blob: 1c412da6f572144d7979329675864501dc1b6a87 [file] [log] [blame]
/*
* Copyright 2005-2016 Apple Inc. All rights reserved.
*
* IMPORTANT: This Apple software is supplied to you by Apple Computer,
* Inc. ("Apple") in consideration of your agreement to the following
* terms, and your use, installation, modification or redistribution of
* this Apple software constitutes acceptance of these terms. If you do
* not agree with these terms, please do not use, install, modify or
* redistribute this Apple software.
*
* In consideration of your agreement to abide by the following terms, and
* subject to these terms, Apple grants you a personal, non-exclusive
* license, under Apple's copyrights in this original Apple software (the
* "Apple Software"), to use, reproduce, modify and redistribute the Apple
* Software, with or without modifications, in source and/or binary forms;
* provided that if you redistribute the Apple Software in its entirety and
* without modifications, you must retain this notice and the following
* text and disclaimers in all such redistributions of the Apple Software.
* Neither the name, trademarks, service marks or logos of Apple Computer,
* Inc. may be used to endorse or promote products derived from the Apple
* Software without specific prior written permission from Apple. Except
* as expressly stated in this notice, no other rights or licenses, express
* or implied, are granted by Apple herein, including but not limited to
* any patent rights that may be infringed by your derivative works or by
* other works in which the Apple Software may be incorporated.
*
* The Apple Software is provided by Apple on an "AS IS" basis. APPLE
* MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION
* THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND
* OPERATION ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
*
* IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION,
* MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED
* AND WHETHER UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE),
* STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Include necessary headers.
*/
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <signal.h>
#include <fcntl.h>
#include <termios.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <libgen.h>
#include <mach/mach.h>
#include <mach/mach_error.h>
#include <mach/mach_time.h>
#include <cups/debug-private.h>
#include <cups/file-private.h>
#include <cups/sidechannel.h>
#include <cups/language-private.h>
#include <cups/ppd-private.h>
#include "backend-private.h"
#include <CoreFoundation/CoreFoundation.h>
#include <IOKit/usb/IOUSBLib.h>
#include <IOKit/IOCFPlugIn.h>
#include <libproc.h>
#include <asl.h>
#include <spawn.h>
#include <pthread.h>
/*
* Include necessary headers.
*/
extern char **environ;
/*
* DEBUG_WRITES, if defined, causes the backend to write data to the printer in
* 512 byte increments, up to 8192 bytes, to make debugging with a USB bus
* analyzer easier.
*/
#define DEBUG_WRITES 0
/*
* WAIT_EOF_DELAY is number of seconds we'll wait for responses from
* the printer after we've finished sending all the data
*/
#define WAIT_EOF_DELAY 7
#define WAIT_SIDE_DELAY 3
#define DEFAULT_TIMEOUT 5000L
#define USB_INTERFACE_KIND CFUUIDGetUUIDBytes(kIOUSBInterfaceInterfaceID245)
#define kUSBLanguageEnglish 0x409
#define PRINTER_POLLING_INTERVAL 5 /* seconds */
#define INITIAL_LOG_INTERVAL PRINTER_POLLING_INTERVAL
#define SUBSEQUENT_LOG_INTERVAL 3 * INITIAL_LOG_INTERVAL
#define kUSBPrinterClassTypeID CFUUIDGetConstantUUIDWithBytes(NULL, 0x06, 0x04, 0x7D, 0x16, 0x53, 0xA2, 0x11, 0xD6, 0x92, 0x06, 0x00, 0x30, 0x65, 0x52, 0x45, 0x92)
#define kUSBPrinterClassInterfaceID CFUUIDGetConstantUUIDWithBytes(NULL, 0x03, 0x34, 0x6D, 0x74, 0x53, 0xA3, 0x11, 0xD6, 0x9E, 0xA1, 0x76, 0x30, 0x65, 0x52, 0x45, 0x92)
#define kUSBClassDriverProperty CFSTR("USB Printing Class")
#define kUSBGenericTOPrinterClassDriver CFSTR("/System/Library/Printers/Libraries/USBGenericPrintingClass.plugin")
#define kUSBPrinterClassDeviceNotOpen -9664 /*kPMInvalidIOMContext*/
#define CRSetCrashLogMessage(m) _crc_make_setter(message, m)
#define _crc_make_setter(attr, arg) (gCRAnnotations.attr = (uint64_t)(unsigned long)(arg))
#define CRASH_REPORTER_CLIENT_HIDDEN __attribute__((visibility("hidden")))
#define CRASHREPORTER_ANNOTATIONS_VERSION 4
#define CRASHREPORTER_ANNOTATIONS_SECTION "__crash_info"
struct crashreporter_annotations_t {
uint64_t version; // unsigned long
uint64_t message; // char *
uint64_t signature_string; // char *
uint64_t backtrace; // char *
uint64_t message2; // char *
uint64_t thread; // uint64_t
uint64_t dialog_mode; // unsigned int
};
CRASH_REPORTER_CLIENT_HIDDEN
struct crashreporter_annotations_t gCRAnnotations
__attribute__((section("__DATA," CRASHREPORTER_ANNOTATIONS_SECTION)))
= { CRASHREPORTER_ANNOTATIONS_VERSION, 0, 0, 0, 0, 0, 0 };
/*
* Section 5.3 USB Printing Class spec
*/
#define kUSBPrintingSubclass 1
#define kUSBPrintingProtocolNoOpen 0
#define kUSBPrintingProtocolUnidirectional 1
#define kUSBPrintingProtocolBidirectional 2
#define kUSBPrintingProtocolIPP 4
typedef IOUSBInterfaceInterface245 **printer_interface_t;
typedef struct iodevice_request_s /**** Device request ****/
{
UInt8 requestType;
UInt8 request;
UInt16 value;
UInt16 index;
UInt16 length;
void *buffer;
} iodevice_request_t;
typedef union /**** Centronics status byte ****/
{
char b;
struct
{
unsigned reserved0:2;
unsigned paperError:1;
unsigned select:1;
unsigned notError:1;
unsigned reserved1:3;
} status;
} centronics_status_t;
typedef struct classdriver_s /**** g.classdriver context ****/
{
IUNKNOWN_C_GUTS;
CFPlugInRef plugin; /* release plugin */
IUnknownVTbl **factory; /* Factory */
void *vendorReference; /* vendor class specific usage */
UInt32 location; /* unique location in bus topology */
UInt8 interfaceNumber; /* Interface number */
UInt16 vendorID; /* Vendor id */
UInt16 productID; /* Product id */
printer_interface_t interface; /* identify the device to IOKit */
UInt8 outpipe; /* mandatory bulkOut pipe */
UInt8 inpipe; /* optional bulkIn pipe */
/* general class requests */
kern_return_t (*DeviceRequest)(struct classdriver_s **printer, iodevice_request_t *iorequest, UInt16 timeout);
kern_return_t (*GetString)(struct classdriver_s **printer, UInt8 whichString, UInt16 language, UInt16 timeout, CFStringRef *result);
/* standard printer class requests */
kern_return_t (*SoftReset)(struct classdriver_s **printer, UInt16 timeout);
kern_return_t (*GetCentronicsStatus)(struct classdriver_s **printer, centronics_status_t *result, UInt16 timeout);
kern_return_t (*GetDeviceID)(struct classdriver_s **printer, CFStringRef *devid, UInt16 timeout);
/* standard bulk device requests */
kern_return_t (*ReadPipe)(struct classdriver_s **printer, UInt8 *buffer, UInt32 *count);
kern_return_t (*WritePipe)(struct classdriver_s **printer, UInt8 *buffer, UInt32 *count, Boolean eoj);
/* interface requests */
kern_return_t (*Open)(struct classdriver_s **printer, UInt32 location, UInt8 protocol);
kern_return_t (*Abort)(struct classdriver_s **printer);
kern_return_t (*Close)(struct classdriver_s **printer);
/* initialize and terminate */
kern_return_t (*Initialize)(struct classdriver_s **printer, struct classdriver_s **baseclass);
kern_return_t (*Terminate)(struct classdriver_s **printer);
} classdriver_t;
typedef Boolean (*iterator_callback_t)(io_service_t obj, printer_interface_t printerIntf, void *refcon);
typedef struct iterator_reference_s /**** Iterator reference data */
{
iterator_callback_t callback;
void *userdata;
Boolean keepRunning;
} iterator_reference_t;
typedef struct globals_s
{
io_service_t printer_obj;
classdriver_t **classdriver;
pthread_mutex_t read_thread_mutex;
pthread_cond_t read_thread_cond;
int read_thread_stop;
int read_thread_done;
pthread_mutex_t readwrite_lock_mutex;
pthread_cond_t readwrite_lock_cond;
int readwrite_lock;
CFStringRef make;
CFStringRef model;
CFStringRef serial;
UInt32 location;
UInt8 interfaceNum;
UInt8 alternateSetting;
UInt8 interfaceProtocol;
CFRunLoopTimerRef status_timer;
int print_fd; /* File descriptor to print */
ssize_t print_bytes; /* Print bytes read */
#if DEBUG_WRITES
ssize_t debug_bytes; /* Current bytes to read */
#endif /* DEBUG_WRITES */
Boolean use_generic_class_driver;
Boolean wait_eof;
int drain_output; /* Drain all pending output */
int bidi_flag; /* 0=unidirectional, 1=bidirectional */
pthread_mutex_t sidechannel_thread_mutex;
pthread_cond_t sidechannel_thread_cond;
int sidechannel_thread_stop;
int sidechannel_thread_done;
} globals_t;
/*
* Globals...
*/
globals_t g = { 0 }; /* Globals */
int Iterating = 0; /* Are we iterating the bus? */
/*
* Local functions...
