blob: 851d3abe7b2df4e6d1c8a19220d14b81bc691706 [file] [log] [blame]
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/string_util.h"
#include <ctype.h>
#include <errno.h>
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <wchar.h>
#include <wctype.h>
#include <algorithm>
#include <vector>
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/singleton.h"
namespace {
// Hack to convert any char-like type to its unsigned counterpart.
// For example, it will convert char, signed char and unsigned char to unsigned
// char.
template<typename T>
struct ToUnsigned {
typedef T Unsigned;
};
template<>
struct ToUnsigned<char> {
typedef unsigned char Unsigned;
};
template<>
struct ToUnsigned<signed char> {
typedef unsigned char Unsigned;
};
template<>
struct ToUnsigned<wchar_t> {
#if defined(WCHAR_T_IS_UTF16)
typedef unsigned short Unsigned;
#elif defined(WCHAR_T_IS_UTF32)
typedef uint32 Unsigned;
#endif
};
template<>
struct ToUnsigned<short> {
typedef unsigned short Unsigned;
};
// Used by ReplaceStringPlaceholders to track the position in the string of
// replaced parameters.
struct ReplacementOffset {
ReplacementOffset(int parameter, size_t offset)
: parameter(parameter),
offset(offset) {}
// Index of the parameter.
int parameter;
// Starting position in the string.
size_t offset;
};
static bool CompareParameter(const ReplacementOffset& elem1,
const ReplacementOffset& elem2) {
return elem1.parameter < elem2.parameter;
}
// Generalized string-to-number conversion.
//
// StringToNumberTraits should provide:
// - a typedef for string_type, the STL string type used as input.
// - a typedef for value_type, the target numeric type.
// - a static function, convert_func, which dispatches to an appropriate
// strtol-like function and returns type value_type.
// - a static function, valid_func, which validates |input| and returns a bool
// indicating whether it is in proper form. This is used to check for
// conditions that convert_func tolerates but should result in
// StringToNumber returning false. For strtol-like funtions, valid_func
// should check for leading whitespace.
template<typename StringToNumberTraits>
bool StringToNumber(const typename StringToNumberTraits::string_type& input,
typename StringToNumberTraits::value_type* output) {
typedef StringToNumberTraits traits;
errno = 0; // Thread-safe? It is on at least Mac, Linux, and Windows.
typename traits::string_type::value_type* endptr = NULL;
typename traits::value_type value = traits::convert_func(input.c_str(),
&endptr);
*output = value;
// Cases to return false:
// - If errno is ERANGE, there was an overflow or underflow.
// - If the input string is empty, there was nothing to parse.
// - If endptr does not point to the end of the string, there are either
// characters remaining in the string after a parsed number, or the string
// does not begin with a parseable number. endptr is compared to the
// expected end given the string's stated length to correctly catch cases
// where the string contains embedded NUL characters.
// - valid_func determines that the input is not in preferred form.
return errno == 0 &&
!input.empty() &&
input.c_str() + input.length() == endptr &&
traits::valid_func(input);
}
class StringToLongTraits {
public:
typedef std::string string_type;
typedef long value_type;
static const int kBase = 10;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
return strtol(str, endptr, kBase);
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !isspace(str[0]);
}
};
class WStringToLongTraits {
public:
typedef std::wstring string_type;
typedef long value_type;
static const int kBase = 10;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
return wcstol(str, endptr, kBase);
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !iswspace(str[0]);
}
};
class StringToInt64Traits {
public:
typedef std::string string_type;
typedef int64 value_type;
static const int kBase = 10;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
#ifdef OS_WIN
return _strtoi64(str, endptr, kBase);
#else // assume OS_POSIX
return strtoll(str, endptr, kBase);
#endif
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !isspace(str[0]);
}
};
class WStringToInt64Traits {
public:
typedef std::wstring string_type;
typedef int64 value_type;
static const int kBase = 10;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
#ifdef OS_WIN
return _wcstoi64(str, endptr, kBase);
#else // assume OS_POSIX
return wcstoll(str, endptr, kBase);
#endif
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !iswspace(str[0]);
}
};
// For the HexString variants, use the unsigned variants like strtoul for
// convert_func so that input like "0x80000000" doesn't result in an overflow.
class HexStringToLongTraits {
public:
typedef std::string string_type;
typedef long value_type;
static const int kBase = 16;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
return strtoul(str, endptr, kBase);
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !isspace(str[0]);
}
};
class HexWStringToLongTraits {
public:
typedef std::wstring string_type;
typedef long value_type;
static const int kBase = 16;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
return wcstoul(str, endptr, kBase);
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !iswspace(str[0]);
}
};
class StringToDoubleTraits {
public:
typedef std::string string_type;
typedef double value_type;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
return strtod(str, endptr);
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !isspace(str[0]);
}
};
class WStringToDoubleTraits {
public:
typedef std::wstring string_type;
typedef double value_type;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
return wcstod(str, endptr);
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !iswspace(str[0]);
}
};
} // namespace
namespace base {
bool IsWprintfFormatPortable(const wchar_t* format) {
for (const wchar_t* position = format; *position != '\0'; ++position) {
if (*position == '%') {
bool in_specification = true;
bool modifier_l = false;
while (in_specification) {
// Eat up characters until reaching a known specifier.
