blob: 48da12bdae265ae832a81233d56174d9d7b8b425 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Tests a very simple end to end T=1 using the echo backend.
*/
#include <string.h>
#include <vector>
#include <gtest/gtest.h>
#include <ese/ese.h>
#include <ese/teq1.h>
#define LOG_TAG "TEQ1_UNITTESTS"
#include <ese/log.h>
#include "ese_operations_interface.h"
#include "ese_operations_wrapper.h"
#include "teq1_private.h"
#define UNUSED(x) UNUSED_ ## x __attribute__((__unused__))
using ::testing::Test;
// TODO:
// - Unittests of each function
// - teq1_rules matches Annex A of ISO 7816-3
// Tests teq1_frame_error_check to avoid testing every combo that
// ends in 255 in the rule engine.
class Teq1FrameErrorCheck : public virtual Test {
public:
Teq1FrameErrorCheck() { }
virtual ~Teq1FrameErrorCheck() { }
struct Teq1Frame tx_frame_, rx_frame_;
struct Teq1State state_;
struct Teq1CardState card_state_;
};
TEST_F(Teq1FrameErrorCheck, info_parity) {
static const uint8_t kRxPCBs[] = {
TEQ1_I(0, 0),
TEQ1_I(1, 0),
TEQ1_I(0, 1),
TEQ1_I(1, 1),
255,
};
const uint8_t *pcb = &kRxPCBs[0];
/* The PCBs above are all valid for a sent unchained I block with advancing
* sequence #s.
*/
tx_frame_.header.PCB = TEQ1_I(0, 0);
state_.card_state = &card_state_;
state_.card_state->seq.card = 1;
while (*pcb != 255) {
rx_frame_.header.PCB = *pcb;
rx_frame_.header.LEN = 2;
rx_frame_.INF[0] = 'A';
rx_frame_.INF[1] = 'B';
rx_frame_.INF[2] = teq1_compute_LRC(&rx_frame_);
EXPECT_EQ(0, teq1_frame_error_check(&state_, &tx_frame_, &rx_frame_)) << teq1_pcb_to_name(rx_frame_.header.PCB);
rx_frame_.INF[2] = teq1_compute_LRC(&rx_frame_) - 1;
// Reset so we check the LRC error instead of a wrong seq.
state_.card_state->seq.card = !state_.card_state->seq.card;
EXPECT_EQ(TEQ1_R(0, 0, 1), teq1_frame_error_check(&state_, &tx_frame_, &rx_frame_));
state_.card_state->seq.card = !state_.card_state->seq.card;
pcb++;
}
};
TEST_F(Teq1FrameErrorCheck, length_mismatch) {
};
TEST_F(Teq1FrameErrorCheck, unchained_r_block) {
};
TEST_F(Teq1FrameErrorCheck, unexpected_seq) {
};
class Teq1RulesTest : public virtual Test {
public:
Teq1RulesTest() :
tx_data_(INF_LEN, 'A'),
rx_data_(INF_LEN, 'B'),
tx_sg_({ .base = tx_data_.data(), .len = INF_LEN }),
rx_sg_({ .base = rx_data_.data(), .len = INF_LEN }),
card_state_({ .seq = { .card = 1, .interface = 1, }, }),
state_(TEQ1_INIT_STATE(&tx_sg_, 1, INF_LEN,
&rx_sg_, 1, INF_LEN,
&card_state_)) {
memset(&tx_frame_, 0, sizeof(struct Teq1Frame));
memset(&tx_next_, 0, sizeof(struct Teq1Frame));
memset(&rx_frame_, 0, sizeof(struct Teq1Frame));
}
virtual ~Teq1RulesTest() { }
virtual void SetUp() {}
virtual void TearDown() { }
struct Teq1Frame tx_frame_;
struct Teq1Frame tx_next_;
struct Teq1Frame rx_frame_;
std::vector<uint8_t> tx_data_;
std::vector<uint8_t> rx_data_;
struct EseSgBuffer tx_sg_;
struct EseSgBuffer rx_sg_;
struct Teq1CardState card_state_;
struct Teq1State state_;
};
class Teq1ErrorFreeTest : public Teq1RulesTest {
};
class Teq1ErrorHandlingTest : public Teq1RulesTest {
};
class Teq1CompleteTest : public Teq1ErrorFreeTest {
public:
virtual void SetUp() {
tx_frame_.header.PCB = TEQ1_I(0, 0);
teq1_fill_info_block(&state_, &tx_frame_);
// Check that the tx_data was fully consumed.
