasks[0].death_sanitized_thread_name);
EXPECT_EQ(base::GetCurrentProcId(), process_data.process_id);
}
TEST_F(TrackedObjectsTest, TwoPhasesSecondEmpty) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
const char kFunction[] = "TwoPhasesSecondEmpty";
Location location(kFunction, kFile, kLineNumber, NULL);
ThreadData::InitializeThreadContext(kMainThreadName);
const TrackedTime kTimePosted = TrackedTime::FromMilliseconds(1);
const base::TimeTicks kDelayedStartTime = base::TimeTicks();
// TrackingInfo will call TallyABirth() during construction.
base::TrackingInfo pending_task(location, kDelayedStartTime);
pending_task.time_posted = kTimePosted; // Overwrite implied Now().
const unsigned int kStartOfRun = 5;
const unsigned int kEndOfRun = 7;
SetTestTime(kStartOfRun);
TaskStopwatch stopwatch;
stopwatch.Start();
SetTestTime(kEndOfRun);
stopwatch.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(pending_task, stopwatch);
ThreadData::OnProfilingPhaseCompleted(0);
ProcessDataSnapshot process_data;
ThreadData::Snapshot(1, &process_data);
ASSERT_EQ(2u, process_data.phased_snapshots.size());
auto it0 = process_data.phased_snapshots.find(0);
ASSERT_TRUE(it0 != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase0 = it0->second;
ASSERT_EQ(1u, process_data_phase0.tasks.size());
EXPECT_EQ(kFile, process_data_phase0.tasks[0].birth.location.file_name);
EXPECT_EQ(kFunction,
process_data_phase0.tasks[0].birth.location.function_name);
EXPECT_EQ(kLineNumber,
process_data_phase0.tasks[0].birth.location.line_number);
EXPECT_EQ(kMainThreadName,
process_data_phase0.tasks[0].birth.sanitized_thread_name);
EXPECT_EQ(1, process_data_phase0.tasks[0].death_data.count);
EXPECT_EQ(2, process_data_phase0.tasks[0].death_data.run_duration_sum);
EXPECT_EQ(2, process_data_phase0.tasks[0].death_data.run_duration_max);
EXPECT_EQ(2, process_data_phase0.tasks[0].death_data.run_duration_sample);
EXPECT_EQ(4, process_data_phase0.tasks[0].death_data.queue_duration_sum);
EXPECT_EQ(4, process_data_phase0.tasks[0].death_data.queue_duration_max);
EXPECT_EQ(4, process_data_phase0.tasks[0].death_data.queue_duration_sample);
EXPECT_EQ(kMainThreadName,
process_data_phase0.tasks[0].death_sanitized_thread_name);
auto it1 = process_data.phased_snapshots.find(1);
ASSERT_TRUE(it1 != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase1 = it1->second;
ASSERT_EQ(0u, process_data_phase1.tasks.size());
EXPECT_EQ(base::GetCurrentProcId(), process_data.process_id);
}
TEST_F(TrackedObjectsTest, TwoPhasesFirstEmpty) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
ThreadData::OnProfilingPhaseCompleted(0);
const char kFunction[] = "TwoPhasesSecondEmpty";
Location location(kFunction, kFile, kLineNumber, NULL);
ThreadData::InitializeThreadContext(kMainThreadName);
const TrackedTime kTimePosted = TrackedTime::FromMilliseconds(1);
const base::TimeTicks kDelayedStartTime = base::TimeTicks();
// TrackingInfo will call TallyABirth() during construction.
base::TrackingInfo pending_task(location, kDelayedStartTime);
pending_task.time_posted = kTimePosted; // Overwrite implied Now().