*/
static Boolean list_device_cb(io_service_t obj, printer_interface_t printerIntf, void *refcon);
static Boolean find_device_cb(io_service_t obj, printer_interface_t printerIntf, void *refcon);
static CFStringRef cfstr_create_trim(const char *cstr);
static CFStringRef copy_value_for_key(CFStringRef deviceID, CFStringRef *keys);
static kern_return_t load_classdriver(CFStringRef driverPath, printer_interface_t interface, classdriver_t ***printerDriver);
static kern_return_t load_printerdriver(CFStringRef *driverBundlePath);
static kern_return_t registry_close(void);
static kern_return_t registry_open(CFStringRef *driverBundlePath);
static kern_return_t unload_classdriver(classdriver_t ***classdriver);
static void *read_thread(void *reference);
static void *sidechannel_thread(void *reference);
static void device_added(void *userdata, io_iterator_t iterator);
static void get_device_id(cups_sc_status_t *status, char *data, int *datalen);
static void iterate_printers(iterator_callback_t callBack, void *userdata);
static void parse_options(char *options, char *serial, int serial_size, UInt32 *location, Boolean *wait_eof);
static void setup_cfLanguage(void);
static void soft_reset(void);
static void status_timer_cb(CFRunLoopTimerRef timer, void *info);
#define IS_64BIT 1
#define IS_NOT_64BIT 0
#if defined(__i386__) || defined(__x86_64__)
static pid_t child_pid; /* Child PID */
static void run_legacy_backend(int argc, char *argv[], int fd) _CUPS_NORETURN; /* Starts child backend process running as a ppc executable */
#endif /* __i386__ || __x86_64__ */
static void sigterm_handler(int sig); /* SIGTERM handler */
static void sigquit_handler(int sig, siginfo_t *si, void *unused) _CUPS_NORETURN;
#ifdef PARSE_PS_ERRORS
static const char *next_line (const char *buffer);
static void parse_pserror (char *sockBuffer, int len);
#endif /* PARSE_PS_ERRORS */
static printer_interface_t usb_printer_interface_interface(io_service_t usbClass);
static CFStringRef copy_printer_interface_deviceid(printer_interface_t printer, UInt8 alternateSetting);
static CFStringRef copy_printer_interface_indexed_description(printer_interface_t printer, UInt8 index, UInt16 language);
static CFStringRef deviceIDCopyManufacturer(CFStringRef deviceID);
static CFStringRef deviceIDCopyModel(CFStringRef deviceID);
static CFStringRef deviceIDCopySerialNumber(CFStringRef deviceID);
#pragma mark -
/*
* 'list_devices()' - List all USB devices.
*/
void list_devices()
{
iterate_printers(list_device_cb, NULL);
}
/*
* 'print_device()' - Print a file to a USB device.
*/
int /* O - Exit status */
print_device(const char *uri, /* I - Device URI */
const char *hostname, /* I - Hostname/manufacturer */
const char *resource, /* I - Resource/modelname */
char *options, /* I - Device options/serial number */
int print_fd, /* I - File descriptor to print */
int copies, /* I - Copies to print */
int argc, /* I - Number of command-line arguments (6 or 7) */
char *argv[]) /* I - Command-line arguments */
{
char serial[1024]; /* Serial number buffer */
OSStatus status; /* Function results */
IOReturn iostatus; /* Current IO status */
pthread_t read_thread_id, /* Read thread */
sidechannel_thread_id;/* Side-channel thread */
int have_sidechannel = 0; /* Was the side-channel thread started? */
struct stat sidechannel_info; /* Side-channel file descriptor info */
char print_buffer[8192], /* Print data buffer */
*print_ptr; /* Pointer into print data buffer */
UInt32 location; /* Unique location in bus topology */
fd_set input_set; /* Input set for select() */
CFStringRef driverBundlePath; /* Class driver path */
int countdown, /* Logging interval */
nfds; /* Number of file descriptors */
ssize_t total_bytes; /* Total bytes written */
UInt32 bytes; /* Bytes written */
struct timeval *timeout, /* Timeout pointer */
tv; /* Time value */
struct timespec cond_timeout; /* pthread condition timeout */
struct sigaction action; /* Actions for POSIX signals */
(void)uri;
/*
* Catch SIGQUIT to determine who is sending it...
*/
memset(&action, 0, sizeof(action));
action.sa_sigaction = sigquit_handler;
action.sa_flags = SA_SIGINFO;
sigaction(SIGQUIT, &action, NULL);
/*
* See if the side-channel descriptor is valid...
*/
have_sidechannel = !fstat(CUPS_SC_FD, &sidechannel_info) &&
S_ISSOCK(sidechannel_info.st_mode);
/*
* Localize using CoreFoundation...
*/
setup_cfLanguage();
parse_options(options, serial, sizeof(serial), &location, &g.wait_eof);
if (resource[0] == '/')
resource++;
g.print_fd = print_fd;
g.make = cfstr_create_trim(hostname);
g.model = cfstr_create_trim(resource);
g.serial = cfstr_create_trim(serial);
g.location = location;
if (!g.make || !g.model)
{
fprintf(stderr, "DEBUG: Fatal USB error.\n");
_cupsLangPrintFilter(stderr, "ERROR",
_("There was an unrecoverable USB error."));
if (!g.make)
fputs("DEBUG: USB make string is NULL\n", stderr);
if (!g.model)
fputs("DEBUG: USB model string is NULL\n", stderr);
return (CUPS_BACKEND_STOP);
}
fputs("STATE: +connecting-to-device\n", stderr);
countdown = INITIAL_LOG_INTERVAL;
do
{
if (g.printer_obj)
{
IOObjectRelease(g.printer_obj);
unload_classdriver(&g.classdriver);
g.printer_obj = 0x0;
g.classdriver = 0x0;
}
fprintf(stderr, "DEBUG: Looking for '%s %s'\n", hostname, resource);
do
{
iterate_printers(find_device_cb, NULL);
if (g.printer_obj != 0x0)
break;
_cupsLangPrintFilter(stderr, "INFO", _("Waiting for printer to become available."));
sleep(5);
} while (true);
fputs("DEBUG: Opening connection\n", stderr);
driverBundlePath = NULL;
status = registry_open(&driverBundlePath);
#if defined(__i386__) || defined(__x86_64__)
/*
* If we were unable to load the class drivers for this printer it's
* probably because they're ppc or i386. In this case try to run this
* backend as i386 or ppc executables so we can use them...
*/
if (status == -2)
{
run_legacy_backend(argc, argv, print_fd);
/* Never returns here */
}
#endif /* __i386__ || __x86_64__ */
if (status == -2)
{
/*
* If we still were unable to load the class drivers for this printer log
* the error and stop the queue...
*/
if (driverBundlePath == NULL || !CFStringGetCString(driverBundlePath, print_buffer, sizeof(print_buffer), kCFStringEncodingUTF8))
strlcpy(print_buffer, "USB class driver", sizeof(print_buffer));
fputs("STATE: +apple-missing-usbclassdriver-error\n", stderr);
_cupsLangPrintFilter(stderr, "ERROR",
_("There was an unrecoverable USB error."));
fprintf(stderr, "DEBUG: Could not load %s\n", print_buffer);
if (driverBundlePath)
CFRelease(driverBundlePath);
return (CUPS_BACKEND_STOP);
}
if (driverBundlePath)
CFRelease(driverBundlePath);
if (status != noErr)
{
sleep(PRINTER_POLLING_INTERVAL);
countdown -= PRINTER_POLLING_INTERVAL;
if (countdown <= 0)
{
_cupsLangPrintFilter(stderr, "INFO",
_("Waiting for printer to become available."));
fprintf(stderr, "DEBUG: USB printer status: 0x%08x\n", (int)status);
countdown = SUBSEQUENT_LOG_INTERVAL; /* subsequent log entries, every 15 seconds */
}
}
} while (status != noErr);
fputs("STATE: -connecting-to-device\n", stderr);
/*
* Now that we are "connected" to the port, ignore SIGTERM so that we
* can finish out any page data the driver sends (e.g. to eject the
* current page... Only ignore SIGTERM if we are printing data from
* stdin (otherwise you can't cancel raw jobs...)
*/
if (!print_fd)
{
memset(&action, 0, sizeof(action));
sigemptyset(&action.sa_mask);
action.sa_handler = SIG_IGN;
sigaction(SIGTERM, &action, NULL);
}
/*
* Start the side channel thread if the descriptor is valid...
*/
pthread_mutex_init(&g.readwrite_lock_mutex, NULL);
pthread_cond_init(&g.readwrite_lock_cond, NULL);
g.readwrite_lock = 1;
if (have_sidechannel)
{
g.sidechannel_thread_stop = 0;
g.sidechannel_thread_done = 0;
pthread_cond_init(&g.sidechannel_thread_cond, NULL);
pthread_mutex_init(&g.sidechannel_thread_mutex, NULL);
if (pthread_create(&sidechannel_thread_id, NULL, sidechannel_thread, NULL))
{
fprintf(stderr, "DEBUG: Fatal USB error.\n");
_cupsLangPrintFilter(stderr, "ERROR",
_("There was an unrecoverable USB error."));
fputs("DEBUG: Couldn't create side-channel thread\n", stderr);
registry_close();
return (CUPS_BACKEND_STOP);
}
}
/*
* Get the read thread going...
*/
g.read_thread_stop = 0;
g.read_thread_done = 0;
pthread_cond_init(&g.read_thread_cond, NULL);
pthread_mutex_init(&g.read_thread_mutex, NULL);
if (pthread_create(&read_thread_id, NULL, read_thread, NULL))
{
fprintf(stderr, "DEBUG: Fatal USB error.\n");
_cupsLangPrintFilter(stderr, "ERROR",
_("There was an unrecoverable USB error."));
fputs("DEBUG: Couldn't create read thread\n", stderr);
registry_close();
return (CUPS_BACKEND_STOP);
}
/*
* The main thread sends the print file...
