| // -*- C++ -*- |
| //===------------------------- fuzzing.cpp -------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is dual licensed under the MIT and the University of Illinois Open |
| // Source Licenses. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // A set of routines to use when fuzzing the algorithms in libc++ |
| // Each one tests a single algorithm. |
| // |
| // They all have the form of: |
| // int `algorithm`(const uint8_t *data, size_t size); |
| // |
| // They perform the operation, and then check to see if the results are correct. |
| // If so, they return zero, and non-zero otherwise. |
| // |
| // For example, sort calls std::sort, then checks two things: |
| // (1) The resulting vector is sorted |
| // (2) The resulting vector contains the same elements as the original data. |
| |
| |
| |
| #include "fuzzing.h" |
| #include <vector> |
| #include <algorithm> |
| #include <functional> |
| #include <regex> |
| #include <cassert> |
| |
| #include <iostream> |
| |
| // If we had C++14, we could use the four iterator version of is_permutation and equal |
| |
| namespace fuzzing { |
| |
| // This is a struct we can use to test the stable_XXX algorithms. |
| // perform the operation on the key, then check the order of the payload. |
| |
| struct stable_test { |
| uint8_t key; |
| size_t payload; |
| |
| stable_test(uint8_t k) : key(k), payload(0) {} |
| stable_test(uint8_t k, size_t p) : key(k), payload(p) {} |
| }; |
| |
| void swap(stable_test &lhs, stable_test &rhs) |
| { |
| using std::swap; |
| swap(lhs.key, rhs.key); |
| swap(lhs.payload, rhs.payload); |
| } |
| |
| struct key_less |
| { |
| bool operator () (const stable_test &lhs, const stable_test &rhs) const |
| { |
| return lhs.key < rhs.key; |
| } |
| }; |
| |
| struct payload_less |
| { |
| bool operator () (const stable_test &lhs, const stable_test &rhs) const |
| { |
| return lhs.payload < rhs.payload; |
| } |
| }; |
| |
| struct total_less |
| { |
| bool operator () (const stable_test &lhs, const stable_test &rhs) const |
| { |
| return lhs.key == rhs.key ? lhs.payload < rhs.payload : lhs.key < rhs.key; |
| } |
| }; |
| |
| bool operator==(const stable_test &lhs, const stable_test &rhs) |
| { |
| return lhs.key == rhs.key && lhs.payload == rhs.payload; |
| } |
| |
| |
| template<typename T> |
| struct is_even |
| { |
| bool operator () (const T &t) const |
| { |
| return t % 2 == 0; |
| } |
| }; |
| |
| |
| template<> |
| struct is_even<stable_test> |
| { |
| bool operator () (const stable_test &t) const |
| { |
| return t.key % 2 == 0; |
| } |
| }; |
| |
| typedef std::vector<uint8_t> Vec; |
| typedef std::vector<stable_test> StableVec; |
| typedef StableVec::const_iterator SVIter; |
| |
| // Cheap version of is_permutation |
| // Builds a set of buckets for each of the key values. |
| // Sums all the payloads. |
| // Not 100% perfect, but _way_ faster |
| bool is_permutation(SVIter first1, SVIter last1, SVIter first2) |
| { |
| size_t xBuckets[256] = {0}; |
| size_t xPayloads[256] = {0}; |
| size_t yBuckets[256] = {0}; |
| size_t yPayloads[256] = {0}; |
| |
| for (; first1 != last1; ++first1, ++first2) |
| { |
| xBuckets [first1->key]++; |
| xPayloads[first1->key] += first1->payload; |
| |
| yBuckets [first2->key]++; |
| yPayloads[first2->key] += first2->payload; |
| } |
| |
| for (size_t i = 0; i < 256; ++i) |
| { |
| if (xBuckets[i] != yBuckets[i]) |
| return false; |
| if (xPayloads[i] != yPayloads[i]) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| template <typename Iter1, typename Iter2> |
| bool is_permutation(Iter1 first1, Iter1 last1, Iter2 first2) |
| { |
| static_assert((std::is_same<typename std::iterator_traits<Iter1>::value_type, uint8_t>::value), ""); |