const unsigned int kStartOfRun = 5;
const unsigned int kEndOfRun = 7;
SetTestTime(kStartOfRun);
TaskStopwatch stopwatch;
stopwatch.Start();
SetTestTime(kEndOfRun);
stopwatch.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(pending_task, stopwatch);
ProcessDataSnapshot process_data;
ThreadData::Snapshot(1, &process_data);
ASSERT_EQ(1u, process_data.phased_snapshots.size());
auto it1 = process_data.phased_snapshots.find(1);
ASSERT_TRUE(it1 != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase1 = it1->second;
ASSERT_EQ(1u, process_data_phase1.tasks.size());
EXPECT_EQ(kFile, process_data_phase1.tasks[0].birth.location.file_name);
EXPECT_EQ(kFunction,
process_data_phase1.tasks[0].birth.location.function_name);
EXPECT_EQ(kLineNumber,
process_data_phase1.tasks[0].birth.location.line_number);
EXPECT_EQ(kMainThreadName,
process_data_phase1.tasks[0].birth.sanitized_thread_name);
EXPECT_EQ(1, process_data_phase1.tasks[0].death_data.count);
EXPECT_EQ(2, process_data_phase1.tasks[0].death_data.run_duration_sum);
EXPECT_EQ(2, process_data_phase1.tasks[0].death_data.run_duration_max);
EXPECT_EQ(2, process_data_phase1.tasks[0].death_data.run_duration_sample);
EXPECT_EQ(4, process_data_phase1.tasks[0].death_data.queue_duration_sum);
EXPECT_EQ(4, process_data_phase1.tasks[0].death_data.queue_duration_max);
EXPECT_EQ(4, process_data_phase1.tasks[0].death_data.queue_duration_sample);
EXPECT_EQ(kMainThreadName,
process_data_phase1.tasks[0].death_sanitized_thread_name);
EXPECT_EQ(base::GetCurrentProcId(), process_data.process_id);
}
// We will deactivate tracking after the birth, and before the death, and
// demonstrate that the lifecycle is completely tallied. This ensures that
// our tallied births are matched by tallied deaths (except for when the
// task is still running, or is queued).
TEST_F(TrackedObjectsTest, LifeCycleMidDeactivatedToSnapshotMainThread) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
const char kFunction[] = "LifeCycleMidDeactivatedToSnapshotMainThread";
Location location(kFunction, kFile, kLineNumber, NULL);
TallyABirth(location, kMainThreadName);
const TrackedTime kTimePosted = TrackedTime::FromMilliseconds(1);
const base::TimeTicks kDelayedStartTime = base::TimeTicks();
// TrackingInfo will call TallyABirth() during construction.
base::TrackingInfo pending_task(location, kDelayedStartTime);
pending_task.time_posted = kTimePosted; // Overwrite implied Now().
// Turn off tracking now that we have births.
ThreadData::InitializeAndSetTrackingStatus(ThreadData::DEACTIVATED);
const unsigned int kStartOfRun = 5;
const unsigned int kEndOfRun = 7;
SetTestTime(kStartOfRun);
TaskStopwatch stopwatch;
stopwatch.Start();
SetTestTime(kEndOfRun);
stopwatch.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(pending_task, stopwatch);
ProcessDataSnapshot process_data;
ThreadData::Snapshot(0, &process_data);
ExpectSimpleProcessData(process_data, kFunction, kMainThreadName,
kMainThreadName, 1, 2, 4);
}
// We will deactivate tracking before starting a life cycle, and neither
// the birth nor the death will be recorded.
TEST_F(TrackedObjectsTest, LifeCyclePreDeactivatedToSnapshotMainThread) {
// Start in the deactivated state.
ThreadData::InitializeAndSetTrackingStatus(ThreadData::DEACTIVATED);
const char kFunction[] = "LifeCyclePreDeactivatedToSnapshotMainThread";
Location location(kFunction, kFile, kLineNumber, NULL);
TallyABirth(location, kMainThreadName);
const TrackedTime kTimePosted = TrackedTime::FromMilliseconds(1);
const base::TimeTicks kDelayedStartTime = base::TimeTicks();
// TrackingInfo will call TallyABirth() during construction.
base::TrackingInfo pending_task(location, kDelayedStartTime);
pending_task.time_posted = kTimePosted; // Overwrite implied Now().
const unsigned int kStartOfRun = 5;
const unsigned int kEndOfRun = 7;
SetTestTime(kStartOfRun);
TaskStopwatch stopwatch;
stopwatch.Start();
SetTestTime(kEndOfRun);
stopwatch.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(pending_task, stopwatch);
ProcessDataSnapshot process_data;
ThreadData::Snapshot(0, &process_data);
ASSERT_EQ(1u, process_data.phased_snapshots.size());
auto it = process_data.phased_snapshots.find(0);
ASSERT_TRUE(it != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase = it->second;
ASSERT_EQ(0u, process_data_phase.tasks.size());
EXPECT_EQ(base::GetCurrentProcId(), process_data.process_id);
}
TEST_F(TrackedObjectsTest, TwoLives) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
const char kFunction[] = "TwoLives";
Location location(kFunction, kFile, kLineNumber, NULL);
TallyABirth(location, kMainThreadName);
const TrackedTime kTimePosted = TrackedTime::FromMilliseconds(1);
const base::TimeTicks kDelayedStartTime = base::TimeTicks();
// TrackingInfo will call TallyABirth() during construction.