EXPECT_EQ(0UL, state_.app_data.tx_total);
rx_frame_.header.PCB = TEQ1_I(0, 0);
rx_frame_.header.LEN = INF_LEN;
ASSERT_EQ(static_cast<unsigned long>(INF_LEN), tx_data_.size()); // Catch fixture changes.
// Supply TX data and make sure it overwrites RX data on consumption.
memcpy(rx_frame_.INF, tx_data_.data(), INF_LEN);
rx_frame_.INF[INF_LEN] = teq1_compute_LRC(&rx_frame_);
}
virtual void RunRules() {
teq1_trace_header();
teq1_trace_transmit(tx_frame_.header.PCB, tx_frame_.header.LEN);
teq1_trace_receive(rx_frame_.header.PCB, rx_frame_.header.LEN);
enum RuleResult result = teq1_rules(&state_, &tx_frame_, &rx_frame_, &tx_next_);
EXPECT_EQ(0, state_.errors);
EXPECT_EQ(NULL, state_.last_error_message)
<< "Last error: " << state_.last_error_message;
EXPECT_EQ(0, tx_next_.header.PCB)
<< "Actual next TX: " << teq1_pcb_to_name(tx_next_.header.PCB);
EXPECT_EQ(kRuleResultComplete, result)
<< "Actual result name: " << teq1_rule_result_to_name(result);
}
};
TEST_F(Teq1CompleteTest, I00_I00_empty) {
// No data.
state_.app_data.tx_total = 0;
state_.app_data.rx_total = 0;
// Re-zero the prepared frames.
teq1_fill_info_block(&state_, &tx_frame_);
rx_frame_.header.LEN = 0;
rx_frame_.INF[0] = teq1_compute_LRC(&rx_frame_);
RunRules();
EXPECT_EQ(0U, rx_frame_.header.LEN);
};
TEST_F(Teq1CompleteTest, I00_I00_data) {
RunRules();
// Ensure that the rx_frame data was copied out to rx_data.
EXPECT_EQ(0UL, state_.app_data.rx_total);
EXPECT_EQ(tx_data_, rx_data_);
};
TEST_F(Teq1CompleteTest, I10_I10_data) {
tx_frame_.header.PCB = TEQ1_I(1, 0);
rx_frame_.header.PCB = TEQ1_I(0, 0);
rx_frame_.INF[INF_LEN] = teq1_compute_LRC(&rx_frame_);
RunRules();
// Ensure that the rx_frame data was copied out to rx_data.
EXPECT_EQ(INF_LEN, rx_frame_.header.LEN);
EXPECT_EQ(0UL, state_.app_data.rx_total);
EXPECT_EQ(tx_data_, rx_data_);
};
// Note, IFS is not tested as it is not supported on current hardware.
TEST_F(Teq1ErrorFreeTest, I00_WTX0_WTX1_data) {
tx_frame_.header.PCB = TEQ1_I(0, 0);
teq1_fill_info_block(&state_, &tx_frame_);
// Check that the tx_data was fully consumed.
