blob: 9442844f9ceb466a414bab37fad6770a0ef9df49 [file] [log] [blame]
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file specifies a recursive data storage class called Value
// intended for storing setting and other persistable data.
// It includes the ability to specify (recursive) lists and dictionaries, so
// it's fairly expressive. However, the API is optimized for the common case,
// namely storing a hierarchical tree of simple values. Given a
// DictionaryValue root, you can easily do things like:
//
// root->SetString(L"global.pages.homepage", L"http://goateleporter.com");
// std::wstring homepage = L"http://google.com"; // default/fallback value
// root->GetString(L"global.pages.homepage", &homepage);
//
// where "global" and "pages" are also DictionaryValues, and "homepage"
// is a string setting. If some elements of the path didn't exist yet,
// the SetString() method would create the missing elements and attach them
// to root before attaching the homepage value.
#ifndef CHROME_COMMON_VALUES_H__
#define CHROME_COMMON_VALUES_H__
#include <iterator>
#include <map>
#include <string>
#include <vector>
#include "base/basictypes.h"
class Value;
class FundamentalValue;
class StringValue;
class BinaryValue;
class DictionaryValue;
class ListValue;
typedef std::vector<Value*> ValueVector;
typedef std::map<std::wstring, Value*> ValueMap;
// The Value class is the base class for Values. A Value can be
// instantiated via the Create*Value() factory methods, or by directly
// creating instances of the subclasses.
class Value {
public:
virtual ~Value();
// Convenience methods for creating Value objects for various
// kinds of values without thinking about which class implements them.
// These can always be expected to return a valid Value*.
static Value* CreateNullValue();
static Value* CreateBooleanValue(bool in_value);
static Value* CreateIntegerValue(int in_value);
static Value* CreateRealValue(double in_value);
static Value* CreateStringValue(const std::wstring& in_value);
// This one can return NULL if the input isn't valid. If the return value
// is non-null, the new object has taken ownership of the buffer pointer.
static BinaryValue* CreateBinaryValue(char* buffer, size_t size);
typedef enum {
TYPE_NULL = 0,
TYPE_BOOLEAN,
TYPE_INTEGER,
TYPE_REAL,
TYPE_STRING,
TYPE_BINARY,
TYPE_DICTIONARY,
TYPE_LIST
} ValueType;
// Returns the type of the value stored by the current Value object.
// Each type will be implemented by only one subclass of Value, so it's
// safe to use the ValueType to determine whether you can cast from
// Value* to (Implementing Class)*. Also, a Value object never changes
// its type after construction.
ValueType GetType() const { return type_; }
// Returns true if the current object represents a given type.
bool IsType(ValueType type) const { return type == type_; }
// These methods allow the convenient retrieval of settings.
// If the current setting object can be converted into the given type,
// the value is returned through the "value" parameter and true is returned;
// otherwise, false is returned and "value" is unchanged.
virtual bool GetAsBoolean(bool* out_value) const;
virtual bool GetAsInteger(int* out_value) const;
virtual bool GetAsReal(double* out_value) const;
virtual bool GetAsString(std::wstring* out_value) const;
// This creates a deep copy of the entire Value tree, and returns a pointer
// to the copy. The caller gets ownership of the copy, of course.
virtual Value* DeepCopy() const;
// Compares if two Value objects have equal contents.
virtual bool Equals(const Value* other) const;
protected:
// This isn't safe for end-users (they should use the Create*Value()
// static methods above), but it's useful for subclasses.
Value(ValueType type) : type_(type) {}
private:
DISALLOW_EVIL_CONSTRUCTORS(Value);
Value();
ValueType type_;
};
// FundamentalValue represents the simple fundamental types of values.