*/
g.drain_output = 0;
g.print_bytes = 0;
total_bytes = 0;
print_ptr = print_buffer;
while (status == noErr && copies-- > 0)
{
_cupsLangPrintFilter(stderr, "INFO", _("Sending data to printer."));
if (print_fd != STDIN_FILENO)
{
fputs("PAGE: 1 1\n", stderr);
lseek(print_fd, 0, SEEK_SET);
}
while (status == noErr)
{
FD_ZERO(&input_set);
if (!g.print_bytes)
FD_SET(print_fd, &input_set);
/*
* Calculate select timeout...
* If we have data waiting to send timeout is 100ms.
* else if we're draining print_fd timeout is 0.
* else we're waiting forever...
*/
if (g.print_bytes)
{
tv.tv_sec = 0;
tv.tv_usec = 100000; /* 100ms */
timeout = &tv;
}
else if (g.drain_output)
{
tv.tv_sec = 0;
tv.tv_usec = 0;
timeout = &tv;
}
else
timeout = NULL;
/*
* I/O is unlocked around select...
*/
pthread_mutex_lock(&g.readwrite_lock_mutex);
g.readwrite_lock = 0;
pthread_cond_signal(&g.readwrite_lock_cond);
pthread_mutex_unlock(&g.readwrite_lock_mutex);
nfds = select(print_fd + 1, &input_set, NULL, NULL, timeout);
/*
* Reacquire the lock...
*/
pthread_mutex_lock(&g.readwrite_lock_mutex);
while (g.readwrite_lock)
pthread_cond_wait(&g.readwrite_lock_cond, &g.readwrite_lock_mutex);
g.readwrite_lock = 1;
pthread_mutex_unlock(&g.readwrite_lock_mutex);
if (nfds < 0)
{
if (errno == EINTR && total_bytes == 0)
{
fputs("DEBUG: Received an interrupt before any bytes were "
"written, aborting\n", stderr);
registry_close();
return (CUPS_BACKEND_OK);
}
else if (errno != EAGAIN && errno != EINTR)
{
_cupsLangPrintFilter(stderr, "ERROR",
_("Unable to read print data."));
perror("DEBUG: select");
registry_close();
return (CUPS_BACKEND_FAILED);
}
}
/*
* If drain output has finished send a response...
*/
if (g.drain_output && !nfds && !g.print_bytes)
{
/* Send a response... */
cupsSideChannelWrite(CUPS_SC_CMD_DRAIN_OUTPUT, CUPS_SC_STATUS_OK, NULL, 0, 1.0);
g.drain_output = 0;
}
/*
* Check if we have print data ready...
*/
if (FD_ISSET(print_fd, &input_set))
{
#if DEBUG_WRITES
g.debug_bytes += 512;
if (g.debug_bytes > sizeof(print_buffer))
g.debug_bytes = 512;
g.print_bytes = read(print_fd, print_buffer, g.debug_bytes);
#else
g.print_bytes = read(print_fd, print_buffer, sizeof(print_buffer));
#endif /* DEBUG_WRITES */
if (g.print_bytes < 0)
{
/*
* Read error - bail if we don't see EAGAIN or EINTR...
*/
if (errno != EAGAIN && errno != EINTR)
{
_cupsLangPrintFilter(stderr, "ERROR",
_("Unable to read print data."));
perror("DEBUG: read");
registry_close();
return (CUPS_BACKEND_FAILED);
}
g.print_bytes = 0;
}
else if (g.print_bytes == 0)
{
/*
* End of file, break out of the loop...
*/
break;
}
print_ptr = print_buffer;
fprintf(stderr, "DEBUG: Read %d bytes of print data...\n",
(int)g.print_bytes);
}
if (g.print_bytes)
{
bytes = (UInt32)g.print_bytes;
iostatus = (*g.classdriver)->WritePipe(g.classdriver, (UInt8*)print_ptr, &bytes, 0);
/*
* Ignore timeout errors, but retain the number of bytes written to
* avoid sending duplicate data...
*/
if (iostatus == kIOUSBTransactionTimeout)
{
fputs("DEBUG: Got USB transaction timeout during write\n", stderr);
iostatus = 0;
}
/*
* If we've stalled, retry the write...
*/
else if (iostatus == kIOUSBPipeStalled)
{
fputs("DEBUG: Got USB pipe stalled during write\n", stderr);
bytes = (UInt32)g.print_bytes;
iostatus = (*g.classdriver)->WritePipe(g.classdriver, (UInt8*)print_ptr, &bytes, 0);
}
/*
* Retry a write after an aborted write since we probably just got
* SIGTERM...
*/
else if (iostatus == kIOReturnAborted)
{
fputs("DEBUG: Got USB return aborted during write\n", stderr);
IOReturn err = (*g.classdriver)->Abort(g.classdriver);
fprintf(stderr, "DEBUG: USB class driver Abort returned %x\n", err);
#if DEBUG_WRITES
sleep(5);
#endif /* DEBUG_WRITES */
bytes = (UInt32)g.print_bytes;
iostatus = (*g.classdriver)->WritePipe(g.classdriver, (UInt8*)print_ptr, &bytes, 0);
}
if (iostatus)
{
/*
* Write error - bail if we don't see an error we can retry...
*/
_cupsLangPrintFilter(stderr, "ERROR",
_("Unable to send data to printer."));
fprintf(stderr, "DEBUG: USB class driver WritePipe returned %x\n",
iostatus);
IOReturn err = (*g.classdriver)->Abort(g.classdriver);
fprintf(stderr, "DEBUG: USB class driver Abort returned %x\n",
err);
status = CUPS_BACKEND_FAILED;
break;
}
else if (bytes > 0)
{
fprintf(stderr, "DEBUG: Wrote %d bytes of print data...\n", (int)bytes);
g.print_bytes -= bytes;
print_ptr += bytes;
total_bytes += bytes;
}
}
if (print_fd != 0 && status == noErr)
fprintf(stderr, "DEBUG: Sending print file, %lld bytes...\n",
(off_t)total_bytes);
}
}
fprintf(stderr, "DEBUG: Sent %lld bytes...\n", (off_t)total_bytes);
fputs("STATE: +cups-waiting-for-job-completed\n", stderr);
/*
* Signal the side channel thread to exit...
*/
if (have_sidechannel)
{
close(CUPS_SC_FD);
pthread_mutex_lock(&g.readwrite_lock_mutex);
g.readwrite_lock = 0;
pthread_cond_signal(&g.readwrite_lock_cond);
pthread_mutex_unlock(&g.readwrite_lock_mutex);
g.sidechannel_thread_stop = 1;
pthread_mutex_lock(&g.sidechannel_thread_mutex);
if (!g.sidechannel_thread_done)
{
gettimeofday(&tv, NULL);
cond_timeout.tv_sec = tv.tv_sec + WAIT_SIDE_DELAY;
cond_timeout.tv_nsec = tv.tv_usec * 1000;
while (!g.sidechannel_thread_done)
{
if (pthread_cond_timedwait(&g.sidechannel_thread_cond,
&g.sidechannel_thread_mutex,
&cond_timeout) != 0)
break;
}
}
pthread_mutex_unlock(&g.sidechannel_thread_mutex);
}
/*
* Signal the read thread to exit then wait 7 seconds for it to complete...
*/
g.read_thread_stop = 1;
pthread_mutex_lock(&g.read_thread_mutex);
if (!g.read_thread_done)
{
fputs("DEBUG: Waiting for read thread to exit...\n", stderr);
gettimeofday(&tv, NULL);
cond_timeout.tv_sec = tv.tv_sec + WAIT_EOF_DELAY;
cond_timeout.tv_nsec = tv.tv_usec * 1000;
while (!g.read_thread_done)
{
if (pthread_cond_timedwait(&g.read_thread_cond, &g.read_thread_mutex,
&cond_timeout) != 0)
break;
}
/*
* If it didn't exit abort the pending read and wait an additional second...
*/
if (!g.read_thread_done)
{
fputs("DEBUG: Read thread still active, aborting the pending read...\n",
stderr);
g.wait_eof = 0;
(*g.classdriver)->Abort(g.classdriver);
gettimeofday(&tv, NULL);
cond_timeout.tv_sec = tv.tv_sec + 1;
cond_timeout.tv_nsec = tv.tv_usec * 1000;
while (!g.read_thread_done)
{
if (pthread_cond_timedwait(&g.read_thread_cond, &g.read_thread_mutex,
&cond_timeout) != 0)
break;
}
}
}
pthread_mutex_unlock(&g.read_thread_mutex);
/*
* Close the connection and input file and general clean up...
*/
registry_close();
if (print_fd != STDIN_FILENO)
close(print_fd);
if (g.make != NULL)
CFRelease(g.make);
if (g.model != NULL)
CFRelease(g.model);
if (g.serial != NULL)
CFRelease(g.serial);
if (g.printer_obj != 0x0)
IOObjectRelease(g.printer_obj);
return status;
}
/*
* 'read_thread()' - Thread to read the backchannel data on.
*/
static void *read_thread(void *reference)
{
UInt8 readbuffer[512];
UInt32 rbytes;
kern_return_t readstatus;
struct mach_timebase_info timeBaseInfo;
uint64_t start,
delay;
(void)reference;
/* Calculate what 250 milliSeconds are in mach absolute time...
*/
mach_timebase_info(&timeBaseInfo);
delay = ((uint64_t)250000000 * (uint64_t)timeBaseInfo.denom) / (uint64_t)timeBaseInfo.numer;
do
{
/*
* Remember when we started so we can throttle the loop after the read call...
*/
start = mach_absolute_time();
rbytes = sizeof(readbuffer);
readstatus = (*g.classdriver)->ReadPipe(g.classdriver, readbuffer, &rbytes);
if (readstatus == kIOReturnSuccess && rbytes > 0)
{
fprintf(stderr, "DEBUG: Read %d bytes of back-channel data...\n",
(int)rbytes);
cupsBackChannelWrite((char*)readbuffer, rbytes, 1.0);
/* cntrl-d is echoed by the printer.
