blob: a15e6486d3f3af8374f379ebc14ce64143702787 [file] [log] [blame]
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdlib.h>
#include "base/gfx/image_operations.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "SkBitmap.h"
namespace {
// Computes the average pixel value for the given range, inclusive.
uint32_t AveragePixel(const SkBitmap& bmp,
int x_min, int x_max,
int y_min, int y_max) {
float accum[4] = {0, 0, 0, 0};
int count = 0;
for (int y = y_min; y <= y_max; y++) {
for (int x = x_min; x <= x_max; x++) {
uint32_t cur = *bmp.getAddr32(x, y);
accum[0] += SkColorGetB(cur);
accum[1] += SkColorGetG(cur);
accum[2] += SkColorGetR(cur);
accum[3] += SkColorGetA(cur);
count++;
}
}
return SkColorSetARGB(static_cast<unsigned char>(accum[3] / count),
static_cast<unsigned char>(accum[2] / count),
static_cast<unsigned char>(accum[1] / count),
static_cast<unsigned char>(accum[0] / count));
}
// Returns true if each channel of the given two colors are "close." This is
// used for comparing colors where rounding errors may cause off-by-one.
bool ColorsClose(uint32_t a, uint32_t b) {
return abs(static_cast<int>(SkColorGetB(a) - SkColorGetB(b))) < 2 &&
abs(static_cast<int>(SkColorGetG(a) - SkColorGetG(b))) < 2 &&
abs(static_cast<int>(SkColorGetR(a) - SkColorGetR(b))) < 2 &&
abs(static_cast<int>(SkColorGetA(a) - SkColorGetA(b))) < 2;
}
void FillDataToBitmap(int w, int h, SkBitmap* bmp) {
bmp->setConfig(SkBitmap::kARGB_8888_Config, w, h);
bmp->allocPixels();
unsigned char* src_data =
reinterpret_cast<unsigned char*>(bmp->getAddr32(0, 0));
for (int i = 0; i < w * h; i++) {
src_data[i * 4 + 0] = static_cast<unsigned char>(i % 255);
src_data[i * 4 + 1] = static_cast<unsigned char>(i % 255);
src_data[i * 4 + 2] = static_cast<unsigned char>(i % 255);
src_data[i * 4 + 3] = static_cast<unsigned char>(i % 255);
}
}
} // namespace
// Makes the bitmap 50% the size as the original using a box filter. This is
// an easy operation that we can check the results for manually.
TEST(ImageOperations, Halve) {
// Make our source bitmap.
int src_w = 30, src_h = 38;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
// Do a halving of the full bitmap.
SkBitmap actual_results = gfx::ImageOperations::Resize(
src, gfx::ImageOperations::RESIZE_BOX, gfx::Size(src_w / 2, src_h / 2));
ASSERT_EQ(src_w / 2, actual_results.width());
ASSERT_EQ(src_h / 2, actual_results.height());
// Compute the expected values & compare.
SkAutoLockPixels lock(actual_results);
for (int y = 0; y < actual_results.height(); y++) {
for (int x = 0; x < actual_results.width(); x++) {
int first_x = std::max(0, x * 2 - 1);
int last_x = std::min(src_w - 1, x * 2);
int first_y = std::max(0, y * 2 - 1);
int last_y = std::min(src_h - 1, y * 2);
uint32_t expected_color = AveragePixel(src,
first_x, last_x, first_y, last_y);
EXPECT_TRUE(ColorsClose(expected_color, *actual_results.getAddr32(x, y)));
}
}
}
TEST(ImageOperations, HalveSubset) {
// Make our source bitmap.
int src_w = 16, src_h = 34;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
// Do a halving of the full bitmap.
SkBitmap full_results = gfx::ImageOperations::Resize(
src, gfx::ImageOperations::RESIZE_BOX, gfx::Size(src_w / 2, src_h / 2));
ASSERT_EQ(src_w / 2, full_results.width());
ASSERT_EQ(src_h / 2, full_results.height());
// Now do a halving of a a subset, recall the destination subset is in the
// destination coordinate system (max = half of the original image size).
gfx::Rect subset_rect(2, 3, 3, 6);
SkBitmap subset_results = gfx::ImageOperations::Resize(
src, gfx::ImageOperations::RESIZE_BOX,
gfx::Size(src_w / 2, src_h / 2), subset_rect);
ASSERT_EQ(subset_rect.width(), subset_results.width());
ASSERT_EQ(subset_rect.height(), subset_results.height());
// The computed subset and the corresponding subset of the original image
// should be the same.
SkAutoLockPixels full_lock(full_results);
SkAutoLockPixels subset_lock(subset_results);
for (int y = 0; y < subset_rect.height(); y++) {
for (int x = 0; x < subset_rect.width(); x++) {
ASSERT_EQ(
*full_results.getAddr32(x + subset_rect.x(), y + subset_rect.y()),
*subset_results.getAddr32(x, y));
}
}
}
// Resamples an iamge to the same image, it should give almost the same result.
TEST(ImageOperations, ResampleToSame) {
// Make our source bitmap.
int src_w = 16, src_h = 34;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
// Do a resize of the full bitmap to the same size. The lanczos filter is good
// enough that we should get exactly the same image for output.
SkBitmap results = gfx::ImageOperations::Resize(
src, gfx::ImageOperations::RESIZE_LANCZOS3, gfx::Size(src_w, src_h));
ASSERT_EQ(src_w, results.width());
ASSERT_EQ(src_h, results.height());
SkAutoLockPixels src_lock(src);
SkAutoLockPixels results_lock(results);
for (int y = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
EXPECT_EQ(*src.getAddr32(x, y), *results.getAddr32(x, y));
}
}
}