EXPECT_EQ(0UL, state_.app_data.tx_total);
rx_frame_.header.PCB = TEQ1_S_WTX(0);
rx_frame_.header.LEN = 1;
rx_frame_.INF[0] = 2; /* Wait x 2 */
rx_frame_.INF[1] = teq1_compute_LRC(&rx_frame_);
teq1_trace_header();
teq1_trace_transmit(tx_frame_.header.PCB, tx_frame_.header.LEN);
teq1_trace_receive(rx_frame_.header.PCB, rx_frame_.header.LEN);
enum RuleResult result = teq1_rules(&state_, &tx_frame_, &rx_frame_, &tx_next_);
teq1_trace_transmit(tx_next_.header.PCB, tx_next_.header.LEN);
EXPECT_EQ(0, state_.errors);
EXPECT_EQ(NULL, state_.last_error_message)
<< "Last error: " << state_.last_error_message;
EXPECT_EQ(TEQ1_S_WTX(1), tx_next_.header.PCB)
<< "Actual next TX: " << teq1_pcb_to_name(tx_next_.header.PCB);
EXPECT_EQ(state_.wait_mult, 2);
EXPECT_EQ(state_.wait_mult, rx_frame_.INF[0]);
// Ensure the next call will use the original TX frame.
EXPECT_EQ(kRuleResultSingleShot, result)
<< "Actual result name: " << teq1_rule_result_to_name(result);
};
class Teq1ErrorFreeChainingTest : public Teq1ErrorFreeTest {
public:
virtual void RunRules() {
tx_data_.resize(oversized_data_len_, 'C');
const_cast<struct EseSgBuffer *>(state_.app_data.tx)->base = tx_data_.data();
const_cast<struct EseSgBuffer *>(state_.app_data.tx)->len = oversized_data_len_;
state_.app_data.tx_total = oversized_data_len_;
teq1_fill_info_block(&state_, &tx_frame_);
// Ensure More bit was set.
EXPECT_EQ(1, bs_get(PCB.I.more_data, tx_frame_.header.PCB));
// Check that the tx_data was fully consumed.
EXPECT_EQ(static_cast<uint32_t>(oversized_data_len_ - INF_LEN),
state_.app_data.tx_total);
// No one is checking the TX LRC since there is no card present.
rx_frame_.header.LEN = 0;
rx_frame_.INF[0] = teq1_compute_LRC(&rx_frame_);
teq1_trace_header();
teq1_trace_transmit(tx_frame_.header.PCB, tx_frame_.header.LEN);
teq1_trace_receive(rx_frame_.header.PCB, rx_frame_.header.LEN);
enum RuleResult result = teq1_rules(&state_, &tx_frame_, &rx_frame_, &tx_next_);
teq1_trace_transmit(tx_next_.header.PCB, tx_next_.header.LEN);
EXPECT_EQ(0, state_.errors);
EXPECT_EQ(NULL, state_.last_error_message)
<< "Last error: " << state_.last_error_message;
EXPECT_EQ(kRuleResultContinue, result)
<< "Actual result name: " << teq1_rule_result_to_name(result);
// Check that the tx_buf was drained already for the next frame.
// ...
EXPECT_EQ(static_cast<uint32_t>(oversized_data_len_ - (2 * INF_LEN)),
state_.app_data.tx_total);
// Belt and suspenders: make sure no RX buf was used.
EXPECT_EQ(rx_data_.size(), state_.app_data.rx_total);
}
int oversized_data_len_;
};
TEST_F(Teq1ErrorFreeChainingTest, I01_R1_I11_chaining) {
oversized_data_len_ = INF_LEN * 3;
tx_frame_.header.PCB = TEQ1_I(0, 0);
rx_frame_.header.PCB = TEQ1_R(1, 0, 0);
RunRules();
EXPECT_EQ(TEQ1_I(1, 1), tx_next_.header.PCB)
<< "Actual next TX: " << teq1_pcb_to_name(tx_next_.header.PCB);
};
TEST_F(Teq1ErrorFreeChainingTest, I11_R0_I01_chaining) {
oversized_data_len_ = INF_LEN * 3;
tx_frame_.header.PCB = TEQ1_I(1, 0);
rx_frame_.header.PCB = TEQ1_R(0, 0, 0);
RunRules();
EXPECT_EQ(TEQ1_I(0, 1), tx_next_.header.PCB)
<< "Actual next TX: " << teq1_pcb_to_name(tx_next_.header.PCB);
};
TEST_F(Teq1ErrorFreeChainingTest, I11_R0_I00_chaining) {
oversized_data_len_ = INF_LEN * 2; // Exactly 2 frames worth.
