| // Copyright (c) 2010 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // STL utility functions. Usually, these replace built-in, but slow(!), |
| // STL functions with more efficient versions. |
| |
| #ifndef BASE_STL_UTIL_INL_H_ |
| #define BASE_STL_UTIL_INL_H_ |
| #pragma once |
| |
| #include <string.h> // for memcpy |
| #include <functional> |
| #include <set> |
| #include <string> |
| #include <vector> |
| #include <cassert> |
| |
| // Clear internal memory of an STL object. |
| // STL clear()/reserve(0) does not always free internal memory allocated |
| // This function uses swap/destructor to ensure the internal memory is freed. |
| template<class T> void STLClearObject(T* obj) { |
| T tmp; |
| tmp.swap(*obj); |
| obj->reserve(0); // this is because sometimes "T tmp" allocates objects with |
| // memory (arena implementation?). use reserve() |
| // to clear() even if it doesn't always work |
| } |
| |
| // Reduce memory usage on behalf of object if it is using more than |
| // "bytes" bytes of space. By default, we clear objects over 1MB. |
| template <class T> inline void STLClearIfBig(T* obj, size_t limit = 1<<20) { |
| if (obj->capacity() >= limit) { |
| STLClearObject(obj); |
| } else { |
| obj->clear(); |
| } |
| } |
| |
| // Reserve space for STL object. |
| // STL's reserve() will always copy. |
| // This function avoid the copy if we already have capacity |
| template<class T> void STLReserveIfNeeded(T* obj, int new_size) { |
| if (obj->capacity() < new_size) // increase capacity |
| obj->reserve(new_size); |
| else if (obj->size() > new_size) // reduce size |
| obj->resize(new_size); |
| } |
| |
| // STLDeleteContainerPointers() |
| // For a range within a container of pointers, calls delete |
| // (non-array version) on these pointers. |
| // NOTE: for these three functions, we could just implement a DeleteObject |
| // functor and then call for_each() on the range and functor, but this |
| // requires us to pull in all of algorithm.h, which seems expensive. |
| // For hash_[multi]set, it is important that this deletes behind the iterator |
| // because the hash_set may call the hash function on the iterator when it is |
| // advanced, which could result in the hash function trying to deference a |
| // stale pointer. |
| template <class ForwardIterator> |
| void STLDeleteContainerPointers(ForwardIterator begin, ForwardIterator end) { |
| while (begin != end) { |
| ForwardIterator temp = begin; |
| ++begin; |
| delete *temp; |
| } |
| } |
| |
| // STLDeleteContainerPairPointers() |
| // For a range within a container of pairs, calls delete |
| // (non-array version) on BOTH items in the pairs. |
| // NOTE: Like STLDeleteContainerPointers, it is important that this deletes |
| // behind the iterator because if both the key and value are deleted, the |
| // container may call the hash function on the iterator when it is advanced, |
| // which could result in the hash function trying to dereference a stale |
| // pointer. |
| template <class ForwardIterator> |
| void STLDeleteContainerPairPointers(ForwardIterator begin, |
| ForwardIterator end) { |
| while (begin != end) { |
| ForwardIterator temp = begin; |
| ++begin; |
| delete temp->first; |
| delete temp->second; |
| } |
| } |
| |
| // STLDeleteContainerPairFirstPointers() |
| // For a range within a container of pairs, calls delete (non-array version) |
| // on the FIRST item in the pairs. |
| // NOTE: Like STLDeleteContainerPointers, deleting behind the iterator. |
| template <class ForwardIterator> |
| void STLDeleteContainerPairFirstPointers(ForwardIterator begin, |
| ForwardIterator end) { |
| while (begin != end) { |
| ForwardIterator temp = begin; |
| ++begin; |
| delete temp->first; |
| } |
| } |
| |
| // STLDeleteContainerPairSecondPointers() |
| // For a range within a container of pairs, calls delete |
| // (non-array version) on the SECOND item in the pairs. |
| template <class ForwardIterator> |