| static_assert((std::is_same<typename std::iterator_traits<Iter2>::value_type, uint8_t>::value), ""); |
| |
| size_t xBuckets[256] = {0}; |
| size_t yBuckets[256] = {0}; |
| |
| for (; first1 != last1; ++first1, ++first2) |
| { |
| xBuckets [*first1]++; |
| yBuckets [*first2]++; |
| } |
| |
| for (size_t i = 0; i < 256; ++i) |
| if (xBuckets[i] != yBuckets[i]) |
| return false; |
| |
| return true; |
| } |
| |
| // == sort == |
| int sort(const uint8_t *data, size_t size) |
| { |
| Vec working(data, data + size); |
| std::sort(working.begin(), working.end()); |
| |
| if (!std::is_sorted(working.begin(), working.end())) return 1; |
| if (!fuzzing::is_permutation(data, data + size, working.cbegin())) return 99; |
| return 0; |
| } |
| |
| |
| // == stable_sort == |
| int stable_sort(const uint8_t *data, size_t size) |
| { |
| StableVec input; |
| for (size_t i = 0; i < size; ++i) |
| input.push_back(stable_test(data[i], i)); |
| StableVec working = input; |
| std::stable_sort(working.begin(), working.end(), key_less()); |
| |
| if (!std::is_sorted(working.begin(), working.end(), key_less())) return 1; |
| auto iter = working.begin(); |
| while (iter != working.end()) |
| { |
| auto range = std::equal_range(iter, working.end(), *iter, key_less()); |
| if (!std::is_sorted(range.first, range.second, total_less())) return 2; |
| iter = range.second; |
| } |
| if (!fuzzing::is_permutation(input.cbegin(), input.cend(), working.cbegin())) return 99; |
| return 0; |
| } |
| |
| // == partition == |
| int partition(const uint8_t *data, size_t size) |
| { |
| Vec working(data, data + size); |
| auto iter = std::partition(working.begin(), working.end(), is_even<uint8_t>()); |
| |
| if (!std::all_of (working.begin(), iter, is_even<uint8_t>())) return 1; |
| if (!std::none_of(iter, working.end(), is_even<uint8_t>())) return 2; |
| if (!fuzzing::is_permutation(data, data + size, working.cbegin())) return 99; |
| return 0; |
| } |
| |
| |
| // == partition_copy == |
| int partition_copy(const uint8_t *data, size_t size) |
| { |
| Vec v1, v2; |
| auto iter = std::partition_copy(data, data + size, |
| std::back_inserter<Vec>(v1), std::back_inserter<Vec>(v2), |
| is_even<uint8_t>()); |
| |
| // The two vectors should add up to the original size |
| if (v1.size() + v2.size() != size) return 1; |
| |
| // All of the even values should be in the first vector, and none in the second |
| if (!std::all_of (v1.begin(), v1.end(), is_even<uint8_t>())) return 2; |
| if (!std::none_of(v2.begin(), v2.end(), is_even<uint8_t>())) return 3; |
| |
| // Every value in both vectors has to be in the original |
| |
| // Make a copy of the input, and sort it |
| Vec v0{data, data + size}; |
| std::sort(v0.begin(), v0.end()); |
| |
| // Sort each vector and ensure that all of the elements appear in the original input |
| std::sort(v1.begin(), v1.end()); |
| if (!std::includes(v0.begin(), v0.end(), v1.begin(), v1.end())) return 4; |
| |
| std::sort(v2.begin(), v2.end()); |
| if (!std::includes(v0.begin(), v0.end(), v2.begin(), v2.end())) return 5; |
| |
| // This, while simple, is really slow - 20 seconds on a 500K element input. |
| // for (auto v: v1) |
| // if (std::find(data, data + size, v) == data + size) return 4; |
| // |
| // for (auto v: v2) |
| // if (std::find(data, data + size, v) == data + size) return 5; |
| |
| return 0; |
| } |
| |
| // == stable_partition == |
| int stable_partition (const uint8_t *data, size_t size) |
| { |
| StableVec input; |
| for (size_t i = 0; i < size; ++i) |
| input.push_back(stable_test(data[i], i)); |
| StableVec working = input; |
| auto iter = std::stable_partition(working.begin(), working.end(), is_even<stable_test>()); |
| |
| if (!std::all_of (working.begin(), iter, is_even<stable_test>())) return 1; |
| if (!std::none_of(iter, working.end(), is_even<stable_test>())) return 2; |