* NOTES:
* Xerox Phaser 6250D doesn't echo the cntrl-d.
* Xerox Phaser 6250D doesn't always send the product query.
*/
if (g.wait_eof && readbuffer[rbytes-1] == 0x4)
break;
#ifdef PARSE_PS_ERRORS
parse_pserror(readbuffer, rbytes);
#endif
}
else if (readstatus == kIOUSBTransactionTimeout)
fputs("DEBUG: Got USB transaction timeout during read\n", stderr);
else if (readstatus == kIOUSBPipeStalled)
fputs("DEBUG: Got USB pipe stalled during read\n", stderr);
else if (readstatus == kIOReturnAborted)
fputs("DEBUG: Got USB return aborted during read\n", stderr);
/*
* Make sure this loop executes no more than once every 250 miliseconds...
*/
if ((readstatus != kIOReturnSuccess || rbytes == 0) && (g.wait_eof || !g.read_thread_stop))
mach_wait_until(start + delay);
} while (g.wait_eof || !g.read_thread_stop); /* Abort from main thread tests error here */
/* Workaround for usb race condition. <rdar://problem/21882551> */
if (!g.wait_eof && g.use_generic_class_driver)
{
const char *pdl = getenv("FINAL_CONTENT_TYPE");
if (pdl && strcmp(pdl, "application/vnd.cups-postscript") == 0)
{
while (readstatus == kIOReturnSuccess && ((rbytes > 0 && readbuffer[rbytes-1] != 0x4) || rbytes == 0))
{
start = mach_absolute_time();
rbytes = sizeof(readbuffer);
readstatus = (*g.classdriver)->ReadPipe(g.classdriver, readbuffer, &rbytes);
if (readstatus == kIOReturnSuccess && rbytes > 0 && readbuffer[rbytes-1] == 0x4)
break;
/* Make sure this loop executes no more than once every 250 miliseconds... */
mach_wait_until(start + delay);
}
}
}
/*
* Let the main thread know that we have completed the read thread...
*/
pthread_mutex_lock(&g.read_thread_mutex);
g.read_thread_done = 1;
pthread_cond_signal(&g.read_thread_cond);
pthread_mutex_unlock(&g.read_thread_mutex);
return NULL;
}
/*
* 'sidechannel_thread()' - Handle side-channel requests.
*/
static void*
sidechannel_thread(void *reference)
{
cups_sc_command_t command; /* Request command */
cups_sc_status_t status; /* Request/response status */
char data[2048]; /* Request/response data */
int datalen; /* Request/response data size */
(void)reference;
do
{
datalen = sizeof(data);
if (cupsSideChannelRead(&command, &status, data, &datalen, 1.0))
{
if (status == CUPS_SC_STATUS_TIMEOUT)
continue;
else
break;
}
switch (command)
{
case CUPS_SC_CMD_SOFT_RESET: /* Do a soft reset */
fputs("DEBUG: CUPS_SC_CMD_SOFT_RESET received from driver...\n",
stderr);
if ((*g.classdriver)->SoftReset != NULL)
{
soft_reset();
cupsSideChannelWrite(command, CUPS_SC_STATUS_OK, NULL, 0, 1.0);
fputs("DEBUG: Returning status CUPS_STATUS_OK with no bytes...\n",
stderr);
}
else
{
cupsSideChannelWrite(command, CUPS_SC_STATUS_NOT_IMPLEMENTED,
NULL, 0, 1.0);
fputs("DEBUG: Returning status CUPS_STATUS_NOT_IMPLEMENTED with "
"no bytes...\n", stderr);
}
break;
case CUPS_SC_CMD_DRAIN_OUTPUT: /* Drain all pending output */
fputs("DEBUG: CUPS_SC_CMD_DRAIN_OUTPUT received from driver...\n",
stderr);
g.drain_output = 1;
break;
case CUPS_SC_CMD_GET_BIDI: /* Is the connection bidirectional? */
fputs("DEBUG: CUPS_SC_CMD_GET_BIDI received from driver...\n",
stderr);
data[0] = (char)g.bidi_flag;
cupsSideChannelWrite(command, CUPS_SC_STATUS_OK, data, 1, 1.0);
fprintf(stderr,
"DEBUG: Returned CUPS_SC_STATUS_OK with 1 byte (%02X)...\n",
data[0]);
break;
case CUPS_SC_CMD_GET_DEVICE_ID: /* Return IEEE-1284 device ID */
fputs("DEBUG: CUPS_SC_CMD_GET_DEVICE_ID received from driver...\n",
stderr);
datalen = sizeof(data);
get_device_id(&status, data, &datalen);
cupsSideChannelWrite(command, CUPS_SC_STATUS_OK, data, datalen, 1.0);
if ((size_t)datalen < sizeof(data))
data[datalen] = '\0';
else
data[sizeof(data) - 1] = '\0';
fprintf(stderr,
"DEBUG: Returning CUPS_SC_STATUS_OK with %d bytes (%s)...\n",
datalen, data);
break;
case CUPS_SC_CMD_GET_STATE: /* Return device state */
fputs("DEBUG: CUPS_SC_CMD_GET_STATE received from driver...\n",
stderr);
data[0] = CUPS_SC_STATE_ONLINE;
cupsSideChannelWrite(command, CUPS_SC_STATUS_OK, data, 1, 1.0);
fprintf(stderr,
"DEBUG: Returned CUPS_SC_STATUS_OK with 1 byte (%02X)...\n",
data[0]);
break;
default:
fprintf(stderr, "DEBUG: Unknown side-channel command (%d) received "
"from driver...\n", command);
cupsSideChannelWrite(command, CUPS_SC_STATUS_NOT_IMPLEMENTED,
NULL, 0, 1.0);
fputs("DEBUG: Returned CUPS_SC_STATUS_NOT_IMPLEMENTED with no bytes...\n",
stderr);
break;
}
}
while (!g.sidechannel_thread_stop);
pthread_mutex_lock(&g.sidechannel_thread_mutex);
g.sidechannel_thread_done = 1;
pthread_cond_signal(&g.sidechannel_thread_cond);
pthread_mutex_unlock(&g.sidechannel_thread_mutex);
return NULL;
}
#pragma mark -
/*
* 'iterate_printers()' - Iterate over all the printers.
*/
static void iterate_printers(iterator_callback_t callBack, void *userdata)
{
Iterating = 1;
iterator_reference_t reference = { callBack, userdata, true };
IONotificationPortRef addNotification = IONotificationPortCreate(kIOMasterPortDefault);
int printingClass = kUSBPrintingClass;
int printingSubclass = kUSBPrintingSubclass;
CFNumberRef interfaceClass = CFNumberCreate(kCFAllocatorDefault, kCFNumberIntType, &printingClass);
CFNumberRef interfaceSubClass = CFNumberCreate(kCFAllocatorDefault, kCFNumberIntType, &printingSubclass);
CFMutableDictionaryRef usbPrinterMatchDictionary = IOServiceMatching(kIOUSBInterfaceClassName);
CFDictionaryAddValue(usbPrinterMatchDictionary, CFSTR("bInterfaceClass"), interfaceClass);
CFDictionaryAddValue(usbPrinterMatchDictionary, CFSTR("bInterfaceSubClass"), interfaceSubClass);
CFRelease(interfaceClass);
CFRelease(interfaceSubClass);
io_iterator_t add_iterator = IO_OBJECT_NULL;
IOServiceAddMatchingNotification(addNotification, kIOMatchedNotification,
usbPrinterMatchDictionary, &device_added, &reference, &add_iterator);
if (add_iterator != IO_OBJECT_NULL)
{
device_added (&reference, add_iterator);
if (reference.keepRunning)
{
CFRunLoopAddSource(CFRunLoopGetCurrent(), IONotificationPortGetRunLoopSource(addNotification), kCFRunLoopDefaultMode);
CFRunLoopRun();
}
IOObjectRelease(add_iterator);
}
Iterating = 0;
}
/*
* 'device_added()' - Device added notifier.
*/
static void device_added(void *userdata, io_iterator_t iterator)
{
iterator_reference_t *reference = userdata;
io_service_t intf;
while (reference->keepRunning && (intf = IOIteratorNext(iterator)) != 0x0)
{
printer_interface_t printerIntf = usb_printer_interface_interface(intf);
if (printerIntf != NULL)
{
UInt8 intfClass = 0, intfSubClass = 0;
(*printerIntf)->GetInterfaceClass(printerIntf, &intfClass);
(*printerIntf)->GetInterfaceSubClass(printerIntf, &intfSubClass);
if (intfClass == kUSBPrintingInterfaceClass && intfSubClass == kUSBPrintingSubclass)
reference->keepRunning = reference->callback(intf, printerIntf, userdata);
(*printerIntf)->Release(printerIntf);
}
IOObjectRelease(intf);
}
if (reference->keepRunning && reference->callback)
reference->keepRunning = reference->callback(IO_OBJECT_NULL, NULL, reference->userdata);
if (!reference->keepRunning)
CFRunLoopStop(CFRunLoopGetCurrent());
}
/*
* 'list_device_cb()' - list_device iterator callback.