base::TrackingInfo pending_task(location, kDelayedStartTime);
pending_task.time_posted = kTimePosted; // Overwrite implied Now().
const unsigned int kStartOfRun = 5;
const unsigned int kEndOfRun = 7;
SetTestTime(kStartOfRun);
TaskStopwatch stopwatch;
stopwatch.Start();
SetTestTime(kEndOfRun);
stopwatch.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(pending_task, stopwatch);
// TrackingInfo will call TallyABirth() during construction.
base::TrackingInfo pending_task2(location, kDelayedStartTime);
pending_task2.time_posted = kTimePosted; // Overwrite implied Now().
SetTestTime(kStartOfRun);
TaskStopwatch stopwatch2;
stopwatch2.Start();
SetTestTime(kEndOfRun);
stopwatch2.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(pending_task2, stopwatch2);
ProcessDataSnapshot process_data;
ThreadData::Snapshot(0, &process_data);
ExpectSimpleProcessData(process_data, kFunction, kMainThreadName,
kMainThreadName, 2, 2, 4);
}
TEST_F(TrackedObjectsTest, DifferentLives) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
// Use a well named thread.
ThreadData::InitializeThreadContext(kMainThreadName);
const char kFunction[] = "DifferentLives";
Location location(kFunction, kFile, kLineNumber, NULL);
const TrackedTime kTimePosted = TrackedTime::FromMilliseconds(1);
const base::TimeTicks kDelayedStartTime = base::TimeTicks();
// TrackingInfo will call TallyABirth() during construction.
base::TrackingInfo pending_task(location, kDelayedStartTime);
pending_task.time_posted = kTimePosted; // Overwrite implied Now().
const unsigned int kStartOfRun = 5;
const unsigned int kEndOfRun = 7;
SetTestTime(kStartOfRun);
TaskStopwatch stopwatch;
stopwatch.Start();
SetTestTime(kEndOfRun);
stopwatch.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(pending_task, stopwatch);
const int kSecondFakeLineNumber = 999;
Location second_location(kFunction, kFile, kSecondFakeLineNumber, NULL);
// TrackingInfo will call TallyABirth() during construction.
base::TrackingInfo pending_task2(second_location, kDelayedStartTime);
pending_task2.time_posted = kTimePosted; // Overwrite implied Now().
ProcessDataSnapshot process_data;
ThreadData::Snapshot(0, &process_data);
ASSERT_EQ(1u, process_data.phased_snapshots.size());
auto it = process_data.phased_snapshots.find(0);
ASSERT_TRUE(it != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase = it->second;
ASSERT_EQ(2u, process_data_phase.tasks.size());
EXPECT_EQ(kFile, process_data_phase.tasks[0].birth.location.file_name);
EXPECT_EQ(kFunction,
process_data_phase.tasks[0].birth.location.function_name);
EXPECT_EQ(kLineNumber,
process_data_phase.tasks[0].birth.location.line_number);
EXPECT_EQ(kMainThreadName,
process_data_phase.tasks[0].birth.sanitized_thread_name);
EXPECT_EQ(1, process_data_phase.tasks[0].death_data.count);
EXPECT_EQ(2, process_data_phase.tasks[0].death_data.run_duration_sum);
EXPECT_EQ(2, process_data_phase.tasks[0].death_data.run_duration_max);
EXPECT_EQ(2, process_data_phase.tasks[0].death_data.run_duration_sample);
EXPECT_EQ(4, process_data_phase.tasks[0].death_data.queue_duration_sum);
EXPECT_EQ(4, process_data_phase.tasks[0].death_data.queue_duration_max);
EXPECT_EQ(4, process_data_phase.tasks[0].death_data.queue_duration_sample);
EXPECT_EQ(kMainThreadName,
process_data_phase.tasks[0].death_sanitized_thread_name);
EXPECT_EQ(kFile, process_data_phase.tasks[1].birth.location.file_name);
EXPECT_EQ(kFunction,
process_data_phase.tasks[1].birth.location.function_name);
EXPECT_EQ(kSecondFakeLineNumber,
process_data_phase.tasks[1].birth.location.line_number);
EXPECT_EQ(kMainThreadName,
process_data_phase.tasks[1].birth.sanitized_thread_name);
EXPECT_EQ(1, process_data_phase.tasks[1].death_data.count);
EXPECT_EQ(0, process_data_phase.tasks[1].death_data.run_duration_sum);
EXPECT_EQ(0, process_data_phase.tasks[1].death_data.run_duration_max);
EXPECT_EQ(0, process_data_phase.tasks[1].death_data.run_duration_sample);
EXPECT_EQ(0, process_data_phase.tasks[1].death_data.queue_duration_sum);
EXPECT_EQ(0, process_data_phase.tasks[1].death_data.queue_duration_max);
EXPECT_EQ(0, process_data_phase.tasks[1].death_data.queue_duration_sample);
EXPECT_EQ(kStillAlive,
process_data_phase.tasks[1].death_sanitized_thread_name);
EXPECT_EQ(base::GetCurrentProcId(), process_data.process_id);
}
TEST_F(TrackedObjectsTest, TaskWithNestedExclusion) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
const char kFunction[] = "TaskWithNestedExclusion";
Location location(kFunction, kFile, kLineNumber, NULL);
TallyABirth(location, kMainThreadName);
const TrackedTime kTimePosted = TrackedTime::FromMilliseconds(1);
const base::TimeTicks kDelayedStartTime = base::TimeTicks();
// TrackingInfo will call TallyABirth() during construction.