if (*++position == '\0') {
// The format string ended in the middle of a specification. Call
// it portable because no unportable specifications were found. The
// string is equally broken on all platforms.
return true;
}
if (*position == 'l') {
// 'l' is the only thing that can save the 's' and 'c' specifiers.
modifier_l = true;
} else if (((*position == 's' || *position == 'c') && !modifier_l) ||
*position == 'S' || *position == 'C' || *position == 'F' ||
*position == 'D' || *position == 'O' || *position == 'U') {
// Not portable.
return false;
}
if (wcschr(L"diouxXeEfgGaAcspn%", *position)) {
// Portable, keep scanning the rest of the format string.
in_specification = false;
}
}
}
}
return true;
}
} // namespace base
const std::string& EmptyString() {
return *Singleton<std::string>::get();
}
const std::wstring& EmptyWString() {
return *Singleton<std::wstring>::get();
}
const wchar_t kWhitespaceWide[] = {
0x0009, // <control-0009> to <control-000D>
0x000A,
0x000B,
0x000C,
0x000D,
0x0020, // Space
0x0085, // <control-0085>
0x00A0, // No-Break Space
0x1680, // Ogham Space Mark
0x180E, // Mongolian Vowel Separator
0x2000, // En Quad to Hair Space
0x2001,
0x2002,
0x2003,
0x2004,
0x2005,
0x2006,
0x2007,
0x2008,
0x2009,
0x200A,
0x200C, // Zero Width Non-Joiner
0x2028, // Line Separator
0x2029, // Paragraph Separator
0x202F, // Narrow No-Break Space
0x205F, // Medium Mathematical Space
0x3000, // Ideographic Space
0
};
const char kWhitespaceASCII[] = {
0x09, // <control-0009> to <control-000D>
0x0A,
0x0B,
0x0C,
0x0D,
0x20, // Space
'\x85', // <control-0085>
'\xa0', // No-Break Space
0
};
const char* const kCodepageUTF8 = "UTF-8";
template<typename STR>
TrimPositions TrimStringT(const STR& input,
const typename STR::value_type trim_chars[],
TrimPositions positions,
STR* output) {
// Find the edges of leading/trailing whitespace as desired.
const typename STR::size_type last_char = input.length() - 1;
const typename STR::size_type first_good_char = (positions & TRIM_LEADING) ?
input.find_first_not_of(trim_chars) : 0;
const typename STR::size_type last_good_char = (positions & TRIM_TRAILING) ?
input.find_last_not_of(trim_chars) : last_char;
// When the string was all whitespace, report that we stripped off whitespace
// from whichever position the caller was interested in. For empty input, we
// stripped no whitespace, but we still need to clear |output|.
if (input.empty() ||
(first_good_char == STR::npos) || (last_good_char == STR::npos)) {
bool input_was_empty = input.empty(); // in case output == &input
output->clear();
return input_was_empty ? TRIM_NONE : positions;
}
// Trim the whitespace.
*output =
input.substr(first_good_char, last_good_char - first_good_char + 1);
// Return where we trimmed from.
return static_cast<TrimPositions>(
((first_good_char == 0) ? TRIM_NONE : TRIM_LEADING) |
((last_good_char == last_char) ? TRIM_NONE : TRIM_TRAILING));
}
bool TrimString(const std::wstring& input,
const wchar_t trim_chars[],
std::wstring* output) {
return TrimStringT(input, trim_chars, TRIM_ALL, output) != TRIM_NONE;
}
bool TrimString(const std::string& input,
const char trim_chars[],
std::string* output) {
return TrimStringT(input, trim_chars, TRIM_ALL, output) != TRIM_NONE;
}
TrimPositions TrimWhitespace(const std::wstring& input,
TrimPositions positions,
std::wstring* output) {
return TrimStringT(input, kWhitespaceWide, positions, output);
}
TrimPositions TrimWhitespace(const std::string& input,
TrimPositions positions,
std::string* output) {
return TrimStringT(input, kWhitespaceASCII, positions, output);
}
std::wstring CollapseWhitespace(const std::wstring& text,
bool trim_sequences_with_line_breaks) {
std::wstring result;
result.resize(text.size());
// Set flags to pretend we're already in a trimmed whitespace sequence, so we
// will trim any leading whitespace.
bool in_whitespace = true;
bool already_trimmed = true;
int chars_written = 0;
for (std::wstring::const_iterator i(text.begin()); i != text.end(); ++i) {
if (IsWhitespace(*i)) {
if (!in_whitespace) {
// Reduce all whitespace sequences to a single space.
in_whitespace = true;
result[chars_written++] = L' ';
}
if (trim_sequences_with_line_breaks && !already_trimmed &&
((*i == '\n') || (*i == '\r'))) {
// Whitespace sequences containing CR or LF are eliminated entirely.
already_trimmed = true;
--chars_written;
}
} else {
// Non-whitespace chracters are copied straight across.
in_whitespace = false;
already_trimmed = false;
result[chars_written++] = *i;
}
}
if (in_whitespace && !already_trimmed) {
// Any trailing whitespace is eliminated.