*/
static Boolean list_device_cb(io_service_t obj, printer_interface_t printerIntf, void *refcon)
{
(void)refcon;
if (obj != IO_OBJECT_NULL)
{
CFStringRef deviceIDString = NULL;
CFStringRef make = NULL;
CFStringRef model = NULL;
CFStringRef serial = NULL;
UInt32 intfLocation;
deviceIDString = copy_printer_interface_deviceid(printerIntf, 0);
if (deviceIDString == NULL)
goto list_device_done;
make = deviceIDCopyManufacturer(deviceIDString);
model = deviceIDCopyModel(deviceIDString);
serial = deviceIDCopySerialNumber(deviceIDString);
char uristr[1024], makestr[1024], modelstr[1024], serialstr[1024];
char optionsstr[1024], idstr[1024], make_modelstr[1024];
CFStringGetCString(deviceIDString, idstr, sizeof(idstr), kCFStringEncodingUTF8);
backendGetMakeModel(idstr, make_modelstr, sizeof(make_modelstr));
modelstr[0] = '/';
if (make == NULL || !CFStringGetCString(make, makestr, sizeof(makestr), kCFStringEncodingUTF8))
strlcpy(makestr, "Unknown", sizeof(makestr));
if (model == NULL || !CFStringGetCString(model, &modelstr[1], sizeof(modelstr)-1, kCFStringEncodingUTF8))
strlcpy(modelstr + 1, "Printer", sizeof(modelstr) - 1);
optionsstr[0] = '\0';
if (serial != NULL && CFStringGetCString(serial, serialstr, sizeof(serialstr), kCFStringEncodingUTF8))
snprintf(optionsstr, sizeof(optionsstr), "?serial=%s", serialstr);
else if ((*printerIntf)->GetLocationID(printerIntf, &intfLocation) == kIOReturnSuccess)
snprintf(optionsstr, sizeof(optionsstr), "?location=%x", (unsigned)intfLocation);
httpAssembleURI(HTTP_URI_CODING_ALL, uristr, sizeof(uristr), "usb", NULL, makestr, 0, modelstr);
strlcat(uristr, optionsstr, sizeof(uristr));
cupsBackendReport("direct", uristr, make_modelstr, make_modelstr, idstr,
NULL);
list_device_done:
if (make != NULL) CFRelease(make);
if (model != NULL) CFRelease(model);
if (serial != NULL) CFRelease(serial);
}
return obj != IO_OBJECT_NULL;
}
/*
* 'find_device_cb()' - print_device iterator callback.
*/
static Boolean find_device_cb(io_service_t obj, printer_interface_t printerIntf, void *refcon)
{
(void)refcon;
Boolean keepLooking = true;
if (obj != IO_OBJECT_NULL)
{
CFStringRef deviceIDString = NULL;
CFStringRef make = NULL;
CFStringRef model = NULL;
CFStringRef serial = NULL;
deviceIDString = copy_printer_interface_deviceid(printerIntf, 0);
if (deviceIDString == NULL)
goto find_device_done;
make = deviceIDCopyManufacturer(deviceIDString);
model = deviceIDCopyModel(deviceIDString);
serial = deviceIDCopySerialNumber(deviceIDString);
if (make && CFStringCompare(make, g.make, kCFCompareCaseInsensitive) == kCFCompareEqualTo)
{
if (model && CFStringCompare(model, g.model, kCFCompareCaseInsensitive) == kCFCompareEqualTo)
{
UInt8 intfAltSetting = 0, intfNumber = 0, intfProtocol = 0;
UInt32 intfLocation = 0;
(*printerIntf)->GetInterfaceProtocol(printerIntf, &intfProtocol);
(*printerIntf)->GetAlternateSetting(printerIntf, &intfAltSetting);
(*printerIntf)->GetInterfaceNumber(printerIntf, &intfNumber);
(*printerIntf)->GetLocationID(printerIntf, &intfLocation);
if (intfProtocol == kUSBPrintingProtocolIPP)
return keepLooking;
if (g.serial != NULL && CFStringGetLength(g.serial) > 0)
{
if (serial != NULL && CFStringCompare(serial, g.serial, kCFCompareCaseInsensitive) == kCFCompareEqualTo)
{
g.interfaceProtocol = intfProtocol;
g.location = intfLocation;
g.alternateSetting = intfAltSetting;
g.printer_obj = obj;
IOObjectRetain(obj);
keepLooking = false;
}
}
else
{
if (g.printer_obj != 0)
IOObjectRelease(g.printer_obj);
if (g.location == 0 || g.location == intfLocation)
keepLooking = false;
g.location = intfLocation;
g.alternateSetting = intfAltSetting;
g.interfaceProtocol = intfProtocol;
g.printer_obj = obj;
IOObjectRetain(obj);
}
if (!keepLooking)
g.interfaceNum = intfNumber;
}
}
find_device_done:
if (deviceIDString != NULL) CFRelease(deviceIDString);
if (make != NULL) CFRelease(make);
if (model != NULL) CFRelease(model);
if (serial != NULL) CFRelease(serial);
}
else
{
keepLooking = (g.printer_obj == 0 && g.interfaceProtocol != kUSBPrintingProtocolIPP);
if (obj == IO_OBJECT_NULL && keepLooking)
{
CFRunLoopTimerContext context = { 0, refcon, NULL, NULL, NULL };
CFRunLoopTimerRef timer = CFRunLoopTimerCreate(NULL, CFAbsoluteTimeGetCurrent() + 1.0, 10, 0x0, 0x0, status_timer_cb, &context);
if (timer != NULL)
{
CFRunLoopAddTimer(CFRunLoopGetCurrent(), timer, kCFRunLoopDefaultMode);
g.status_timer = timer;
}
}
}
if (!keepLooking && g.status_timer != NULL)
{
fputs("STATE: -offline-report\n", stderr);
_cupsLangPrintFilter(stderr, "INFO", _("The printer is now online."));
CFRunLoopRemoveTimer(CFRunLoopGetCurrent(), g.status_timer, kCFRunLoopDefaultMode);
CFRelease(g.status_timer);
g.status_timer = NULL;
}
return keepLooking;
}
static CFStringRef deviceIDCopySerialNumber(CFStringRef deviceID)
{
CFStringRef serialKeys[] = { CFSTR("SN:"), CFSTR("SERN:"), NULL };
return copy_value_for_key(deviceID, serialKeys);
}
static CFStringRef deviceIDCopyModel(CFStringRef deviceID)
{
CFStringRef modelKeys[] = { CFSTR("MDL:"), CFSTR("MODEL:"), NULL };
return copy_value_for_key(deviceID, modelKeys);
}
static CFStringRef deviceIDCopyManufacturer(CFStringRef deviceID)
{
CFStringRef makeKeys[] = { CFSTR("MFG:"), CFSTR("MANUFACTURER:"), NULL };
return copy_value_for_key(deviceID, makeKeys);
}
/*
* 'status_timer_cb()' - Status timer callback.
*/
static void status_timer_cb(CFRunLoopTimerRef timer,
void *info)
{
(void)timer;
(void)info;
fputs("STATE: +offline-report\n", stderr);
_cupsLangPrintFilter(stderr, "INFO", _("The printer is offline."));
if (getenv("CLASS") != NULL)
{
/*
* If the CLASS environment variable is set, the job was submitted
* to a class and not to a specific queue. In this case, we want
* to abort immediately so that the job can be requeued on the next
* available printer in the class.
*
* Sleep 5 seconds to keep the job from requeuing too rapidly...
*/
sleep(5);
exit(CUPS_BACKEND_FAILED);
}
}
#pragma mark -
/*
* 'load_classdriver()' - Load a classdriver.
*/
static kern_return_t load_classdriver(CFStringRef driverPath,
printer_interface_t interface,
classdriver_t ***printerDriver)
{
kern_return_t kr = kUSBPrinterClassDeviceNotOpen;
classdriver_t **driver = NULL;
CFStringRef bundle = driverPath ? driverPath : kUSBGenericTOPrinterClassDriver;
char bundlestr[1024]; /* Bundle path */
CFURLRef url; /* URL for driver */
CFPlugInRef plugin = NULL; /* Plug-in address */
CFStringGetCString(bundle, bundlestr, sizeof(bundlestr), kCFStringEncodingUTF8);
/*
* Validate permissions for the class driver...
*/
_cups_fc_result_t result = _cupsFileCheck(bundlestr,
_CUPS_FILE_CHECK_DIRECTORY, 1,
Iterating ? NULL : _cupsFileCheckFilter, NULL);
if (result && driverPath)
return (load_classdriver(NULL, interface, printerDriver));
else if (result)
return (kr);
/*
* Try loading the class driver...
*/
url = CFURLCreateWithFileSystemPath(NULL, bundle, kCFURLPOSIXPathStyle, true);
if (url)
{
plugin = CFPlugInCreate(NULL, url);
CFRelease(url);
}
else
plugin = NULL;
if (plugin)
{
CFArrayRef factories = CFPlugInFindFactoriesForPlugInTypeInPlugIn(kUSBPrinterClassTypeID, plugin);
if (factories != NULL && CFArrayGetCount(factories) > 0)
{
CFUUIDRef factoryID = CFArrayGetValueAtIndex(factories, 0);
IUnknownVTbl **iunknown = CFPlugInInstanceCreate(NULL, factoryID, kUSBPrinterClassTypeID);
if (iunknown != NULL)
{
kr = (*iunknown)->QueryInterface(iunknown, CFUUIDGetUUIDBytes(kUSBPrinterClassInterfaceID), (LPVOID *)&driver);
if (kr == kIOReturnSuccess && driver != NULL)
{
classdriver_t **genericDriver = NULL;
if (driverPath != NULL && CFStringCompare(driverPath, kUSBGenericTOPrinterClassDriver, 0) != kCFCompareEqualTo)
kr = load_classdriver(NULL, interface, &genericDriver);
if (kr == kIOReturnSuccess)
{
(*driver)->interface = interface;
(*driver)->Initialize(driver, genericDriver);
(*driver)->plugin = plugin;
(*driver)->interface = interface;
*printerDriver = driver;
}
}
(*iunknown)->Release(iunknown);
}
CFRelease(factories);
}
}
fprintf(stderr, "DEBUG: load_classdriver(%s) (kr:0x%08x)\n", bundlestr, (int)kr);
return (kr);
}
/*
* 'unload_classdriver()' - Unload a classdriver.
*/
static kern_return_t unload_classdriver(classdriver_t ***classdriver)
{
if (*classdriver != NULL)
{
(**classdriver)->Release(*classdriver);
*classdriver = NULL;
}
return kIOReturnSuccess;
}
/*
* 'load_printerdriver()' - Load vendor's classdriver.