| void STLDeleteContainerPairSecondPointers(ForwardIterator begin, |
| ForwardIterator end) { |
| while (begin != end) { |
| delete begin->second; |
| ++begin; |
| } |
| } |
| |
| template<typename T> |
| inline void STLAssignToVector(std::vector<T>* vec, |
| const T* ptr, |
| size_t n) { |
| vec->resize(n); |
| memcpy(&vec->front(), ptr, n*sizeof(T)); |
| } |
| |
| /***** Hack to allow faster assignment to a vector *****/ |
| |
| // This routine speeds up an assignment of 32 bytes to a vector from |
| // about 250 cycles per assignment to about 140 cycles. |
| // |
| // Usage: |
| // STLAssignToVectorChar(&vec, ptr, size); |
| // STLAssignToString(&str, ptr, size); |
| |
| inline void STLAssignToVectorChar(std::vector<char>* vec, |
| const char* ptr, |
| size_t n) { |
| STLAssignToVector(vec, ptr, n); |
| } |
| |
| inline void STLAssignToString(std::string* str, const char* ptr, size_t n) { |
| str->resize(n); |
| memcpy(&*str->begin(), ptr, n); |
| } |
| |
| // To treat a possibly-empty vector as an array, use these functions. |
| // If you know the array will never be empty, you can use &*v.begin() |
| // directly, but that is allowed to dump core if v is empty. This |
| // function is the most efficient code that will work, taking into |
| // account how our STL is actually implemented. THIS IS NON-PORTABLE |
| // CODE, so call us instead of repeating the nonportable code |
| // everywhere. If our STL implementation changes, we will need to |
| // change this as well. |
| |
| template<typename T> |
| inline T* vector_as_array(std::vector<T>* v) { |
| # ifdef NDEBUG |
| return &*v->begin(); |
| # else |
| return v->empty() ? NULL : &*v->begin(); |
| # endif |
| } |
| |
| template<typename T> |
| inline const T* vector_as_array(const std::vector<T>* v) { |
| # ifdef NDEBUG |
| return &*v->begin(); |
| # else |
| return v->empty() ? NULL : &*v->begin(); |
| # endif |
| } |
| |
| // Return a mutable char* pointing to a string's internal buffer, |
| // which may not be null-terminated. Writing through this pointer will |
| // modify the string. |
| // |
| // string_as_array(&str)[i] is valid for 0 <= i < str.size() until the |
| // next call to a string method that invalidates iterators. |
| // |
| // As of 2006-04, there is no standard-blessed way of getting a |
| // mutable reference to a string's internal buffer. However, issue 530 |
| // (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-active.html#530) |
| // proposes this as the method. According to Matt Austern, this should |
| // already work on all current implementations. |
| inline char* string_as_array(std::string* str) { |
| // DO NOT USE const_cast<char*>(str->data())! See the unittest for why. |
| return str->empty() ? NULL : &*str->begin(); |
| } |
| |
| // These are methods that test two hash maps/sets for equality. These exist |
| // because the == operator in the STL can return false when the maps/sets |
| // contain identical elements. This is because it compares the internal hash |
| // tables which may be different if the order of insertions and deletions |
| // differed. |
| |
| template <class HashSet> |
| inline bool HashSetEquality(const HashSet& set_a, const HashSet& set_b) { |
| if (set_a.size() != set_b.size()) return false; |
| for (typename HashSet::const_iterator i = set_a.begin(); |
| i != set_a.end(); ++i) { |
| if (set_b.find(*i) == set_b.end()) |
| return false; |
| } |
| return true; |
| } |
| |
| template <class HashMap> |
| inline bool HashMapEquality(const HashMap& map_a, const HashMap& map_b) { |
| if (map_a.size() != map_b.size()) return false; |
| for (typename HashMap::const_iterator i = map_a.begin(); |
| i != map_a.end(); ++i) { |
| typename HashMap::const_iterator j = map_b.find(i->first); |
| if (j == map_b.end()) return false; |
| if (i->second != j->second) return false; |
| } |
| return true; |
| } |
| |
| // The following functions are useful for cleaning up STL containers |