base::TrackingInfo pending_task(location, kDelayedStartTime);
pending_task.time_posted = kTimePosted; // Overwrite implied Now().
SetTestTime(5);
TaskStopwatch task_stopwatch;
task_stopwatch.Start();
{
SetTestTime(8);
TaskStopwatch exclusion_stopwatch;
exclusion_stopwatch.Start();
SetTestTime(12);
exclusion_stopwatch.Stop();
}
SetTestTime(15);
task_stopwatch.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(pending_task, task_stopwatch);
ProcessDataSnapshot process_data;
ThreadData::Snapshot(0, &process_data);
ExpectSimpleProcessData(process_data, kFunction, kMainThreadName,
kMainThreadName, 1, 6, 4);
}
TEST_F(TrackedObjectsTest, TaskWith2NestedExclusions) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
const char kFunction[] = "TaskWith2NestedExclusions";
Location location(kFunction, kFile, kLineNumber, NULL);
TallyABirth(location, kMainThreadName);
const TrackedTime kTimePosted = TrackedTime::FromMilliseconds(1);
const base::TimeTicks kDelayedStartTime = base::TimeTicks();
// TrackingInfo will call TallyABirth() during construction.
base::TrackingInfo pending_task(location, kDelayedStartTime);
pending_task.time_posted = kTimePosted; // Overwrite implied Now().
SetTestTime(5);
TaskStopwatch task_stopwatch;
task_stopwatch.Start();
{
SetTestTime(8);
TaskStopwatch exclusion_stopwatch;
exclusion_stopwatch.Start();
SetTestTime(12);
exclusion_stopwatch.Stop();
SetTestTime(15);
TaskStopwatch exclusion_stopwatch2;
exclusion_stopwatch2.Start();
SetTestTime(18);
exclusion_stopwatch2.Stop();
}
SetTestTime(25);
task_stopwatch.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(pending_task, task_stopwatch);
ProcessDataSnapshot process_data;
ThreadData::Snapshot(0, &process_data);
ExpectSimpleProcessData(process_data, kFunction, kMainThreadName,
kMainThreadName, 1, 13, 4);
}
TEST_F(TrackedObjectsTest, TaskWithNestedExclusionWithNestedTask) {
ThreadData::InitializeAndSetTrackingStatus(ThreadData::PROFILING_ACTIVE);
const char kFunction[] = "TaskWithNestedExclusionWithNestedTask";
Location location(kFunction, kFile, kLineNumber, NULL);
const int kSecondFakeLineNumber = 999;
TallyABirth(location, kMainThreadName);
const TrackedTime kTimePosted = TrackedTime::FromMilliseconds(1);
const base::TimeTicks kDelayedStartTime = base::TimeTicks();
// TrackingInfo will call TallyABirth() during construction.
base::TrackingInfo pending_task(location, kDelayedStartTime);
pending_task.time_posted = kTimePosted; // Overwrite implied Now().
