| // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // This file is an internal atomic implementation, use base/atomicops.h instead. |
| |
| #ifndef BASE_ATOMICOPS_INTERNALS_X86_GCC_H_ |
| #define BASE_ATOMICOPS_INTERNALS_X86_GCC_H_ |
| |
| // This struct is not part of the public API of this module; clients may not |
| // use it. |
| // Features of this x86. Values may not be correct before main() is run, |
| // but are set conservatively. |
| struct AtomicOps_x86CPUFeatureStruct { |
| bool has_amd_lock_mb_bug; // Processor has AMD memory-barrier bug; do lfence |
| // after acquire compare-and-swap. |
| bool has_sse2; // Processor has SSE2. |
| }; |
| extern struct AtomicOps_x86CPUFeatureStruct AtomicOps_Internalx86CPUFeatures; |
| |
| #define ATOMICOPS_COMPILER_BARRIER() __asm__ __volatile__("" : : : "memory") |
| |
| namespace base { |
| namespace subtle { |
| |
| // 32-bit low-level operations on any platform. |
| |
| inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr, |
| Atomic32 old_value, |
| Atomic32 new_value) { |
| Atomic32 prev; |
| __asm__ __volatile__("lock; cmpxchgl %1,%2" |
| : "=a" (prev) |
| : "q" (new_value), "m" (*ptr), "0" (old_value) |
| : "memory"); |
| return prev; |
| } |
| |
| inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr, |
| Atomic32 new_value) { |
| __asm__ __volatile__("xchgl %1,%0" // The lock prefix is implicit for xchg. |
| : "=r" (new_value) |
| : "m" (*ptr), "0" (new_value) |
| : "memory"); |
| return new_value; // Now it's the previous value. |
| } |
| |
| inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr, |
| Atomic32 increment) { |
| Atomic32 temp = increment; |
| __asm__ __volatile__("lock; xaddl %0,%1" |
| : "+r" (temp), "+m" (*ptr) |
| : : "memory"); |
| // temp now holds the old value of *ptr |
| return temp + increment; |
| } |
| |
| inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, |
| Atomic32 increment) { |
| Atomic32 temp = increment; |
| __asm__ __volatile__("lock; xaddl %0,%1" |
| : "+r" (temp), "+m" (*ptr) |
| : : "memory"); |
| // temp now holds the old value of *ptr |
| if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { |
| __asm__ __volatile__("lfence" : : : "memory"); |
| } |
| return temp + increment; |
| } |
| |
| inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr, |
| Atomic32 old_value, |
| Atomic32 new_value) { |
| Atomic32 x = NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
| if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { |
| __asm__ __volatile__("lfence" : : : "memory"); |
| } |
| return x; |
| } |
| |
| inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr, |
| Atomic32 old_value, |
| Atomic32 new_value) { |
| return NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
| } |
| |
| inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) { |
| *ptr = value; |
| } |
| |
| #if defined(__x86_64__) |
| |
| // 64-bit implementations of memory barrier can be simpler, because it |
| // "mfence" is guaranteed to exist. |
| inline void MemoryBarrier() { |
| __asm__ __volatile__("mfence" : : : "memory"); |
| } |
| |
| inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) { |
| *ptr = value; |
| MemoryBarrier(); |
| } |
| |
| #else |
| |
| inline void MemoryBarrier() { |
| if (AtomicOps_Internalx86CPUFeatures.has_sse2) { |
| __asm__ __volatile__("mfence" : : : "memory"); |
| } else { // mfence is faster but not present on PIII |
| Atomic32 x = 0; |
| NoBarrier_AtomicExchange(&x, 0); // acts as a barrier on PIII |
| } |
| } |
| |
| inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) { |
| if (AtomicOps_Internalx86CPUFeatures.has_sse2) { |
| *ptr = value; |
| __asm__ __volatile__("mfence" : : : "memory"); |
| } else { |
| NoBarrier_AtomicExchange(ptr, value); |
| // acts as a barrier on PIII |
| } |
| } |
| #endif |
| |
| inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) { |