| // whose elements point to allocated memory. |
| |
| // STLDeleteElements() deletes all the elements in an STL container and clears |
| // the container. This function is suitable for use with a vector, set, |
| // hash_set, or any other STL container which defines sensible begin(), end(), |
| // and clear() methods. |
| // |
| // If container is NULL, this function is a no-op. |
| // |
| // As an alternative to calling STLDeleteElements() directly, consider |
| // STLElementDeleter (defined below), which ensures that your container's |
| // elements are deleted when the STLElementDeleter goes out of scope. |
| template <class T> |
| void STLDeleteElements(T *container) { |
| if (!container) return; |
| STLDeleteContainerPointers(container->begin(), container->end()); |
| container->clear(); |
| } |
| |
| // Given an STL container consisting of (key, value) pairs, STLDeleteValues |
| // deletes all the "value" components and clears the container. Does nothing |
| // in the case it's given a NULL pointer. |
| |
| template <class T> |
| void STLDeleteValues(T *v) { |
| if (!v) return; |
| for (typename T::iterator i = v->begin(); i != v->end(); ++i) { |
| delete i->second; |
| } |
| v->clear(); |
| } |
| |
| |
| // The following classes provide a convenient way to delete all elements or |
| // values from STL containers when they goes out of scope. This greatly |
| // simplifies code that creates temporary objects and has multiple return |
| // statements. Example: |
| // |
| // vector<MyProto *> tmp_proto; |
| // STLElementDeleter<vector<MyProto *> > d(&tmp_proto); |
| // if (...) return false; |
| // ... |
| // return success; |
| |
| // Given a pointer to an STL container this class will delete all the element |
| // pointers when it goes out of scope. |
| |
| template<class STLContainer> class STLElementDeleter { |
| public: |
| STLElementDeleter<STLContainer>(STLContainer *ptr) : container_ptr_(ptr) {} |
| ~STLElementDeleter<STLContainer>() { STLDeleteElements(container_ptr_); } |
| private: |
| STLContainer *container_ptr_; |
| }; |
| |
| // Given a pointer to an STL container this class will delete all the value |
| // pointers when it goes out of scope. |
| |
| template<class STLContainer> class STLValueDeleter { |
| public: |
| STLValueDeleter<STLContainer>(STLContainer *ptr) : container_ptr_(ptr) {} |
| ~STLValueDeleter<STLContainer>() { STLDeleteValues(container_ptr_); } |
| private: |
| STLContainer *container_ptr_; |
| }; |
| |
| |
| // Forward declare some callback classes in callback.h for STLBinaryFunction |
| template <class R, class T1, class T2> |
| class ResultCallback2; |
| |
| // STLBinaryFunction is a wrapper for the ResultCallback2 class in callback.h |
| // It provides an operator () method instead of a Run method, so it may be |
| // passed to STL functions in <algorithm>. |
| // |
| // The client should create callback with NewPermanentCallback, and should |
| // delete callback after it is done using the STLBinaryFunction. |
| |
| template <class Result, class Arg1, class Arg2> |
| class STLBinaryFunction : public std::binary_function<Arg1, Arg2, Result> { |
| public: |
| typedef ResultCallback2<Result, Arg1, Arg2> Callback; |
| |
| STLBinaryFunction(Callback* callback) |
| : callback_(callback) { |
| assert(callback_); |
| } |
| |
| Result operator() (Arg1 arg1, Arg2 arg2) { |
| return callback_->Run(arg1, arg2); |
| } |
| |
| private: |
| Callback* callback_; |
| }; |
| |
| // STLBinaryPredicate is a specialized version of STLBinaryFunction, where the |
| // return type is bool and both arguments have type Arg. It can be used |
| // wherever STL requires a StrictWeakOrdering, such as in sort() or |
| // lower_bound(). |
| // |
| // templated typedefs are not supported, so instead we use inheritance. |
| |
| template <class Arg> |
| class STLBinaryPredicate : public STLBinaryFunction<bool, Arg, Arg> { |
| public: |
| typedef typename STLBinaryPredicate<Arg>::Callback Callback; |