--chars_written;
}
result.resize(chars_written);
return result;
}
std::string WideToASCII(const std::wstring& wide) {
DCHECK(IsStringASCII(wide));
return std::string(wide.begin(), wide.end());
}
std::wstring ASCIIToWide(const std::string& ascii) {
DCHECK(IsStringASCII(ascii));
return std::wstring(ascii.begin(), ascii.end());
}
// Latin1 is just the low range of Unicode, so we can copy directly to convert.
bool WideToLatin1(const std::wstring& wide, std::string* latin1) {
std::string output;
output.resize(wide.size());
latin1->clear();
for (size_t i = 0; i < wide.size(); i++) {
if (wide[i] > 255)
return false;
output[i] = static_cast<char>(wide[i]);
}
latin1->swap(output);
return true;
}
bool IsString8Bit(const std::wstring& str) {
for (size_t i = 0; i < str.length(); i++) {
if (str[i] > 255)
return false;
}
return true;
}
bool IsStringASCII(const std::wstring& str) {
for (size_t i = 0; i < str.length(); i++) {
if (str[i] > 0x7F)
return false;
}
return true;
}
bool IsStringASCII(const std::string& str) {
for (size_t i = 0; i < str.length(); i++) {
if (static_cast<unsigned char>(str[i]) > 0x7F)
return false;
}
return true;
}
// Helper functions that determine whether the given character begins a
// UTF-8 sequence of bytes with the given length. A character satisfies
// "IsInUTF8Sequence" if it is anything but the first byte in a multi-byte
// character.
static inline bool IsBegin2ByteUTF8(int c) {
return (c & 0xE0) == 0xC0;
}
static inline bool IsBegin3ByteUTF8(int c) {
return (c & 0xF0) == 0xE0;
}
static inline bool IsBegin4ByteUTF8(int c) {
return (c & 0xF8) == 0xF0;
}
static inline bool IsInUTF8Sequence(int c) {
return (c & 0xC0) == 0x80;
}
// This function was copied from Mozilla, with modifications. The original code
// was 'IsUTF8' in xpcom/string/src/nsReadableUtils.cpp. The license block for
// this function is:
// This function subject to the Mozilla Public License Version
// 1.1 (the "License"); you may not use this code except in compliance with
// the License. You may obtain a copy of the License at
// http://www.mozilla.org/MPL/
//
// Software distributed under the License is distributed on an "AS IS" basis,
// WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
// for the specific language governing rights and limitations under the
// License.
//
// The Original Code is mozilla.org code.
//
// The Initial Developer of the Original Code is
// Netscape Communications Corporation.
// Portions created by the Initial Developer are Copyright (C) 2000
// the Initial Developer. All Rights Reserved.
//
// Contributor(s):
// Scott Collins <scc@mozilla.org> (original author)
//
// This is a template so that it can be run on wide and 8-bit strings. We want
// to run it on wide strings when we have input that we think may have
// originally been UTF-8, but has been converted to wide characters because
// that's what we (and Windows) use internally.
template<typename CHAR>
static bool IsStringUTF8T(const CHAR* str) {
bool overlong = false;
bool surrogate = false;
bool nonchar = false;
// overlong byte upper bound
typename ToUnsigned<CHAR>::Unsigned olupper = 0;
// surrogate byte lower bound
typename ToUnsigned<CHAR>::Unsigned slower = 0;
// incremented when inside a multi-byte char to indicate how many bytes
// are left in the sequence
int positions_left = 0;
for (int i = 0; str[i] != 0; i++) {
// This whole function assume an unsigned value so force its conversion to
// an unsigned value.