*
* If driverBundlePath is not NULL on return it is the callers responsbility to release it!
*/
static kern_return_t load_printerdriver(CFStringRef *driverBundlePath)
{
IOCFPlugInInterface **iodev = NULL;
SInt32 score;
kern_return_t kr;
printer_interface_t interface;
HRESULT res;
kr = IOCreatePlugInInterfaceForService(g.printer_obj, kIOUSBInterfaceUserClientTypeID, kIOCFPlugInInterfaceID, &iodev, &score);
if (kr == kIOReturnSuccess)
{
if ((res = (*iodev)->QueryInterface(iodev, USB_INTERFACE_KIND, (LPVOID *) &interface)) == noErr)
{
*driverBundlePath = IORegistryEntryCreateCFProperty(g.printer_obj, kUSBClassDriverProperty, NULL, kNilOptions);
g.use_generic_class_driver = (*driverBundlePath == NULL || (CFStringCompare(*driverBundlePath, kUSBGenericTOPrinterClassDriver, 0x0) == kCFCompareEqualTo));
kr = load_classdriver(*driverBundlePath, interface, &g.classdriver);
if (kr != kIOReturnSuccess)
(*interface)->Release(interface);
}
IODestroyPlugInInterface(iodev);
}
return kr;
}
static printer_interface_t usb_printer_interface_interface(io_service_t usbClass)
{
printer_interface_t intf = NULL;
IOCFPlugInInterface **plugin = NULL;
SInt32 score;
int kr = IOCreatePlugInInterfaceForService(usbClass, kIOUSBInterfaceUserClientTypeID, kIOCFPlugInInterfaceID, &plugin, &score);
if (kr == kIOReturnSuccess)
{
(*plugin)->QueryInterface(plugin, USB_INTERFACE_KIND, (LPVOID *)&intf);
IODestroyPlugInInterface(plugin);
}
return intf;
}
static CFStringRef copy_printer_interface_deviceid(printer_interface_t printer, UInt8 alternateSetting)
{
// I have tried to make this function as neat as I can, but the possibility of needing to resend
// a request to get the entire string makes it hideous...
//
// We package the job of sending a request up into the block (^sendRequest), which takes the size
// it should allocate for the message buffer. It frees the current buffer if one is set and
// allocates one of the specified size, then performs the request. We can then easily retry by
// calling the block again if we fail to get the whole string the first time around.
#define kUSBPrintClassGetDeviceID 0
#define kDefaultNoDataTimeout 5000L
#define pack_device_id_wIndex(intf, alt) ((UInt16)((((UInt16)(intf)) << 8) | ((UInt8)(alt))))
if (printer == NULL)
return NULL;
IOReturn err = kIOReturnError;
UInt8 configurationIndex = 0;
UInt8 interfaceNumber = 0;
size_t bufferLength = 256;
CFStringRef ret = NULL;
if ((*printer)->GetConfigurationValue( printer, &configurationIndex) == kIOReturnSuccess &&
(*printer)->GetInterfaceNumber( printer, &interfaceNumber) == kIOReturnSuccess)
{
__block IOUSBDevRequestTO request;
IOReturn (^sendRequest)(size_t) = ^ (size_t size)
{
if (request.pData)
{
free(request.pData);
request.wLength = 0;
request.pData = NULL;
}
IOReturn berr = kIOReturnError;
char *buffer = malloc(size);
if (buffer == NULL)
return kIOReturnNoMemory;
request.wLength = HostToUSBWord(size);
request.pData = buffer;
berr = (*printer)->ControlRequestTO(printer, (UInt8)0, &request);
return berr;
};
/* This request takes the 0 based configuration index. IOKit returns a 1 based configuration index */
configurationIndex -= 1;
bzero(&request, sizeof(request));
request.bmRequestType = USBmakebmRequestType(kUSBIn, kUSBClass, kUSBInterface);
request.bRequest = kUSBPrintClassGetDeviceID;
request.wValue = HostToUSBWord(configurationIndex);
request.wIndex = HostToUSBWord(pack_device_id_wIndex(interfaceNumber, alternateSetting));
request.noDataTimeout = kDefaultNoDataTimeout;
request.completionTimeout = 0; // Copying behavior from Generic Class Driver
err = sendRequest(bufferLength);
if (err == kIOReturnSuccess && request.wLenDone > 1)
{
UInt16 actualLength = OSSwapBigToHostInt16(*((UInt16 *)request.pData));
if (actualLength > 2 && actualLength <= bufferLength - 2)
{
ret = CFStringCreateWithBytes(NULL, (const UInt8 *) &request.pData[2], actualLength - 2, kCFStringEncodingUTF8, false);
}
else if (actualLength > 2) {
err = sendRequest(actualLength);
if (err == kIOReturnSuccess && request.wLenDone > 0)
{
actualLength = OSSwapBigToHostInt16(*((UInt16 *)request.pData));
ret = CFStringCreateWithBytes(NULL, (const UInt8 *) &request.pData[2], actualLength - 2, kCFStringEncodingUTF8, false);
}
}
}
if (request.pData)
free(request.pData);
}
CFStringRef manufacturer = deviceIDCopyManufacturer(ret);
CFStringRef model = deviceIDCopyModel(ret);
CFStringRef serial = deviceIDCopySerialNumber(ret);
if (manufacturer == NULL || serial == NULL || model == NULL)
{
IOUSBDevRequestTO request;
IOUSBDeviceDescriptor desc;
bzero(&request, sizeof(request));
request.bmRequestType = USBmakebmRequestType( kUSBIn, kUSBStandard, kUSBDevice );
request.bRequest = kUSBRqGetDescriptor;
request.wValue = kUSBDeviceDesc << 8;
request.wIndex = 0;
request.wLength = sizeof(desc);
request.pData = &desc;
request.completionTimeout = 0;
request.noDataTimeout = 60L;
err = (*printer)->ControlRequestTO(printer, 0, &request);
if (err == kIOReturnSuccess)
{
CFMutableStringRef extras = CFStringCreateMutable(NULL, 0);
if (manufacturer == NULL)
{
manufacturer = copy_printer_interface_indexed_description(printer, desc.iManufacturer, kUSBLanguageEnglish);
if (manufacturer && CFStringGetLength(manufacturer) > 0)
CFStringAppendFormat(extras, NULL, CFSTR("MFG:%@;"), manufacturer);
}
if (model == NULL)
{
model = copy_printer_interface_indexed_description(printer, desc.iProduct, kUSBLanguageEnglish);
if (model && CFStringGetLength(model) > 0)
CFStringAppendFormat(extras, NULL, CFSTR("MDL:%@;"), model);
}
if (serial == NULL && desc.iSerialNumber != 0)
{
serial = copy_printer_interface_indexed_description(printer, desc.iSerialNumber, kUSBLanguageEnglish);
if (serial && CFStringGetLength(serial) > 0)
CFStringAppendFormat(extras, NULL, CFSTR("SERN:%@;"), serial);
}
if (ret != NULL)
{
CFStringAppend(extras, ret);
CFRelease(ret);
ret = extras;
}
else
{
ret = extras;
}
}
}
if (ret != NULL)
{
/* Remove special characters from the serial number */
CFRange range = (serial != NULL ? CFStringFind(serial, CFSTR("+"), 0) : CFRangeMake(0, 0));
if (range.length == 1)
{
range = CFStringFind(ret, serial, 0);
CFMutableStringRef deviceIDString = CFStringCreateMutableCopy(NULL, 0, ret);
CFRelease(ret);
ret = deviceIDString;
CFStringFindAndReplace(deviceIDString, CFSTR("+"), CFSTR(""), range, 0);
}
}
if (manufacturer != NULL)
CFRelease(manufacturer);
if (model != NULL)
CFRelease(model);
if (serial != NULL)
CFRelease(serial);
if (ret != NULL && CFStringGetLength(ret) == 0)
{
CFRelease(ret);
return NULL;
}
return ret;
}
static CFStringRef copy_printer_interface_indexed_description(printer_interface_t printer, UInt8 index, UInt16 language)
{
IOReturn err;
UInt8 description[256]; // Max possible descriptor length
IOUSBDevRequestTO request;
bzero(description, 2);
request.bmRequestType = USBmakebmRequestType(kUSBIn, kUSBStandard, kUSBDevice);
request.bRequest = kUSBRqGetDescriptor;
request.wValue = (kUSBStringDesc << 8) | index;
request.wIndex = language;
request.wLength = 2;
request.pData = &description;
request.completionTimeout = 0;
request.noDataTimeout = 60L;
err = (*printer)->ControlRequestTO(printer, 0, &request);
if (err != kIOReturnSuccess && err != kIOReturnOverrun)
{
bzero(description, request.wLength);
// Let's try again full length. Here's why:
// On USB 2.0 controllers, we will not get an overrun error. We just get a "babble" error
// and no valid data. So, if we ask for the max size, we will either get it, or we'll get an underrun.