SetTestTime(5);
TaskStopwatch task_stopwatch;
task_stopwatch.Start();
{
SetTestTime(8);
TaskStopwatch exclusion_stopwatch;
exclusion_stopwatch.Start();
{
Location second_location(kFunction, kFile, kSecondFakeLineNumber, NULL);
base::TrackingInfo nested_task(second_location, kDelayedStartTime);
// Overwrite implied Now().
nested_task.time_posted = TrackedTime::FromMilliseconds(8);
SetTestTime(9);
TaskStopwatch nested_task_stopwatch;
nested_task_stopwatch.Start();
SetTestTime(11);
nested_task_stopwatch.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(
nested_task, nested_task_stopwatch);
}
SetTestTime(12);
exclusion_stopwatch.Stop();
}
SetTestTime(15);
task_stopwatch.Stop();
ThreadData::TallyRunOnNamedThreadIfTracking(pending_task, task_stopwatch);
ProcessDataSnapshot process_data;
ThreadData::Snapshot(0, &process_data);
ASSERT_EQ(1u, process_data.phased_snapshots.size());
auto it = process_data.phased_snapshots.find(0);
ASSERT_TRUE(it != process_data.phased_snapshots.end());
const ProcessDataPhaseSnapshot& process_data_phase = it->second;
// The order in which the two task follow is platform-dependent.
int t0 =
(process_data_phase.tasks[0].birth.location.line_number == kLineNumber)
? 0
: 1;
int t1 = 1 - t0;
ASSERT_EQ(2u, process_data_phase.tasks.size());
EXPECT_EQ(kFile, process_data_phase.tasks[t0].birth.location.file_name);
EXPECT_EQ(kFunction,
process_data_phase.tasks[t0].birth.location.function_name);
EXPECT_EQ(kLineNumber,
process_data_phase.tasks[t0].birth.location.line_number);
EXPECT_EQ(kMainThreadName,
process_data_phase.tasks[t0].birth.sanitized_thread_name);
EXPECT_EQ(1, process_data_phase.tasks[t0].death_data.count);
EXPECT_EQ(6, process_data_phase.tasks[t0].death_data.run_duration_sum);
EXPECT_EQ(6, process_data_phase.tasks[t0].death_data.run_duration_max);
EXPECT_EQ(6, process_data_phase.tasks[t0].death_data.run_duration_sample);
EXPECT_EQ(4, process_data_phase.tasks[t0].death_data.queue_duration_sum);
EXPECT_EQ(4, process_data_phase.tasks[t0].death_data.queue_duration_max);
EXPECT_EQ(4, process_data_phase.tasks[t0].death_data.queue_duration_sample);
EXPECT_EQ(kMainThreadName,
process_data_phase.tasks[t0].death_sanitized_thread_name);
EXPECT_EQ(kFile, process_data_phase.tasks[t1].birth.location.file_name);
EXPECT_EQ(kFunction,
process_data_phase.tasks[t1].birth.location.function_name);
EXPECT_EQ(kSecondFakeLineNumber,
process_data_phase.tasks[t1].birth.location.line_number);
EXPECT_EQ(kMainThreadName,
process_data_phase.tasks[t1].birth.sanitized_thread_name);
EXPECT_EQ(1, process_data_phase.tasks[t1].death_data.count);
EXPECT_EQ(2, process_data_phase.tasks[t1].death_data.run_duration_sum);
EXPECT_EQ(2, process_data_phase.tasks[t1].death_data.run_duration_max);
EXPECT_EQ(2, process_data_phase.tasks[t1].death_data.run_duration_sample);
EXPECT_EQ(1, process_data_phase.tasks[t1].death_data.queue_duration_sum);
EXPECT_EQ(1, process_data_phase.tasks[t1].death_data.queue_duration_max);
EXPECT_EQ(1, process_data_phase.tasks[t1].death_data.queue_duration_sample);
EXPECT_EQ(kMainThreadName,
process_data_phase.tasks[t1].death_sanitized_thread_name);
EXPECT_EQ(base::GetCurrentProcId(), process_data.process_id);
}
// Repetitively create and stop named threads. Verify that the number of
// instantiated ThreadData instance is equal to the number of different
// sanitized thread names used in the test.
TEST_F(TrackedObjectsTest, ReuseRetiredThreadData) {
const char* const kThreadNames[] = {"Foo%d", "Bar%d", "123Dummy%d",
"456Dummy%d", "%d"};
constexpr int kNumIterations = 10;
EXPECT_EQ(0, GetNumThreadData());
for (int i = 0; i < kNumIterations; ++i) {
for (const char* thread_name : kThreadNames) {
base::Thread thread(base::StringPrintf(thread_name, i));
EXPECT_TRUE(thread.Start());
}
}
// Expect one ThreadData instance for each element in |kThreadNames| and one
// ThreadData instance for the main thread.
EXPECT_EQ(static_cast<int>(arraysize(kThreadNames) + 1), GetNumThreadData());
}
} // namespace tracked_objects