typename ToUnsigned<CHAR>::Unsigned c = str[i];
if (c < 0x80)
continue; // ASCII
if (c <= 0xC1) {
// [80-BF] where not expected, [C0-C1] for overlong
return false;
} else if (IsBegin2ByteUTF8(c)) {
positions_left = 1;
} else if (IsBegin3ByteUTF8(c)) {
positions_left = 2;
if (c == 0xE0) {
// to exclude E0[80-9F][80-BF]
overlong = true;
olupper = 0x9F;
} else if (c == 0xED) {
// ED[A0-BF][80-BF]: surrogate codepoint
surrogate = true;
slower = 0xA0;
} else if (c == 0xEF) {
// EF BF [BE-BF] : non-character
nonchar = true;
}
} else if (c <= 0xF4) {
positions_left = 3;
nonchar = true;
if (c == 0xF0) {
// to exclude F0[80-8F][80-BF]{2}
overlong = true;
olupper = 0x8F;
} else if (c == 0xF4) {
// to exclude F4[90-BF][80-BF]
// actually not surrogates but codepoints beyond 0x10FFFF
surrogate = true;
slower = 0x90;
}
} else {
return false;
}
// eat the rest of this multi-byte character
while (positions_left) {
positions_left--;
i++;
c = str[i];
if (!c)
return false; // end of string but not end of character sequence
// non-character : EF BF [BE-BF] or F[0-7] [89AB]F BF [BE-BF]
if (nonchar && ((!positions_left && c < 0xBE) ||
(positions_left == 1 && c != 0xBF) ||
(positions_left == 2 && 0x0F != (0x0F & c) ))) {
nonchar = false;
}
if (!IsInUTF8Sequence(c) || (overlong && c <= olupper) ||
(surrogate && slower <= c) || (nonchar && !positions_left) ) {
return false;
}
overlong = surrogate = false;
}
}
return true;
}
bool IsStringUTF8(const char* str) {
return IsStringUTF8T(str);
}
bool IsStringWideUTF8(const wchar_t* str) {
return IsStringUTF8T(str);
}
template<typename Iter>
static inline bool DoLowerCaseEqualsASCII(Iter a_begin,
Iter a_end,
const char* b) {
for (Iter it = a_begin; it != a_end; ++it, ++b) {
if (!*b || ToLowerASCII(*it) != *b)
return false;
}
return *b == 0;
}
// Front-ends for LowerCaseEqualsASCII.
bool LowerCaseEqualsASCII(const std::string& a, const char* b) {
return DoLowerCaseEqualsASCII(a.begin(), a.end(), b);
}
bool LowerCaseEqualsASCII(const std::wstring& a, const char* b) {
return DoLowerCaseEqualsASCII(a.begin(), a.end(), b);
}
bool LowerCaseEqualsASCII(std::string::const_iterator a_begin,
std::string::const_iterator a_end,
const char* b) {
return DoLowerCaseEqualsASCII(a_begin, a_end, b);
}
bool LowerCaseEqualsASCII(std::wstring::const_iterator a_begin,
std::wstring::const_iterator a_end,
const char* b) {
return DoLowerCaseEqualsASCII(a_begin, a_end, b);
}
bool LowerCaseEqualsASCII(const char* a_begin,
const char* a_end,
const char* b) {
return DoLowerCaseEqualsASCII(a_begin, a_end, b);
}
bool LowerCaseEqualsASCII(const wchar_t* a_begin,
const wchar_t* a_end,
const char* b) {
return DoLowerCaseEqualsASCII(a_begin, a_end, b);
}
bool StartsWithASCII(const std::string& str,
const std::string& search,
bool case_sensitive) {
if (case_sensitive)
return str.compare(0, search.length(), search) == 0;
else
return base::strncasecmp(str.c_str(), search.c_str(), search.length()) == 0;
}
DataUnits GetByteDisplayUnits(int64 bytes) {
// The byte thresholds at which we display amounts. A byte count is displayed
// in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1].
// This must match the DataUnits enum.
static const int64 kUnitThresholds[] = {
0, // DATA_UNITS_BYTE,
3*1024, // DATA_UNITS_KILOBYTE,
2*1024*1024, // DATA_UNITS_MEGABYTE,
1024*1024*1024 // DATA_UNITS_GIGABYTE,
};
if (bytes < 0) {
NOTREACHED() << "Negative bytes value";
return DATA_UNITS_BYTE;
}
int unit_index = arraysize(kUnitThresholds);
while (--unit_index > 0) {
if (bytes >= kUnitThresholds[unit_index])
break;
}
DCHECK(unit_index >= DATA_UNITS_BYTE && unit_index <= DATA_UNITS_GIGABYTE);
return DataUnits(unit_index);
}
// TODO(mpcomplete): deal with locale
// Byte suffixes. This must match the DataUnits enum.
static const wchar_t* const kByteStrings[] = {
L"B",
L"kB",
L"MB",
L"GB"
};
static const wchar_t* const kSpeedStrings[] = {
L"B/s",
L"kB/s",
L"MB/s",
L"GB/s"
};
std::wstring FormatBytesInternal(int64 bytes,
DataUnits units,
bool show_units,
const wchar_t* const* suffix) {
if (bytes < 0) {
NOTREACHED() << "Negative bytes value";
return std::wstring();
}
DCHECK(units >= DATA_UNITS_BYTE && units <= DATA_UNITS_GIGABYTE);
// Put the quantity in the right units.
double unit_amount = static_cast<double>(bytes);
for (int i = 0; i < units; ++i)
unit_amount /= 1024.0;
wchar_t tmp[64];
// If the first decimal digit is 0, don't show it.