// It looks like we get it w/out an underrun
request.bmRequestType = USBmakebmRequestType(kUSBIn, kUSBStandard, kUSBDevice);
request.bRequest = kUSBRqGetDescriptor;
request.wValue = (kUSBStringDesc << 8) | index;
request.wIndex = language;
request.wLength = sizeof description;
request.pData = &description;
request.completionTimeout = 0;
request.noDataTimeout = 60L;
err = (*printer)->ControlRequestTO(printer, 0, &request);
if (err != kIOReturnSuccess && err != kIOReturnUnderrun)
return NULL;
}
unsigned int length = description[0];
if (length == 0)
return CFStringCreateWithCString(NULL, "", kCFStringEncodingUTF8);
if (description[1] != kUSBStringDesc)
return NULL;
request.bmRequestType = USBmakebmRequestType(kUSBIn, kUSBStandard, kUSBDevice);
request.bRequest = kUSBRqGetDescriptor;
request.wValue = (kUSBStringDesc << 8) | index;
request.wIndex = language;
bzero(description, length);
request.wLength = (UInt16)length;
request.pData = &description;
request.completionTimeout = 0;
request.noDataTimeout = 60L;
err = (*printer)->ControlRequestTO(printer, 0, &request);
if (err != kIOReturnSuccess)
return NULL;
if (description[1] != kUSBStringDesc)
return NULL;
if ((description[0] & 1) != 0)
description[0] &= 0xfe;
char buffer[258] = {};
unsigned int maxLength = sizeof buffer;
if (description[0] > 1)
{
length = (description[0]-2)/2;
if (length > maxLength - 1)
length = maxLength -1;
for (unsigned i = 0; i < length; i++)
buffer[i] = (char) description[2*i+2];
buffer[length] = 0;
}
return CFStringCreateWithCString(NULL, buffer, kCFStringEncodingUTF8);
}
/*
* 'registry_open()' - Open a connection to the printer.
*/
static kern_return_t registry_open(CFStringRef *driverBundlePath)
{
g.bidi_flag = 0; /* 0=unidirectional */
kern_return_t kr = load_printerdriver(driverBundlePath);
if (kr != kIOReturnSuccess)
kr = -2;
if (g.classdriver != NULL)
{
(*g.classdriver)->interfaceNumber = g.interfaceNum;
kr = (*g.classdriver)->Open(g.classdriver, g.location, kUSBPrintingProtocolBidirectional);
if (kr != kIOReturnSuccess || (*g.classdriver)->interface == NULL)
{
kr = (*g.classdriver)->Open(g.classdriver, g.location, kUSBPrintingProtocolUnidirectional);
if (kr == kIOReturnSuccess)
{
if ((*g.classdriver)->interface == NULL)
{
(*g.classdriver)->Close(g.classdriver);
kr = -1;
}
}
}
else
g.bidi_flag = 1; /* 1=bidirectional */
}
if (kr != kIOReturnSuccess)
unload_classdriver(&g.classdriver);
return kr;
}
/*
* 'registry_close()' - Close the connection to the printer.
*/
static kern_return_t registry_close(void)
{
if (g.classdriver != NULL)
(*g.classdriver)->Close(g.classdriver);
unload_classdriver(&g.classdriver);
return kIOReturnSuccess;
}
#pragma mark -
/*
* 'copy_value_for_key()' - Copy value string associated with a key.
*/
static CFStringRef copy_value_for_key(CFStringRef deviceID,
CFStringRef *keys)
{
CFStringRef value = NULL;
CFArrayRef kvPairs = deviceID != NULL ? CFStringCreateArrayBySeparatingStrings(NULL, deviceID, CFSTR(";")) : NULL;
CFIndex max = kvPairs != NULL ? CFArrayGetCount(kvPairs) : 0;
CFIndex idx = 0;
while (idx < max && value == NULL)
{
CFStringRef kvpair = CFArrayGetValueAtIndex(kvPairs, idx);
CFIndex idxx = 0;
while (keys[idxx] != NULL && value == NULL)
{
CFRange range = CFStringFind(kvpair, keys[idxx], kCFCompareCaseInsensitive);
if (range.length != -1)
{
if (range.location != 0)
{
CFMutableStringRef theString = CFStringCreateMutableCopy(NULL, 0, kvpair);
CFStringTrimWhitespace(theString);
range = CFStringFind(theString, keys[idxx], kCFCompareCaseInsensitive);
if (range.location == 0)
value = CFStringCreateWithSubstring(NULL, theString, CFRangeMake(range.length, CFStringGetLength(theString) - range.length));
CFRelease(theString);
}
else
{
CFStringRef theString = CFStringCreateWithSubstring(NULL, kvpair, CFRangeMake(range.length, CFStringGetLength(kvpair) - range.length));
CFMutableStringRef theString2 = CFStringCreateMutableCopy(NULL, 0, theString);
CFRelease(theString);
CFStringTrimWhitespace(theString2);
value = theString2;
}
}
idxx++;
}
idx++;
}
if (kvPairs != NULL)
CFRelease(kvPairs);
return value;
}
/*
* 'cfstr_create_trim()' - Create CFString and trim whitespace characters.
*/
CFStringRef cfstr_create_trim(const char *cstr)
{
CFStringRef cfstr;
CFMutableStringRef cfmutablestr = NULL;
if ((cfstr = CFStringCreateWithCString(NULL, cstr, kCFStringEncodingUTF8)) != NULL)
{
if ((cfmutablestr = CFStringCreateMutableCopy(NULL, 1024, cfstr)) != NULL)
CFStringTrimWhitespace(cfmutablestr);
CFRelease(cfstr);
}
return (CFStringRef) cfmutablestr;
}
#pragma mark -
/*
* 'parse_options()' - Parse URI options.
*/
static void parse_options(char *options,
char *serial,
int serial_size,
UInt32 *location,
Boolean *wait_eof)
{
char sep, /* Separator character */
*name, /* Name of option */
*value; /* Value of option */
if (serial)
*serial = '\0';
if (location)
*location = 0;
if (!options)
return;
while (*options)
{
/*
* Get the name...
*/
name = options;
while (*options && *options != '=' && *options != '+' && *options != '&')
options ++;
if ((sep = *options) != '\0')
*options++ = '\0';
if (sep == '=')
{
/*
* Get the value...
*/
value = options;
while (*options && *options != '+' && *options != '&')
options ++;
if (*options)
*options++ = '\0';
}
else
value = (char *)"";
/*
* Process the option...
*/
if (!_cups_strcasecmp(name, "waiteof"))
{
if (!_cups_strcasecmp(value, "on") ||
!_cups_strcasecmp(value, "yes") ||
!_cups_strcasecmp(value, "true"))
*wait_eof = true;
else if (!_cups_strcasecmp(value, "off") ||
!_cups_strcasecmp(value, "no") ||
!_cups_strcasecmp(value, "false"))
*wait_eof = false;
else
_cupsLangPrintFilter(stderr, "WARNING",
_("Boolean expected for waiteof option \"%s\"."),
value);
}
else if (!_cups_strcasecmp(name, "serial"))
strlcpy(serial, value, (size_t)serial_size);
else if (!_cups_strcasecmp(name, "location") && location)
*location = (UInt32)strtoul(value, NULL, 16);
}
}
/*!
* @function setup_cfLanguage
* @abstract Convert the contents of the CUPS 'APPLE_LANGUAGE' environment
* variable into a one element CF array of languages.
*
* @discussion Each submitted job comes with a natural language. CUPS passes
* that language in an environment variable. We take that language
* and jam it into the AppleLanguages array so that CF will use
* it when reading localized resources. We need to do this before
* any CF code reads and caches the languages array, so this function
* should be called early in main()
*/
static void setup_cfLanguage(void)
{
CFStringRef lang[1] = {NULL};
CFArrayRef langArray = NULL;
const char *requestedLang = NULL;
if ((requestedLang = getenv("APPLE_LANGUAGE")) == NULL)
requestedLang = getenv("LANG");
if (requestedLang != NULL)
{
lang[0] = CFStringCreateWithCString(kCFAllocatorDefault, requestedLang, kCFStringEncodingUTF8);
langArray = CFArrayCreate(kCFAllocatorDefault, (const void **)lang, sizeof(lang) / sizeof(lang[0]), &kCFTypeArrayCallBacks);
CFPreferencesSetValue(CFSTR("AppleLanguages"), langArray, kCFPreferencesCurrentApplication, kCFPreferencesAnyUser, kCFPreferencesAnyHost);
fprintf(stderr, "DEBUG: usb: AppleLanguages=\"%s\"\n", requestedLang);
CFRelease(lang[0]);
CFRelease(langArray);
}
else
fputs("DEBUG: usb: LANG and APPLE_LANGUAGE environment variables missing.\n", stderr);
}
#pragma mark -
#if defined(__i386__) || defined(__x86_64__)
/*!
* @function run_legacy_backend
*
* @abstract Starts child backend process running as a ppc or i386 executable.
*
* @result Never returns; always calls exit().
*
* @discussion
*/
static void run_legacy_backend(int argc,
char *argv[],
int fd)
{
int i;
int exitstatus = 0;
int childstatus;
pid_t waitpid_status;
char *my_argv[32];
char *usb_legacy_status;
/*
* If we're running as x86_64 or i386 and couldn't load the class driver
* (because it's ppc or i386), then try to re-exec ourselves in ppc or i386
* mode to try again. If we don't have a ppc or i386 architecture we may be
* running with the same architecture again so guard against this by setting
* and testing an environment variable...
*/
# ifdef __x86_64__
usb_legacy_status = getenv("USB_I386_STATUS");
# else
usb_legacy_status = getenv("USB_PPC_STATUS");
# endif /* __x86_64__ */
if (!usb_legacy_status)
{
/*
* Setup a SIGTERM handler then block it before forking...
*/
int err; /* posix_spawn result */
struct sigaction action; /* POSIX signal action */
sigset_t newmask, /* New signal mask */
oldmask; /* Old signal mask */
char usbpath[1024]; /* Path to USB backend */
const char *cups_serverbin;/* Path to CUPS binaries */
memset(&action, 0, sizeof(action));
sigaddset(&action.sa_mask, SIGTERM);
action.sa_handler = sigterm_handler;
sigaction(SIGTERM, &action, NULL);
sigemptyset(&newmask);
sigaddset(&newmask, SIGTERM);
sigprocmask(SIG_BLOCK, &newmask, &oldmask);
/*
* Set the environment variable...
*/
# ifdef __x86_64__
setenv("USB_I386_STATUS", "1", false);
# else
setenv("USB_PPC_STATUS", "1", false);
# endif /* __x86_64__ */
/*
* Tell the kernel to use the specified CPU architecture...