| ATOMICOPS_COMPILER_BARRIER(); |
| *ptr = value; // An x86 store acts as a release barrier. |
| // See comments in Atomic64 version of Release_Store(), below. |
| } |
| |
| inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { |
| return *ptr; |
| } |
| |
| inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) { |
| Atomic32 value = *ptr; // An x86 load acts as a acquire barrier. |
| // See comments in Atomic64 version of Release_Store(), below. |
| ATOMICOPS_COMPILER_BARRIER(); |
| return value; |
| } |
| |
| inline Atomic32 Release_Load(volatile const Atomic32* ptr) { |
| MemoryBarrier(); |
| return *ptr; |
| } |
| |
| #if defined(__x86_64__) |
| |
| // 64-bit low-level operations on 64-bit platform. |
| |
| inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr, |
| Atomic64 old_value, |
| Atomic64 new_value) { |
| Atomic64 prev; |
| __asm__ __volatile__("lock; cmpxchgq %1,%2" |
| : "=a" (prev) |
| : "q" (new_value), "m" (*ptr), "0" (old_value) |
| : "memory"); |
| return prev; |
| } |
| |
| inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr, |
| Atomic64 new_value) { |
| __asm__ __volatile__("xchgq %1,%0" // The lock prefix is implicit for xchg. |
| : "=r" (new_value) |
| : "m" (*ptr), "0" (new_value) |
| : "memory"); |
| return new_value; // Now it's the previous value. |
| } |
| |
| inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr, |
| Atomic64 increment) { |
| Atomic64 temp = increment; |
| __asm__ __volatile__("lock; xaddq %0,%1" |
| : "+r" (temp), "+m" (*ptr) |
| : : "memory"); |
| // temp now contains the previous value of *ptr |
| return temp + increment; |
| } |
| |
| inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr, |
| Atomic64 increment) { |
| Atomic64 temp = increment; |
| __asm__ __volatile__("lock; xaddq %0,%1" |
| : "+r" (temp), "+m" (*ptr) |
| : : "memory"); |
| // temp now contains the previous value of *ptr |
| if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { |
| __asm__ __volatile__("lfence" : : : "memory"); |
| } |
| return temp + increment; |
| } |
| |
| inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) { |
| *ptr = value; |
| } |
| |
| inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) { |
| *ptr = value; |
| MemoryBarrier(); |
| } |
| |
| inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) { |
| ATOMICOPS_COMPILER_BARRIER(); |
| |
| *ptr = value; // An x86 store acts as a release barrier |
| // for current AMD/Intel chips as of Jan 2008. |
| // See also Acquire_Load(), below. |
| |
| // When new chips come out, check: |
| // IA-32 Intel Architecture Software Developer's Manual, Volume 3: |
| // System Programming Guide, Chatper 7: Multiple-processor management, |
| // Section 7.2, Memory Ordering. |
| // Last seen at: |
| // http://developer.intel.com/design/pentium4/manuals/index_new.htm |
| // |
| // x86 stores/loads fail to act as barriers for a few instructions (clflush |
| // maskmovdqu maskmovq movntdq movnti movntpd movntps movntq) but these are |
| // not generated by the compiler, and are rare. Users of these instructions |
| // need to know about cache behaviour in any case since all of these involve |
| // either flushing cache lines or non-temporal cache hints. |
| } |
| |
| inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) { |
| return *ptr; |
| } |
| |
| inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) { |
| Atomic64 value = *ptr; // An x86 load acts as a acquire barrier, |
| // for current AMD/Intel chips as of Jan 2008. |
| // See also Release_Store(), above. |
| ATOMICOPS_COMPILER_BARRIER(); |
| return value; |
| } |
| |
| inline Atomic64 Release_Load(volatile const Atomic64* ptr) { |
| MemoryBarrier(); |
| return *ptr; |
| } |
| #endif // defined(__x86_64__) |
| |
| } // namespace base::subtle |
| } // namespace base |
| |
| #undef ATOMICOPS_COMPILER_BARRIER |
| |
| #endif // BASE_ATOMICOPS_INTERNALS_X86_GCC_H_ |
| |