double int_part;
double fractional_part = modf(unit_amount, &int_part);
modf(fractional_part * 10, &int_part);
if (int_part == 0) {
base::swprintf(tmp, arraysize(tmp),
L"%lld", static_cast<int64>(unit_amount));
} else {
base::swprintf(tmp, arraysize(tmp), L"%.1lf", unit_amount);
}
std::wstring ret(tmp);
if (show_units) {
ret += L" ";
ret += suffix[units];
}
return ret;
}
std::wstring FormatBytes(int64 bytes, DataUnits units, bool show_units) {
return FormatBytesInternal(bytes, units, show_units, kByteStrings);
}
std::wstring FormatSpeed(int64 bytes, DataUnits units, bool show_units) {
return FormatBytesInternal(bytes, units, show_units, kSpeedStrings);
}
template<class StringType>
void DoReplaceSubstringsAfterOffset(StringType* str,
typename StringType::size_type start_offset,
const StringType& find_this,
const StringType& replace_with) {
if ((start_offset == StringType::npos) || (start_offset >= str->length()))
return;
DCHECK(!find_this.empty());
for (typename StringType::size_type offs(str->find(find_this, start_offset));
offs != StringType::npos; offs = str->find(find_this, offs)) {
str->replace(offs, find_this.length(), replace_with);
offs += replace_with.length();
}
}
void ReplaceSubstringsAfterOffset(std::wstring* str,
std::wstring::size_type start_offset,
const std::wstring& find_this,
const std::wstring& replace_with) {
DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with);
}
void ReplaceSubstringsAfterOffset(std::string* str,
std::string::size_type start_offset,
const std::string& find_this,
const std::string& replace_with) {
DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with);
}
// Overloaded wrappers around vsnprintf and vswprintf. The buf_size parameter
// is the size of the buffer. These return the number of characters in the
// formatted string excluding the NUL terminator. If the buffer is not
// large enough to accommodate the formatted string without truncation, they
// return the number of characters that would be in the fully-formatted string
// (vsnprintf, and vswprintf on Windows), or -1 (vswprintf on POSIX platforms).
inline int vsnprintfT(char* buffer,
size_t buf_size,
const char* format,
va_list argptr) {
return base::vsnprintf(buffer, buf_size, format, argptr);
}
inline int vsnprintfT(wchar_t* buffer,
size_t buf_size,
const wchar_t* format,
va_list argptr) {
return base::vswprintf(buffer, buf_size, format, argptr);
}
// Templatized backend for StringPrintF/StringAppendF. This does not finalize
// the va_list, the caller is expected to do that.
template <class char_type>
static void StringAppendVT(
std::basic_string<char_type, std::char_traits<char_type> >* dst,
const char_type* format,
va_list ap) {
// First try with a small fixed size buffer.
// This buffer size should be kept in sync with StringUtilTest.GrowBoundary
// and StringUtilTest.StringPrintfBounds.
char_type stack_buf[1024];
va_list backup_ap;
base::va_copy(backup_ap, ap);
#if !defined(OS_WIN)
errno = 0;
#endif
int result = vsnprintfT(stack_buf, arraysize(stack_buf), format, backup_ap);
va_end(backup_ap);
if (result >= 0 && result < static_cast<int>(arraysize(stack_buf))) {
// It fit.
dst->append(stack_buf, result);
return;
}
// Repeatedly increase buffer size until it fits.
int mem_length = arraysize(stack_buf);
while (true) {
if (result < 0) {
#if !defined(OS_WIN)
// On Windows, vsnprintfT always returns the number of characters in a
// fully-formatted string, so if we reach this point, something else is
// wrong and no amount of buffer-doubling is going to fix it.
if (errno != 0 && errno != EOVERFLOW)
#endif
{
// If an error other than overflow occurred, it's never going to work.
DLOG(WARNING) << "Unable to printf the requested string due to error.";
return;
}
// Try doubling the buffer size.
mem_length *= 2;
} else {
// We need exactly "result + 1" characters.
mem_length = result + 1;
}
if (mem_length > 32 * 1024 * 1024) {
// That should be plenty, don't try anything larger. This protects
// against huge allocations when using vsnprintfT implementations that
// return -1 for reasons other than overflow without setting errno.
DLOG(WARNING) << "Unable to printf the requested string due to size.";
return;
}
std::vector<char_type> mem_buf(mem_length);
// Restore the va_list before we use it again.
base::va_copy(backup_ap, ap);
result = vsnprintfT(&mem_buf[0], mem_length, format, ap);
va_end(backup_ap);
if ((result >= 0) && (result < mem_length)) {
// It fit.
dst->append(&mem_buf[0], result);
return;
}
}
}
namespace {
template <typename STR, typename INT, typename UINT, bool NEG>
struct IntToStringT {
// This is to avoid a compiler warning about unary minus on unsigned type.