tx_frame_.header.PCB = TEQ1_I(1, 0);
rx_frame_.header.PCB = TEQ1_R(0, 0, 0);
RunRules();
EXPECT_EQ(TEQ1_I(0, 0), tx_next_.header.PCB)
<< "Actual next TX: " << teq1_pcb_to_name(tx_next_.header.PCB);
};
//
// Error handling tests
//
//
class Teq1Retransmit : public Teq1ErrorHandlingTest {
public:
virtual void SetUp() {
// No data.
state_.app_data.rx_total = 0;
state_.app_data.tx_total = 0;
tx_frame_.header.PCB = TEQ1_I(0, 0);
teq1_fill_info_block(&state_, &tx_frame_);
// No one is checking the TX LRC since there is no card present.
// Assume the card may not even set the error bit.
rx_frame_.header.LEN = 0;
rx_frame_.header.PCB = TEQ1_R(0, 0, 0);
rx_frame_.INF[0] = teq1_compute_LRC(&rx_frame_);
}
virtual void TearDown() {
teq1_trace_header();
teq1_trace_transmit(tx_frame_.header.PCB, tx_frame_.header.LEN);
teq1_trace_receive(rx_frame_.header.PCB, rx_frame_.header.LEN);
enum RuleResult result = teq1_rules(&state_, &tx_frame_, &rx_frame_, &tx_next_);
// Not counted as an error as it was on the card-side.
EXPECT_EQ(0, state_.errors);
const char *kNull = NULL;
EXPECT_EQ(kNull, state_.last_error_message) << state_.last_error_message;
EXPECT_EQ(kRuleResultRetransmit, result)
<< "Actual result name: " << teq1_rule_result_to_name(result);
}
};
TEST_F(Teq1Retransmit, I00_R000_I00) {
rx_frame_.header.PCB = TEQ1_R(0, 0, 0);
rx_frame_.INF[0] = teq1_compute_LRC(&rx_frame_);
};
TEST_F(Teq1Retransmit, I00_R001_I00) {
rx_frame_.header.PCB = TEQ1_R(0, 0, 1);
rx_frame_.INF[0] = teq1_compute_LRC(&rx_frame_);
};
TEST_F(Teq1Retransmit, I00_R010_I00) {
rx_frame_.header.PCB = TEQ1_R(0, 1, 0);
rx_frame_.INF[0] = teq1_compute_LRC(&rx_frame_);
};
TEST_F(Teq1Retransmit, I00_R011_I00) {
rx_frame_.header.PCB = TEQ1_R(0, 1, 1);
rx_frame_.INF[0] = teq1_compute_LRC(&rx_frame_);
}
TEST_F(Teq1ErrorHandlingTest, I00_I00_bad_lrc) {
// No data.
state_.app_data.rx_total = 0;
state_.app_data.tx_total = 0;
tx_frame_.header.PCB = TEQ1_I(0, 0);
teq1_fill_info_block(&state_, &tx_frame_);
// No one is checking the TX LRC since there is no card present.