| if (!std::is_sorted(working.begin(), iter, payload_less())) return 3; |
| if (!std::is_sorted(iter, working.end(), payload_less())) return 4; |
| if (!fuzzing::is_permutation(input.cbegin(), input.cend(), working.cbegin())) return 99; |
| return 0; |
| } |
| |
| // == nth_element == |
| // use the first element as a position into the data |
| int nth_element (const uint8_t *data, size_t size) |
| { |
| if (size <= 1) return 0; |
| const size_t partition_point = data[0] % size; |
| Vec working(data + 1, data + size); |
| const auto partition_iter = working.begin() + partition_point; |
| std::nth_element(working.begin(), partition_iter, working.end()); |
| |
| // nth may be the end iterator, in this case nth_element has no effect. |
| if (partition_iter == working.end()) |
| { |
| if (!std::equal(data + 1, data + size, working.begin())) return 98; |
| } |
| else |
| { |
| const uint8_t nth = *partition_iter; |
| if (!std::all_of(working.begin(), partition_iter, [=](uint8_t v) { return v <= nth; })) |
| return 1; |
| if (!std::all_of(partition_iter, working.end(), [=](uint8_t v) { return v >= nth; })) |
| return 2; |
| if (!fuzzing::is_permutation(data + 1, data + size, working.cbegin())) return 99; |
| } |
| |
| return 0; |
| } |
| |
| // == partial_sort == |
| // use the first element as a position into the data |
| int partial_sort (const uint8_t *data, size_t size) |
| { |
| if (size <= 1) return 0; |
| const size_t sort_point = data[0] % size; |
| Vec working(data + 1, data + size); |
| const auto sort_iter = working.begin() + sort_point; |
| std::partial_sort(working.begin(), sort_iter, working.end()); |
| |
| if (sort_iter != working.end()) |
| { |
| const uint8_t nth = *std::min_element(sort_iter, working.end()); |
| if (!std::all_of(working.begin(), sort_iter, [=](uint8_t v) { return v <= nth; })) |
| return 1; |
| if (!std::all_of(sort_iter, working.end(), [=](uint8_t v) { return v >= nth; })) |
| return 2; |
| } |
| if (!std::is_sorted(working.begin(), sort_iter)) return 3; |
| if (!fuzzing::is_permutation(data + 1, data + size, working.cbegin())) return 99; |
| |
| return 0; |
| } |
| |
| |
| // == partial_sort_copy == |
| // use the first element as a count |
| int partial_sort_copy (const uint8_t *data, size_t size) |
| { |
| if (size <= 1) return 0; |
| const size_t num_results = data[0] % size; |
| Vec results(num_results); |
| (void) std::partial_sort_copy(data + 1, data + size, results.begin(), results.end()); |
| |
| // The results have to be sorted |
| if (!std::is_sorted(results.begin(), results.end())) return 1; |
| // All the values in results have to be in the original data |
| for (auto v: results) |
| if (std::find(data + 1, data + size, v) == data + size) return 2; |
| |
| // The things in results have to be the smallest N in the original data |
| Vec sorted(data + 1, data + size); |
| std::sort(sorted.begin(), sorted.end()); |
| if (!std::equal(results.begin(), results.end(), sorted.begin())) return 3; |
| return 0; |
| } |
| |
| // The second sequence has been "uniqued" |
| template <typename Iter1, typename Iter2> |
| static bool compare_unique(Iter1 first1, Iter1 last1, Iter2 first2, Iter2 last2) |
| { |
| assert(first1 != last1 && first2 != last2); |
| if (*first1 != *first2) return false; |
| |
| uint8_t last_value = *first1; |
| ++first1; ++first2; |
| while(first1 != last1 && first2 != last2) |
| { |
| // Skip over dups in the first sequence |
| while (*first1 == last_value) |
| if (++first1 == last1) return false; |
| if (*first1 != *first2) return false; |
| last_value = *first1; |
| ++first1; ++first2; |
| } |
| |
| // Still stuff left in the 'uniqued' sequence - oops |
| if (first1 == last1 && first2 != last2) return false; |
| |