| STLBinaryPredicate(Callback* callback) |
| : STLBinaryFunction<bool, Arg, Arg>(callback) { |
| } |
| }; |
| |
| // Functors that compose arbitrary unary and binary functions with a |
| // function that "projects" one of the members of a pair. |
| // Specifically, if p1 and p2, respectively, are the functions that |
| // map a pair to its first and second, respectively, members, the |
| // table below summarizes the functions that can be constructed: |
| // |
| // * UnaryOperate1st<pair>(f) returns the function x -> f(p1(x)) |
| // * UnaryOperate2nd<pair>(f) returns the function x -> f(p2(x)) |
| // * BinaryOperate1st<pair>(f) returns the function (x,y) -> f(p1(x),p1(y)) |
| // * BinaryOperate2nd<pair>(f) returns the function (x,y) -> f(p2(x),p2(y)) |
| // |
| // A typical usage for these functions would be when iterating over |
| // the contents of an STL map. For other sample usage, see the unittest. |
| |
| template<typename Pair, typename UnaryOp> |
| class UnaryOperateOnFirst |
| : public std::unary_function<Pair, typename UnaryOp::result_type> { |
| public: |
| UnaryOperateOnFirst() { |
| } |
| |
| UnaryOperateOnFirst(const UnaryOp& f) : f_(f) { |
| } |
| |
| typename UnaryOp::result_type operator()(const Pair& p) const { |
| return f_(p.first); |
| } |
| |
| private: |
| UnaryOp f_; |
| }; |
| |
| template<typename Pair, typename UnaryOp> |
| UnaryOperateOnFirst<Pair, UnaryOp> UnaryOperate1st(const UnaryOp& f) { |
| return UnaryOperateOnFirst<Pair, UnaryOp>(f); |
| } |
| |
| template<typename Pair, typename UnaryOp> |
| class UnaryOperateOnSecond |
| : public std::unary_function<Pair, typename UnaryOp::result_type> { |
| public: |
| UnaryOperateOnSecond() { |
| } |
| |
| UnaryOperateOnSecond(const UnaryOp& f) : f_(f) { |
| } |
| |
| typename UnaryOp::result_type operator()(const Pair& p) const { |
| return f_(p.second); |
| } |
| |
| private: |
| UnaryOp f_; |
| }; |
| |
| template<typename Pair, typename UnaryOp> |
| UnaryOperateOnSecond<Pair, UnaryOp> UnaryOperate2nd(const UnaryOp& f) { |
| return UnaryOperateOnSecond<Pair, UnaryOp>(f); |
| } |
| |
| template<typename Pair, typename BinaryOp> |
| class BinaryOperateOnFirst |
| : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> { |
| public: |
| BinaryOperateOnFirst() { |
| } |
| |
| BinaryOperateOnFirst(const BinaryOp& f) : f_(f) { |
| } |
| |
| typename BinaryOp::result_type operator()(const Pair& p1, |
| const Pair& p2) const { |
| return f_(p1.first, p2.first); |
| } |
| |
| private: |
| BinaryOp f_; |
| }; |
| |
| template<typename Pair, typename BinaryOp> |
| BinaryOperateOnFirst<Pair, BinaryOp> BinaryOperate1st(const BinaryOp& f) { |
| return BinaryOperateOnFirst<Pair, BinaryOp>(f); |
| } |
| |
| template<typename Pair, typename BinaryOp> |
| class BinaryOperateOnSecond |
| : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> { |
| public: |
| BinaryOperateOnSecond() { |
| } |
| |
| BinaryOperateOnSecond(const BinaryOp& f) : f_(f) { |
| } |
| |
| typename BinaryOp::result_type operator()(const Pair& p1, |
| const Pair& p2) const { |
| return f_(p1.second, p2.second); |
| } |
| |
| private: |
| BinaryOp f_; |
| }; |
| |
| template<typename Pair, typename BinaryOp> |
| BinaryOperateOnSecond<Pair, BinaryOp> BinaryOperate2nd(const BinaryOp& f) { |
| return BinaryOperateOnSecond<Pair, BinaryOp>(f); |
| } |
| |
| // Translates a set into a vector. |
| template<typename T> |
| std::vector<T> SetToVector(const std::set<T>& values) { |
| std::vector<T> result; |
| result.reserve(values.size()); |
| result.insert(result.begin(), values.begin(), values.end()); |
| return result; |
| } |
| |
| // Test to see if a set, map, hash_set or hash_map contains a particular key. |
| // Returns true if the key is in the collection. |
| template <typename Collection, typename Key> |
| bool ContainsKey(const Collection& collection, const Key& key) { |
| return collection.find(key) != collection.end(); |
| } |
| |
| #endif // BASE_STL_UTIL_INL_H_ |