rx_frame_.header.PCB = TEQ1_I(0, 0);
rx_frame_.header.LEN = 0;
rx_frame_.INF[0] = teq1_compute_LRC(&rx_frame_) - 1;
teq1_trace_header();
teq1_trace_transmit(tx_frame_.header.PCB, tx_frame_.header.LEN);
teq1_trace_receive(rx_frame_.header.PCB, rx_frame_.header.LEN);
enum RuleResult result = teq1_rules(&state_, &tx_frame_, &rx_frame_, &tx_next_);
EXPECT_EQ(1, state_.errors);
const char *kNull = NULL;
EXPECT_NE(kNull, state_.last_error_message);
EXPECT_STREQ("Invalid frame received", state_.last_error_message);
EXPECT_EQ(TEQ1_R(0, 0, 1), tx_next_.header.PCB)
<< "Actual next TX: " << teq1_pcb_to_name(tx_next_.header.PCB);
EXPECT_EQ(kRuleResultSingleShot, result)
<< "Actual result name: " << teq1_rule_result_to_name(result);
};
static const struct Teq1ProtocolOptions kTeq1Options = {
.host_address = 0xA5,
.node_address = 0x5A,
.bwt = 1.624f,
.etu = 0.00015f, /* elementary time unit, in seconds */
.preprocess = NULL,
};
std::string to_hex(const std::vector<uint8_t>& data) {
static constexpr char hex[] = "0123456789ABCDEF";
std::string out;
out.reserve(data.size() * 2);
for (uint8_t c : data) {
out.push_back(hex[c / 16]);
out.push_back(hex[c % 16]);
}
return out;
}
class EseWireFake : public EseOperationsInterface {
public:
EseWireFake() : tx_cursor_(0), rx_cursor_(0) { }
virtual ~EseWireFake() = default;
virtual int EseOpen(struct EseInterface *UNUSED(ese), void *UNUSED(data)) {
return 0;
}
virtual int EseReset(struct EseInterface *UNUSED(ese)) {
ALOGI("EseReset called!"); // Add to invocations
// Using the RX cursor, check for a reset expected.
// This is on RX because the s(resync) global counter is on session resets.
EXPECT_EQ(1, invocations.at(tx_cursor_).expect_reset);
return 0;
}
virtual int EsePoll(struct EseInterface *UNUSED(ese), uint8_t UNUSED(poll_for),
float UNUSED(timeout), int UNUSED(complete)) {
return 0;
}
virtual void EseClose(struct EseInterface *UNUSED(ese)) { };
virtual uint32_t EseTransceive(struct EseInterface *ese, const struct EseSgBuffer *tx_sg, uint32_t tx_nsg,
struct EseSgBuffer *rx_sg, uint32_t rx_nsg) {
rx_cursor_ = 0;
return teq1_transceive(ese, &kTeq1Options, tx_sg, tx_nsg, rx_sg, rx_nsg);
}
virtual uint32_t EseHwTransmit(struct EseInterface *UNUSED(ese), const uint8_t *data,
uint32_t len, int UNUSED(complete)) {
EXPECT_GT(invocations.size(), tx_cursor_);
if (invocations.size() <= tx_cursor_) {
return 0;
}
if (!len) {
return 0;
}
if (!invocations.size()) {
return 0;
}
// Just called once per teq1_transmit -- no partials.
const struct Invocation &invocation = invocations.at(tx_cursor_++);
EXPECT_EQ(invocation.expected_tx.size(), len);
int eq = memcmp(data, invocation.expected_tx.data(), len);
const std::vector<uint8_t> vec_data(data, data + len);
EXPECT_EQ(0, eq)
<< "Got: '" << to_hex(vec_data) << "' "
<< "Expected: '" << to_hex(invocation.expected_tx) << "'";
return len;
}
virtual uint32_t EseHwReceive(struct EseInterface *UNUSED(ese), uint8_t *data,
uint32_t len, int UNUSED(complete)) {
if (!len) {
return 0;
}
// Get this calls expected data.
EXPECT_GT(invocations.size(), rx_cursor_);
if (!invocations.size())
return 0;
struct Invocation &invocation = invocations.at(rx_cursor_);
// Supply the golden return data and pop off the invocation.