| // Still stuff left in the original sequence - better be all the same |
| while (first1 != last1) |
| { |
| if (*first1 != last_value) return false; |
| ++first1; |
| } |
| return true; |
| } |
| |
| // == unique == |
| int unique (const uint8_t *data, size_t size) |
| { |
| Vec working(data, data + size); |
| std::sort(working.begin(), working.end()); |
| Vec results = working; |
| Vec::iterator new_end = std::unique(results.begin(), results.end()); |
| Vec::iterator it; // scratch iterator |
| |
| // Check the size of the unique'd sequence. |
| // it should only be zero if the input sequence was empty. |
| if (results.begin() == new_end) |
| return working.size() == 0 ? 0 : 1; |
| |
| // 'results' is sorted |
| if (!std::is_sorted(results.begin(), new_end)) return 2; |
| |
| // All the elements in 'results' must be different |
| it = results.begin(); |
| uint8_t prev_value = *it++; |
| for (; it != new_end; ++it) |
| { |
| if (*it == prev_value) return 3; |
| prev_value = *it; |
| } |
| |
| // Every element in 'results' must be in 'working' |
| for (it = results.begin(); it != new_end; ++it) |
| if (std::find(working.begin(), working.end(), *it) == working.end()) |
| return 4; |
| |
| // Every element in 'working' must be in 'results' |
| for (auto v : working) |
| if (std::find(results.begin(), new_end, v) == new_end) |
| return 5; |
| |
| return 0; |
| } |
| |
| // == unique_copy == |
| int unique_copy (const uint8_t *data, size_t size) |
| { |
| Vec working(data, data + size); |
| std::sort(working.begin(), working.end()); |
| Vec results; |
| (void) std::unique_copy(working.begin(), working.end(), |
| std::back_inserter<Vec>(results)); |
| Vec::iterator it; // scratch iterator |
| |
| // Check the size of the unique'd sequence. |
| // it should only be zero if the input sequence was empty. |
| if (results.size() == 0) |
| return working.size() == 0 ? 0 : 1; |
| |
| // 'results' is sorted |
| if (!std::is_sorted(results.begin(), results.end())) return 2; |
| |
| // All the elements in 'results' must be different |
| it = results.begin(); |
| uint8_t prev_value = *it++; |
| for (; it != results.end(); ++it) |
| { |
| if (*it == prev_value) return 3; |
| prev_value = *it; |
| } |
| |
| // Every element in 'results' must be in 'working' |
| for (auto v : results) |
| if (std::find(working.begin(), working.end(), v) == working.end()) |
| return 4; |
| |
| // Every element in 'working' must be in 'results' |
| for (auto v : working) |
| if (std::find(results.begin(), results.end(), v) == results.end()) |
| return 5; |
| |
| return 0; |
| } |
| |
| |
| // -- regex fuzzers |
| static int regex_helper(const uint8_t *data, size_t size, std::regex::flag_type flag) |
| { |
| if (size > 0) |
| { |
| try |
| { |
| std::string s((const char *)data, size); |
| std::regex re(s, flag); |
| return std::regex_match(s, re) ? 1 : 0; |
| } |
| catch (std::regex_error &ex) {} |
| } |
| return 0; |
| } |
| |
| |
| int regex_ECMAScript (const uint8_t *data, size_t size) |
| { |
| (void) regex_helper(data, size, std::regex_constants::ECMAScript); |
| return 0; |
| } |
| |
| int regex_POSIX (const uint8_t *data, size_t size) |
| { |
| (void) regex_helper(data, size, std::regex_constants::basic); |
| return 0; |
| } |
| |
| int regex_extended (const uint8_t *data, size_t size) |
| { |
| (void) regex_helper(data, size, std::regex_constants::extended); |
| return 0; |
| } |
| |
| int regex_awk (const uint8_t *data, size_t size) |
| { |
| (void) regex_helper(data, size, std::regex_constants::awk); |
| return 0; |
| } |
| |
| int regex_grep (const uint8_t *data, size_t size) |
| { |
| (void) regex_helper(data, size, std::regex_constants::grep); |
| return 0; |
| } |
| |
| int regex_egrep (const uint8_t *data, size_t size) |
| { |