// For example, say you had the following code:
// template <typename INT>
// INT abs(INT value) { return value < 0 ? -value : value; }
// Even though if INT is unsigned, it's impossible for value < 0, so the
// unary minus will never be taken, the compiler will still generate a
// warning. We do a little specialization dance...
template <typename INT2, typename UINT2, bool NEG2>
struct ToUnsignedT { };
template <typename INT2, typename UINT2>
struct ToUnsignedT<INT2, UINT2, false> {
static UINT2 ToUnsigned(INT2 value) {
return static_cast<UINT2>(value);
}
};
template <typename INT2, typename UINT2>
struct ToUnsignedT<INT2, UINT2, true> {
static UINT2 ToUnsigned(INT2 value) {
return static_cast<UINT2>(value < 0 ? -value : value);
}
};
static STR IntToString(INT value) {
// log10(2) ~= 0.3 bytes needed per bit or per byte log10(2**8) ~= 2.4.
// So round up to allocate 3 output characters per byte, plus 1 for '-'.
const int kOutputBufSize = 3 * sizeof(INT) + 1;
// Allocate the whole string right away, we will right back to front, and
// then return the substr of what we ended up using.
STR outbuf(kOutputBufSize, 0);
bool is_neg = value < 0;
// Even though is_neg will never be true when INT is parameterized as
// unsigned, even the presence of the unary operation causes a warning.
UINT res = ToUnsignedT<INT, UINT, NEG>::ToUnsigned(value);
for (typename STR::iterator it = outbuf.end();;) {
--it;
DCHECK(it != outbuf.begin());
*it = static_cast<typename STR::value_type>((res % 10) + '0');
res /= 10;
// We're done..
if (res == 0) {
if (is_neg) {
--it;
DCHECK(it != outbuf.begin());
*it = static_cast<typename STR::value_type>('-');
}
return STR(it, outbuf.end());
}
}
NOTREACHED();
return STR();
}
};
}
std::string IntToString(int value) {
return IntToStringT<std::string, int, unsigned int, true>::
IntToString(value);
}
std::wstring IntToWString(int value) {
return IntToStringT<std::wstring, int, unsigned int, true>::
IntToString(value);
}
std::string UintToString(unsigned int value) {
return IntToStringT<std::string, unsigned int, unsigned int, false>::
IntToString(value);
}
std::wstring UintToWString(unsigned int value) {
return IntToStringT<std::wstring, unsigned int, unsigned int, false>::
IntToString(value);
}
std::string Int64ToString(int64 value) {
return IntToStringT<std::string, int64, uint64, true>::
IntToString(value);
}
std::wstring Int64ToWString(int64 value) {
return IntToStringT<std::wstring, int64, uint64, true>::
IntToString(value);
}
std::string Uint64ToString(uint64 value) {
return IntToStringT<std::string, uint64, uint64, false>::
IntToString(value);
}
std::wstring Uint64ToWString(uint64 value) {
return IntToStringT<std::wstring, uint64, uint64, false>::
IntToString(value);
}
inline void StringAppendV(std::string* dst, const char* format, va_list ap) {
StringAppendVT<char>(dst, format, ap);
}
inline void StringAppendV(std::wstring* dst,
const wchar_t* format,
va_list ap) {
StringAppendVT<wchar_t>(dst, format, ap);
}
std::string StringPrintf(const char* format, ...) {
va_list ap;
va_start(ap, format);
std::string result;
StringAppendV(&result, format, ap);
va_end(ap);
return result;
}
std::wstring StringPrintf(const wchar_t* format, ...) {
va_list ap;
va_start(ap, format);
std::wstring result;
StringAppendV(&result, format, ap);
va_end(ap);
return result;
}
const std::string& SStringPrintf(std::string* dst, const char* format, ...) {
va_list ap;
va_start(ap, format);
dst->clear();
StringAppendV(dst, format, ap);
va_end(ap);
return *dst;
}
const std::wstring& SStringPrintf(std::wstring* dst,
const wchar_t* format, ...) {
va_list ap;
va_start(ap, format);
dst->clear();
StringAppendV(dst, format, ap);
va_end(ap);
return *dst;
}
void StringAppendF(std::string* dst, const char* format, ...) {
va_list ap;
va_start(ap, format);
StringAppendV(dst, format, ap);
va_end(ap);
}
void StringAppendF(std::wstring* dst, const wchar_t* format, ...) {
va_list ap;
va_start(ap, format);
StringAppendV(dst, format, ap);
va_end(ap);
}
template<typename STR>
static void SplitStringT(const STR& str,
const typename STR::value_type s,
bool trim_whitespace,
std::vector<STR>* r) {
size_t last = 0;
size_t i;
size_t c = str.size();
for (i = 0; i <= c; ++i) {
if (i == c || str[i] == s) {
size_t len = i - last;
STR tmp = str.substr(last, len);
if (trim_whitespace) {
STR t_tmp;
TrimWhitespace(tmp, TRIM_ALL, &t_tmp);
r->push_back(t_tmp);
} else {
r->push_back(tmp);
}
last = i + 1;
}
}
}
void SplitString(const std::wstring& str,
wchar_t s,
std::vector<std::wstring>* r) {
SplitStringT(str, s, true, r);
}
void SplitString(const std::string& str,
char s,
std::vector<std::string>* r) {
SplitStringT(str, s, true, r);
}
void SplitStringDontTrim(const std::wstring& str,
wchar_t s,
std::vector<std::wstring>* r) {
SplitStringT(str, s, false, r);
}
void SplitStringDontTrim(const std::string& str,
char s,
std::vector<std::string>* r) {
SplitStringT(str, s, false, r);
}
void SplitStringAlongWhitespace(const std::wstring& str,
std::vector<std::wstring>* result) {
const size_t length = str.length();
if (!length)
return;
bool last_was_ws = false;
size_t last_non_ws_start = 0;
for (size_t i = 0; i < length; ++i) {
switch(str[i]) {
// HTML 5 defines whitespace as: space, tab, LF, line tab, FF, or CR.