*/
# ifdef __x86_64__
cpu_type_t cpu = CPU_TYPE_I386;
# else
cpu_type_t cpu = CPU_TYPE_POWERPC;
# endif /* __x86_64__ */
size_t ocount = 1;
posix_spawnattr_t attrs;
if (!posix_spawnattr_init(&attrs))
{
posix_spawnattr_setsigdefault(&attrs, &oldmask);
if (posix_spawnattr_setbinpref_np(&attrs, 1, &cpu, &ocount) || ocount != 1)
{
# ifdef __x86_64__
perror("DEBUG: Unable to set binary preference to i386");
# else
perror("DEBUG: Unable to set binary preference to ppc");
# endif /* __x86_64__ */
_cupsLangPrintFilter(stderr, "ERROR",
_("Unable to use legacy USB class driver."));
exit(CUPS_BACKEND_STOP);
}
}
/*
* Set up the arguments and call posix_spawn...
*/
if ((cups_serverbin = getenv("CUPS_SERVERBIN")) == NULL)
cups_serverbin = CUPS_SERVERBIN;
snprintf(usbpath, sizeof(usbpath), "%s/backend/usb", cups_serverbin);
for (i = 0; i < argc && i < (int)(sizeof(my_argv) / sizeof(my_argv[0])) - 1; i ++)
my_argv[i] = argv[i];
my_argv[i] = NULL;
if ((err = posix_spawn(&child_pid, usbpath, NULL, &attrs, my_argv,
environ)) != 0)
{
fprintf(stderr, "DEBUG: Unable to exec %s: %s\n", usbpath,
strerror(err));
_cupsLangPrintFilter(stderr, "ERROR",
_("Unable to use legacy USB class driver."));
exit(CUPS_BACKEND_STOP);
}
/*
* Unblock signals...
*/
sigprocmask(SIG_SETMASK, &oldmask, NULL);
/*
* Close the fds we won't be using then wait for the child backend to exit.
*/
close(fd);
close(1);
fprintf(stderr, "DEBUG: Started usb(legacy) backend (PID %d)\n",
(int)child_pid);
while ((waitpid_status = waitpid(child_pid, &childstatus, 0)) == (pid_t)-1 && errno == EINTR)
usleep(1000);
if (WIFSIGNALED(childstatus))
{
exitstatus = CUPS_BACKEND_STOP;
fprintf(stderr, "DEBUG: usb(legacy) backend %d crashed on signal %d\n",
child_pid, WTERMSIG(childstatus));
}
else
{
if ((exitstatus = WEXITSTATUS(childstatus)) != 0)
fprintf(stderr,
"DEBUG: usb(legacy) backend %d stopped with status %d\n",
child_pid, exitstatus);
else
fprintf(stderr, "DEBUG: usb(legacy) backend %d exited with no errors\n",
child_pid);
}
}
else
{
fputs("DEBUG: usb(legacy) backend running native again\n", stderr);
exitstatus = CUPS_BACKEND_STOP;
}
exit(exitstatus);
}
#endif /* __i386__ || __x86_64__ */
/*
* 'sigterm_handler()' - SIGTERM handler.
*/
static void
sigterm_handler(int sig) /* I - Signal */
{
#if defined(__i386__) || defined(__x86_64__)
/*
* If we started a child process pass the signal on to it...
*/
if (child_pid)
{
/*
* If we started a child process pass the signal on to it...
*/
int status;
kill(child_pid, sig);
while (waitpid(child_pid, &status, 0) < 0 && errno == EINTR);
if (WIFEXITED(status))
_exit(WEXITSTATUS(status));
else if (status == SIGTERM || status == SIGKILL)
_exit(0);
else
{
write(2, "DEBUG: Child crashed.\n", 22);
_exit(CUPS_BACKEND_STOP);
}
}
#endif /* __i386__ || __x86_64__ */
}
/*
* 'sigquit_handler()' - SIGQUIT handler.
*/
static void sigquit_handler(int sig, siginfo_t *si, void *unused)
{
char *path;
char pathbuf[PROC_PIDPATHINFO_MAXSIZE];
static char msgbuf[256] = "";
(void)sig;
(void)unused;
if (proc_pidpath(si->si_pid, pathbuf, sizeof(pathbuf)) > 0 &&
(path = basename(pathbuf)) != NULL)
snprintf(msgbuf, sizeof(msgbuf), "SIGQUIT sent by %s(%d)", path, (int)si->si_pid);
else
snprintf(msgbuf, sizeof(msgbuf), "SIGQUIT sent by PID %d", (int)si->si_pid);
CRSetCrashLogMessage(msgbuf);
abort();
}
#ifdef PARSE_PS_ERRORS
/*
* 'next_line()' - Find the next line in a buffer.
*/
static const char *next_line (const char *buffer)
{
const char *cptr, *lptr = NULL;
for (cptr = buffer; *cptr && lptr == NULL; cptr++)
if (*cptr == '\n' || *cptr == '\r')
lptr = cptr;
return lptr;
}
/*
* 'parse_pserror()' - Scan the backchannel data for postscript errors.
*/
static void parse_pserror(char *sockBuffer,
int len)
{
static char gErrorBuffer[1024] = "";
static char *gErrorBufferPtr = gErrorBuffer;
static char *gErrorBufferEndPtr = gErrorBuffer + sizeof(gErrorBuffer);
char *pCommentBegin, *pCommentEnd, *pLineEnd;
char *logLevel;
char logstr[1024];
int logstrlen;
if (gErrorBufferPtr + len > gErrorBufferEndPtr - 1)
gErrorBufferPtr = gErrorBuffer;
if (len > sizeof(gErrorBuffer) - 1)
len = sizeof(gErrorBuffer) - 1;
memcpy(gErrorBufferPtr, (const void *)sockBuffer, len);
gErrorBufferPtr += len;
*(gErrorBufferPtr + 1) = '\0';
pLineEnd = (char *)next_line((const char *)gErrorBuffer);
while (pLineEnd != NULL)
{
*pLineEnd++ = '\0';
pCommentBegin = strstr(gErrorBuffer,"%%[");
pCommentEnd = strstr(gErrorBuffer, "]%%");
if (pCommentBegin != gErrorBuffer && pCommentEnd != NULL)
{
pCommentEnd += 3; /* Skip past "]%%" */
*pCommentEnd = '\0'; /* There's always room for the nul */
if (_cups_strncasecmp(pCommentBegin, "%%[ Error:", 10) == 0)
logLevel = "DEBUG";
else if (_cups_strncasecmp(pCommentBegin, "%%[ Flushing", 12) == 0)
logLevel = "DEBUG";
else
logLevel = "INFO";
if ((logstrlen = snprintf(logstr, sizeof(logstr), "%s: %s\n", logLevel, pCommentBegin)) >= sizeof(logstr))
{
/* If the string was trucnated make sure it has a linefeed before the nul */
logstrlen = sizeof(logstr) - 1;
logstr[logstrlen - 1] = '\n';
}
write(STDERR_FILENO, logstr, logstrlen);
}
/* move everything over... */
strlcpy(gErrorBuffer, pLineEnd, sizeof(gErrorBuffer));
gErrorBufferPtr = gErrorBuffer;
pLineEnd = (char *)next_line((const char *)gErrorBuffer);
}
}
#endif /* PARSE_PS_ERRORS */
/*
* 'soft_reset()' - Send a soft reset to the device.
*/
static void soft_reset(void)
{
fd_set input_set; /* Input set for select() */
struct timeval tv; /* Time value */
char buffer[2048]; /* Buffer */
struct timespec cond_timeout; /* pthread condition timeout */
/*
* Send an abort once a second until the I/O lock is released by the main thread...
*/
pthread_mutex_lock(&g.readwrite_lock_mutex);
while (g.readwrite_lock)
{
(*g.classdriver)->Abort(g.classdriver);
gettimeofday(&tv, NULL);
cond_timeout.tv_sec = tv.tv_sec + 1;
cond_timeout.tv_nsec = tv.tv_usec * 1000;
while (g.readwrite_lock)
{
if (pthread_cond_timedwait(&g.readwrite_lock_cond,
&g.readwrite_lock_mutex,
&cond_timeout) != 0)
break;
}
}
g.readwrite_lock = 1;
pthread_mutex_unlock(&g.readwrite_lock_mutex);
/*
* Flush bytes waiting on print_fd...
*/
g.print_bytes = 0;
FD_ZERO(&input_set);
FD_SET(g.print_fd, &input_set);
tv.tv_sec = 0;
tv.tv_usec = 0;
while (select(g.print_fd+1, &input_set, NULL, NULL, &tv) > 0)
if (read(g.print_fd, buffer, sizeof(buffer)) <= 0)
break;
/*
* Send the reset...
*/
(*g.classdriver)->SoftReset(g.classdriver, DEFAULT_TIMEOUT);
/*
* Release the I/O lock...
*/
pthread_mutex_lock(&g.readwrite_lock_mutex);
g.readwrite_lock = 0;
pthread_cond_signal(&g.readwrite_lock_cond);
pthread_mutex_unlock(&g.readwrite_lock_mutex);
}
/*
* 'get_device_id()' - Return IEEE-1284 device ID.
*/
static void get_device_id(cups_sc_status_t *status,
char *data,
int *datalen)
{
CFStringRef deviceIDString = NULL;
if (g.printer_obj != IO_OBJECT_NULL)
{
printer_interface_t printerIntf = usb_printer_interface_interface(g.printer_obj);
if (printerIntf)
{
deviceIDString = copy_printer_interface_deviceid(printerIntf, g.alternateSetting);
(*printerIntf)->Release(printerIntf);
}
}
if (deviceIDString)
{
if (CFStringGetCString(deviceIDString, data, *datalen, kCFStringEncodingUTF8))
*datalen = (int)strlen(data);
else
*datalen = 0;
CFRelease(deviceIDString);
}
else
{
*datalen = 0;
}
*status = CUPS_SC_STATUS_OK;
}