class FundamentalValue : public Value {
public:
FundamentalValue(bool in_value)
: Value(TYPE_BOOLEAN), boolean_value_(in_value) {}
FundamentalValue(int in_value)
: Value(TYPE_INTEGER), integer_value_(in_value) {}
FundamentalValue(double in_value)
: Value(TYPE_REAL), real_value_(in_value) {}
~FundamentalValue();
// Subclassed methods
virtual bool GetAsBoolean(bool* out_value) const;
virtual bool GetAsInteger(int* out_value) const;
virtual bool GetAsReal(double* out_value) const;
virtual Value* DeepCopy() const;
virtual bool Equals(const Value* other) const;
private:
DISALLOW_EVIL_CONSTRUCTORS(FundamentalValue);
union {
bool boolean_value_;
int integer_value_;
double real_value_;
};
};
class StringValue : public Value {
public:
StringValue(const std::wstring& in_value)
: Value(TYPE_STRING), value_(in_value) {}
~StringValue();
// Subclassed methods
bool GetAsString(std::wstring* out_value) const;
Value* DeepCopy() const;
virtual bool Equals(const Value* other) const;
private:
DISALLOW_EVIL_CONSTRUCTORS(StringValue);
std::wstring value_;
};
class BinaryValue: public Value {
public:
// Creates a Value to represent a binary buffer. The new object takes
// ownership of the pointer passed in, if successful.
// Returns NULL if buffer is NULL.
static BinaryValue* Create(char* buffer, size_t size);
// For situations where you want to keep ownership of your buffer, this
// factory method creates a new BinaryValue by copying the contents of the
// buffer that's passed in.
// Returns NULL if buffer is NULL.
static BinaryValue* CreateWithCopiedBuffer(char* buffer, size_t size);
~BinaryValue();
// Subclassed methods
Value* DeepCopy() const;
virtual bool Equals(const Value* other) const;
size_t GetSize() const { return size_; }
char* GetBuffer() { return buffer_; }
private:
DISALLOW_EVIL_CONSTRUCTORS(BinaryValue);
// Constructor is private so that only objects with valid buffer pointers
// and size values can be created.
BinaryValue(char* buffer, size_t size);
char* buffer_;
size_t size_;
};
class DictionaryValue : public Value {
public:
DictionaryValue() : Value(TYPE_DICTIONARY) {}
~DictionaryValue();
// Subclassed methods
Value* DeepCopy() const;
virtual bool Equals(const Value* other) const;
// Returns true if the current dictionary has a value for the given key.
bool HasKey(const std::wstring& key);
// Clears any current contents of this dictionary.
void Clear();
// Sets the Value associated with the given path starting from this object.
// A path has the form "<key>" or "<key>.<key>.[...]", where "." indexes
// into the next DictionaryValue down. Obviously, "." can't be used
// within a key, but there are no other restrictions on keys.
// If the key at any step of the way doesn't exist, or exists but isn't
// a DictionaryValue, a new DictionaryValue will be created and attached
// to the path in that location.
// Note that the dictionary takes ownership of the value
// referenced by in_value.
bool Set(const std::wstring& path, Value* in_value);
// Convenience forms of Set(). These methods will replace any existing
// value at that path, even if it has a different type.
bool SetBoolean(const std::wstring& path, bool in_value);
bool SetInteger(const std::wstring& path, int in_value);
bool SetReal(const std::wstring& path, double in_value);
bool SetString(const std::wstring& path, const std::wstring& in_value);
// Gets the Value associated with the given path starting from this object.
// A path has the form "<key>" or "<key>.<key>.[...]", where "." indexes
// into the next DictionaryValue down. If the path can be resolved
// successfully, the value for the last key in the path will be returned
// through the "value" parameter, and the function will return true.
// Otherwise, it will return false and "value" will be untouched.
// Note that the dictionary always owns the value that's returned.
bool Get(const std::wstring& path, Value** out_value) const;
// These are convenience forms of Get(). The value will be retrieved
// and the return value will be true if the path is valid and the value at
// the end of the path can be returned in the form specified.
bool GetBoolean(const std::wstring& path, bool* out_value) const;
bool GetInteger(const std::wstring& path, int* out_value) const;
bool GetReal(const std::wstring& path, double* out_value) const;
bool GetString(const std::wstring& path, std::wstring* out_value) const;
bool GetBinary(const std::wstring& path, BinaryValue** out_value) const;
bool GetDictionary(const std::wstring& path,
DictionaryValue** out_value) const;
bool GetList(const std::wstring& path, ListValue** out_value) const;
// Removes the Value with the specified path from this dictionary (or one
// of its child dictionaries, if the path is more than just a local key).