case L' ':
case L'\t':
case L'\xA':
case L'\xB':
case L'\xC':
case L'\xD':
if (!last_was_ws) {
if (i > 0) {
result->push_back(
str.substr(last_non_ws_start, i - last_non_ws_start));
}
last_was_ws = true;
}
break;
default: // Not a space character.
if (last_was_ws) {
last_was_ws = false;
last_non_ws_start = i;
}
break;
}
}
if (!last_was_ws) {
result->push_back(
str.substr(last_non_ws_start, length - last_non_ws_start));
}
}
std::wstring ReplaceStringPlaceholders(const std::wstring& format_string,
const std::wstring& a,
size_t* offset) {
std::vector<size_t> offsets;
std::wstring result = ReplaceStringPlaceholders(format_string, a,
std::wstring(),
std::wstring(),
std::wstring(), &offsets);
DCHECK(offsets.size() == 1);
if (offset) {
*offset = offsets[0];
}
return result;
}
std::wstring ReplaceStringPlaceholders(const std::wstring& format_string,
const std::wstring& a,
const std::wstring& b,
std::vector<size_t>* offsets) {
return ReplaceStringPlaceholders(format_string, a, b, std::wstring(),
std::wstring(), offsets);
}
std::wstring ReplaceStringPlaceholders(const std::wstring& format_string,
const std::wstring& a,
const std::wstring& b,
const std::wstring& c,
std::vector<size_t>* offsets) {
return ReplaceStringPlaceholders(format_string, a, b, c, std::wstring(),
offsets);
}
std::wstring ReplaceStringPlaceholders(const std::wstring& format_string,
const std::wstring& a,
const std::wstring& b,
const std::wstring& c,
const std::wstring& d,
std::vector<size_t>* offsets) {
// We currently only support up to 4 place holders ($1 through $4), although
// it's easy enough to add more.
const std::wstring* subst_texts[] = { &a, &b, &c, &d };
std::wstring formatted;
formatted.reserve(format_string.length() + a.length() +
b.length() + c.length() + d.length());
std::vector<ReplacementOffset> r_offsets;
// Replace $$ with $ and $1-$4 with placeholder text if it exists.
for (std::wstring::const_iterator i = format_string.begin();
i != format_string.end(); ++i) {
if ('$' == *i) {
if (i + 1 != format_string.end()) {
++i;
DCHECK('$' == *i || ('1' <= *i && *i <= '4')) <<
"Invalid placeholder: " << *i;
if ('$' == *i) {
formatted.push_back('$');
} else {
int index = *i - '1';
if (offsets) {
ReplacementOffset r_offset(index,
static_cast<int>(formatted.size()));
r_offsets.insert(std::lower_bound(r_offsets.begin(),
r_offsets.end(), r_offset,
&CompareParameter),
r_offset);
}
formatted.append(*subst_texts[index]);
}
}
} else {
formatted.push_back(*i);
}
}
if (offsets) {
for (std::vector<ReplacementOffset>::const_iterator i = r_offsets.begin();
i != r_offsets.end(); ++i) {
offsets->push_back(i->offset);
}
}
return formatted;
}
template <class CHAR>
static bool IsWildcard(CHAR character) {
return character == '*' || character == '?';
}
// Move the strings pointers to the point where they start to differ.
template <class CHAR>
static void EatSameChars(const CHAR** pattern, const CHAR** string) {
bool escaped = false;
while (**pattern && **string) {
if (!escaped && IsWildcard(**pattern)) {
// We don't want to match wildcard here, except if it's escaped.
return;
}
// Check if the escapement char is found. If so, skip it and move to the
// next character.
if (!escaped && **pattern == L'\\') {
escaped = true;
(*pattern)++;
continue;
}
// Check if the chars match, if so, increment the ptrs.
if (**pattern == **string) {
(*pattern)++;
(*string)++;
} else {
// Uh ho, it did not match, we are done. If the last char was an
// escapement, that means that it was an error to advance the ptr here,
// let's put it back where it was. This also mean that the MatchPattern
// function will return false because if we can't match an escape char
// here, then no one will.
if (escaped) {
(*pattern)--;
}
return;
}
escaped = false;
}
}
template <class CHAR>
static void EatWildcard(const CHAR** pattern) {
while(**pattern) {
if (!IsWildcard(**pattern))
return;
(*pattern)++;
}
}
template <class CHAR>
static bool MatchPatternT(const CHAR* eval, const CHAR* pattern) {
// Eat all the matching chars.