// Allows partial reads from the invocation stack.
uint32_t rx_total = 0;
if (len <= invocation.rx.size()) {
rx_total = len;
memcpy(data, invocation.rx.data(), invocation.rx.size());
}
uint32_t remaining = invocation.rx.size() - rx_total;
if (remaining && rx_total) {
invocation.rx.erase(invocation.rx.begin(),
invocation.rx.begin() + rx_total);
} else {
rx_cursor_++;
// RX shouldn't get ahead of TX.
EXPECT_GE(tx_cursor_, rx_cursor_);
// We could delete, but this make test bugs a little easier to see.
}
return rx_total;
}
struct Invocation {
std::vector<uint8_t> rx;
std::vector<uint8_t> expected_tx;
int expect_reset;
};
std::vector<Invocation> invocations;
private:
uint32_t tx_cursor_;
uint32_t rx_cursor_;
};
class Teq1TransceiveTest : public virtual Test {
public:
Teq1TransceiveTest() { }
virtual ~Teq1TransceiveTest() { }
void SetUp() {
// Configure ese with our internal ops.
EseOperationsWrapper::InitializeEse(&ese_, &wire_);
// Start with normal seq's.
TEQ1_INIT_CARD_STATE((struct Teq1CardState *)(&(ese_.pad[0])));
}
void TearDown() {
wire_.invocations.resize(0);
}
protected:
EseWireFake wire_;
EseInterface ese_;
};
TEST_F(Teq1TransceiveTest, NormalTransceiveUnchained) {
EXPECT_EQ(0, ese_open(&ese_, NULL));
// I(0,0) ->
// <- I(0, 0)
wire_.invocations.resize(1);
struct Teq1Frame frame;
size_t frame_size = 0;
frame.header.NAD = kTeq1Options.node_address;
frame.header.PCB = TEQ1_I(0, 0);
frame.header.LEN = 4;
frame.INF[0] = 'A';
frame.INF[1] = 'B';
frame.INF[2] = 'C';
frame.INF[3] = 'D';
frame.INF[frame.header.LEN] = teq1_compute_LRC(&frame);
frame_size = sizeof(frame.header) + frame.header.LEN + 1;
wire_.invocations[0].expected_tx.resize(frame_size);
memcpy(wire_.invocations[0].expected_tx.data(), &frame.val[0], frame_size);
ALOGI("Planning to send:");
teq1_trace_transmit(frame.header.PCB, frame.header.LEN);
frame.header.LEN = 0;
frame.header.NAD = kTeq1Options.host_address;
frame.INF[frame.header.LEN] = teq1_compute_LRC(&frame);
frame_size = sizeof(frame.header) + frame.header.LEN + 1;
wire_.invocations[0].rx.resize(frame_size);
memcpy(wire_.invocations[0].rx.data(), &frame, frame_size);
ALOGI("Expecting to receive:");
teq1_trace_receive(frame.header.PCB, frame.header.LEN);
const uint8_t payload[] = { 'A', 'B', 'C', 'D' };
uint8_t reply[5]; // Should stay empty.