| (void) regex_helper(data, size, std::regex_constants::egrep); |
| return 0; |
| } |
| |
| // -- heap fuzzers |
| int make_heap (const uint8_t *data, size_t size) |
| { |
| Vec working(data, data + size); |
| std::make_heap(working.begin(), working.end()); |
| |
| if (!std::is_heap(working.begin(), working.end())) return 1; |
| if (!fuzzing::is_permutation(data, data + size, working.cbegin())) return 99; |
| return 0; |
| } |
| |
| int push_heap (const uint8_t *data, size_t size) |
| { |
| if (size < 2) return 0; |
| |
| // Make a heap from the first half of the data |
| Vec working(data, data + size); |
| auto iter = working.begin() + (size / 2); |
| std::make_heap(working.begin(), iter); |
| if (!std::is_heap(working.begin(), iter)) return 1; |
| |
| // Now push the rest onto the heap, one at a time |
| ++iter; |
| for (; iter != working.end(); ++iter) { |
| std::push_heap(working.begin(), iter); |
| if (!std::is_heap(working.begin(), iter)) return 2; |
| } |
| |
| if (!fuzzing::is_permutation(data, data + size, working.cbegin())) return 99; |
| return 0; |
| } |
| |
| int pop_heap (const uint8_t *data, size_t size) |
| { |
| if (size < 2) return 0; |
| Vec working(data, data + size); |
| std::make_heap(working.begin(), working.end()); |
| |
| // Pop things off, one at a time |
| auto iter = --working.end(); |
| while (iter != working.begin()) { |
| std::pop_heap(working.begin(), iter); |
| if (!std::is_heap(working.begin(), --iter)) return 2; |
| } |
| |
| return 0; |
| } |
| |
| |
| // -- search fuzzers |
| int search (const uint8_t *data, size_t size) |
| { |
| if (size < 2) return 0; |
| |
| const size_t pat_size = data[0] * (size - 1) / std::numeric_limits<uint8_t>::max(); |
| assert(pat_size <= size - 1); |
| const uint8_t *pat_begin = data + 1; |
| const uint8_t *pat_end = pat_begin + pat_size; |
| const uint8_t *data_end = data + size; |
| assert(pat_end <= data_end); |
| // std::cerr << "data[0] = " << size_t(data[0]) << " "; |
| // std::cerr << "Pattern size = " << pat_size << "; corpus is " << size - 1 << std::endl; |
| auto it = std::search(pat_end, data_end, pat_begin, pat_end); |
| if (it != data_end) // not found |
| if (!std::equal(pat_begin, pat_end, it)) |
| return 1; |
| return 0; |
| } |
| |
| template <typename S> |
| static int search_helper (const uint8_t *data, size_t size) |
| { |
| if (size < 2) return 0; |
| |
| const size_t pat_size = data[0] * (size - 1) / std::numeric_limits<uint8_t>::max(); |
| const uint8_t *pat_begin = data + 1; |
| const uint8_t *pat_end = pat_begin + pat_size; |
| const uint8_t *data_end = data + size; |
| |
| auto it = std::search(pat_end, data_end, S(pat_begin, pat_end)); |
| if (it != data_end) // not found |
| if (!std::equal(pat_begin, pat_end, it)) |
| return 1; |
| return 0; |
| } |
| |
| // These are still in std::experimental |
| // int search_boyer_moore (const uint8_t *data, size_t size) |
| // { |
| // return search_helper<std::boyer_moore_searcher<const uint8_t *>>(data, size); |
| // } |
| // |
| // int search_boyer_moore_horspool (const uint8_t *data, size_t size) |
| // { |
| // return search_helper<std::boyer_moore_horspool_searcher<const uint8_t *>>(data, size); |
| // } |
| |
| |
| // -- set operation fuzzers |
| template <typename S> |
| static void set_helper (const uint8_t *data, size_t size, Vec &v1, Vec &v2) |
| { |
| assert(size > 1); |
| |
| const size_t pat_size = data[0] * (size - 1) / std::numeric_limits<uint8_t>::max(); |
| const uint8_t *pat_begin = data + 1; |
| const uint8_t *pat_end = pat_begin + pat_size; |
| const uint8_t *data_end = data + size; |
| v1.assign(pat_begin, pat_end); |
| v2.assign(pat_end, data_end); |
| |
| std::sort(v1.begin(), v1.end()); |
| std::sort(v2.begin(), v2.end()); |
| } |
| |
| } // namespace fuzzing |