EatSameChars(&pattern, &eval);
// If the string is empty, then the pattern must be empty too, or contains
// only wildcards.
if (*eval == 0) {
EatWildcard(&pattern);
if (*pattern)
return false;
return true;
}
// Pattern is empty but not string, this is not a match.
if (*pattern == 0)
return false;
// If this is a question mark, then we need to compare the rest with
// the current string or the string with one character eaten.
if (pattern[0] == '?') {
if (MatchPatternT(eval, pattern + 1) ||
MatchPatternT(eval + 1, pattern + 1))
return true;
}
// This is a *, try to match all the possible substrings with the remainder
// of the pattern.
if (pattern[0] == '*') {
while (*eval) {
if (MatchPatternT(eval, pattern + 1))
return true;
eval++;
}
// We reached the end of the string, let see if the pattern contains only
// wildcards.
if (*eval == 0) {
EatWildcard(&pattern);
if (*pattern)
return false;
return true;
}
}
return false;
}
bool MatchPattern(const std::wstring& eval, const std::wstring& pattern) {
return MatchPatternT(eval.c_str(), pattern.c_str());
}
bool MatchPattern(const std::string& eval, const std::string& pattern) {
return MatchPatternT(eval.c_str(), pattern.c_str());
}
// For the various *ToInt conversions, there are no *ToIntTraits classes to use
// because there's no such thing as strtoi. Use *ToLongTraits through a cast
// instead, requiring that long and int are compatible and equal-width. They
// are on our target platforms.
bool StringToInt(const std::string& input, int* output) {
DCHECK(sizeof(int) == sizeof(long));
return StringToNumber<StringToLongTraits>(input,
reinterpret_cast<long*>(output));
}
bool StringToInt(const std::wstring& input, int* output) {
DCHECK(sizeof(int) == sizeof(long));
return StringToNumber<WStringToLongTraits>(input,
reinterpret_cast<long*>(output));
}
bool StringToInt64(const std::string& input, int64* output) {
return StringToNumber<StringToInt64Traits>(input, output);
}
bool StringToInt64(const std::wstring& input, int64* output) {
return StringToNumber<WStringToInt64Traits>(input, output);
}
bool HexStringToInt(const std::string& input, int* output) {
DCHECK(sizeof(int) == sizeof(long));
return StringToNumber<HexStringToLongTraits>(input,
reinterpret_cast<long*>(output));
}
bool HexStringToInt(const std::wstring& input, int* output) {
DCHECK(sizeof(int) == sizeof(long));
return StringToNumber<HexWStringToLongTraits>(
input, reinterpret_cast<long*>(output));
}
bool StringToDouble(const std::string& input, double* output) {
return StringToNumber<StringToDoubleTraits>(input, output);
}
bool StringToDouble(const std::wstring& input, double* output) {
return StringToNumber<WStringToDoubleTraits>(input, output);
}
int StringToInt(const std::string& value) {
int result;
StringToInt(value, &result);
return result;
}
int StringToInt(const std::wstring& value) {
int result;
StringToInt(value, &result);
return result;
}
int64 StringToInt64(const std::string& value) {
int64 result;
StringToInt64(value, &result);
return result;
}
int64 StringToInt64(const std::wstring& value) {
int64 result;
StringToInt64(value, &result);
return result;
}
int HexStringToInt(const std::string& value) {
int result;
HexStringToInt(value, &result);
return result;
}
int HexStringToInt(const std::wstring& value) {
int result;
HexStringToInt(value, &result);
return result;
}
double StringToDouble(const std::string& value) {
double result;
StringToDouble(value, &result);
return result;
}
double StringToDouble(const std::wstring& value) {
double result;
StringToDouble(value, &result);
return result;
}
// The following code is compatible with the OpenBSD lcpy interface. See:
// http://www.gratisoft.us/todd/papers/strlcpy.html
// ftp://ftp.openbsd.org/pub/OpenBSD/src/lib/libc/string/{wcs,str}lcpy.c
namespace {
template <typename CHAR>
size_t lcpyT(CHAR* dst, const CHAR* src, size_t dst_size) {
for (size_t i = 0; i < dst_size; ++i) {
if ((dst[i] = src[i]) == 0) // We hit and copied the terminating NULL.
return i;
}
// We were left off at dst_size. We over copied 1 byte. Null terminate.
if (dst_size != 0)
dst[dst_size - 1] = 0;
// Count the rest of the |src|, and return it's length in characters.
while (src[dst_size]) ++dst_size;
return dst_size;
}
} // namespace
size_t base::strlcpy(char* dst, const char* src, size_t dst_size) {
return lcpyT<char>(dst, src, dst_size);
}
size_t base::wcslcpy(wchar_t* dst, const wchar_t* src, size_t dst_size) {
return lcpyT<wchar_t>(dst, src, dst_size);
}