// If |out_value| is non-NULL, the removed Value AND ITS OWNERSHIP will be
// passed out via out_value. If |out_value| is NULL, the removed value will
// be deleted. This method returns true if |path| is a valid path; otherwise
// it will return false and the DictionaryValue object will be unchanged.
bool Remove(const std::wstring& path, Value** out_value);
// This class provides an iterator for the keys in the dictionary.
// It can't be used to modify the dictionary.
class key_iterator
: private std::iterator<std::input_iterator_tag, const std::wstring> {
public:
key_iterator(ValueMap::const_iterator itr) { itr_ = itr; }
key_iterator operator++() { ++itr_; return *this; }
const std::wstring& operator*() { return itr_->first; }
bool operator!=(const key_iterator& other) { return itr_ != other.itr_; }
bool operator==(const key_iterator& other) { return itr_ == other.itr_; }
private:
ValueMap::const_iterator itr_;
};
key_iterator begin_keys() const { return key_iterator(dictionary_.begin()); }
key_iterator end_keys() const { return key_iterator(dictionary_.end()); }
private:
DISALLOW_EVIL_CONSTRUCTORS(DictionaryValue);
// Associates the value |in_value| with the |key|. This method should be
// used instead of "dictionary_[key] = foo" so that any previous value can
// be properly deleted.
void SetInCurrentNode(const std::wstring& key, Value* in_value);
ValueMap dictionary_;
};
// This type of Value represents a list of other Value values.
// TODO(jhughes): Flesh this out.
class ListValue : public Value {
public:
ListValue() : Value(TYPE_LIST) {}
~ListValue();
// Subclassed methods
Value* DeepCopy() const;
virtual bool Equals(const Value* other) const;
// Clears the contents of this ListValue
void Clear();
// Returns the number of Values in this list.
size_t GetSize() const { return list_.size(); }
// Sets the list item at the given index to be the Value specified by
// the value given. If the index beyond the current end of the list, null
// Values will be used to pad out the list.
// Returns true if successful, or false if the index was negative or
// the value is a null pointer.
bool Set(size_t index, Value* in_value);
// Gets the Value at the given index. Modifies value (and returns true)
// only if the index falls within the current list range.
// Note that the list always owns the Value passed out via out_value.
bool Get(size_t index, Value** out_value) const;
// Convenience forms of Get(). Modifies value (and returns true) only if
// the index is valid and the Value at that index can be returned in
// the specified form.
bool GetDictionary(size_t index, DictionaryValue** out_value) const;
// Removes the Value with the specified index from this list.
// If |out_value| is non-NULL, the removed Value AND ITS OWNERSHIP will be
// passed out via out_value. If |out_value| is NULL, the removed value will
// be deleted. This method returns true if |index| is valid; otherwise
// it will return false and the ListValue object will be unchanged.
bool Remove(size_t index, Value** out_value);
// Appends a Value to the end of the list.
void Append(Value* in_value);
// Iteration
typedef ValueVector::iterator iterator;
typedef ValueVector::const_iterator const_iterator;
ListValue::iterator begin() { return list_.begin(); }
ListValue::iterator end() { return list_.end(); }
ListValue::const_iterator begin() const { return list_.begin(); }
ListValue::const_iterator end() const { return list_.end(); }
ListValue::iterator Erase(iterator item) {
return list_.erase(item);
}
private:
DISALLOW_EVIL_CONSTRUCTORS(ListValue);
ValueVector list_;
};
// This interface is implemented by classes that know how to serialize and
// deserialize Value objects.
class ValueSerializer {
public:
virtual ~ValueSerializer() {}
virtual bool Serialize(const Value& root) = 0;
// This method deserializes the subclass-specific format into a Value object.
// The method should return true if and only if the root parameter is set
// to a complete Value representation of the serialized form. If the
// return value is true, the caller takes ownership of the objects pointed
// to by root. If the return value is false, root should be unchanged.
virtual bool Deserialize(Value** root) = 0;
};
#endif // CHROME_COMMON_VALUES_H__