EXPECT_EQ(0, ese_transceive(&ese_, payload, sizeof(payload), reply, sizeof(reply)));
};
TEST_F(Teq1TransceiveTest, NormalUnchainedRetransmitRecovery) {
EXPECT_EQ(0, ese_open(&ese_, NULL));
// I(0,0) [4] ->
// <- R(0, 1, 0)
// I(0,0) [4] ->
// <- I(0, 0)
wire_.invocations.resize(2);
struct Teq1Frame frame;
size_t frame_size = 0;
frame.header.NAD = kTeq1Options.node_address;
frame.header.PCB = TEQ1_I(0, 0);
frame.header.LEN = 4;
frame.INF[0] = 'A';
frame.INF[1] = 'B';
frame.INF[2] = 'C';
frame.INF[3] = 'D';
frame.INF[frame.header.LEN] = teq1_compute_LRC(&frame);
frame_size = sizeof(frame.header) + frame.header.LEN + 1;
wire_.invocations[0].expected_tx.resize(frame_size);
memcpy(wire_.invocations[0].expected_tx.data(), &frame.val[0], frame_size);
wire_.invocations[1].expected_tx.resize(frame_size);
memcpy(wire_.invocations[1].expected_tx.data(), &frame.val[0], frame_size);
frame.header.LEN = 0;
frame.header.NAD = kTeq1Options.host_address;
frame.header.PCB = TEQ1_R(0, 1, 0);
frame.INF[frame.header.LEN] = teq1_compute_LRC(&frame);
frame_size = sizeof(frame.header) + frame.header.LEN + 1;
wire_.invocations[0].rx.resize(frame_size);
memcpy(wire_.invocations[0].rx.data(), &frame, frame_size);
frame.header.LEN = 0;
frame.header.NAD = kTeq1Options.host_address;
frame.header.PCB = TEQ1_I(0, 0);
frame.INF[frame.header.LEN] = teq1_compute_LRC(&frame);
frame_size = sizeof(frame.header) + frame.header.LEN + 1;
wire_.invocations[1].rx.resize(frame_size);
memcpy(wire_.invocations[1].rx.data(), &frame, frame_size);
const uint8_t payload[] = { 'A', 'B', 'C', 'D' };
uint8_t reply[5]; // Should stay empty.
EXPECT_EQ(0, ese_transceive(&ese_, payload, sizeof(payload), reply, sizeof(reply)));
};
TEST_F(Teq1TransceiveTest, RetransmitResyncRecovery) {
EXPECT_EQ(0, ese_open(&ese_, NULL));
// I(0,0) [4] ->
// <- R(0, 1, 0)
// I(0,0) [4] ->
// <- R(0, 1, 0)
// I(0,0) [4] ->
// <- R(0, 1, 0)
// I(0,0) [4] ->
// <- R(0, 1, 0)
// S(RESYNC, REQUEST) -> (retran this is another case)
// <- S(RESYNC, RESPONSE)
// I(0, 0) [4] ->
// <- I(0, 0) [0]
wire_.invocations.resize(6);
struct Teq1Frame frame;
size_t frame_size = 0;
frame.header.NAD = kTeq1Options.node_address;
frame.header.PCB = TEQ1_I(0, 0);
frame.header.LEN = 4;
frame.INF[0] = 'A';
frame.INF[1] = 'B';
frame.INF[2] = 'C';
frame.INF[3] = 'D';
frame.INF[frame.header.LEN] = teq1_compute_LRC(&frame);
frame_size = sizeof(frame.header) + frame.header.LEN + 1;
wire_.invocations[0].expected_tx.resize(frame_size);
memcpy(wire_.invocations[0].expected_tx.data(), &frame.val[0], frame_size);
wire_.invocations[1].expected_tx.resize(frame_size);
memcpy(wire_.invocations[1].expected_tx.data(), &frame.val[0], frame_size);
wire_.invocations[2].expected_tx.resize(frame_size);
memcpy(wire_.invocations[2].expected_tx.data(), &frame.val[0], frame_size);
wire_.invocations[3].expected_tx.resize(frame_size);
memcpy(wire_.invocations[3].expected_tx.data(), &frame.val[0], frame_size);
wire_.invocations[5].expected_tx.resize(frame_size);
memcpy(wire_.invocations[5].expected_tx.data(), &frame.val[0], frame_size);
frame.header.LEN = 0;
frame.header.NAD = kTeq1Options.node_address;
frame.header.PCB = TEQ1_S_RESYNC(0);
frame.INF[frame.header.LEN] = teq1_compute_LRC(&frame);
frame_size = sizeof(frame.header) + frame.header.LEN + 1;
wire_.invocations[4].expected_tx.resize(frame_size);
memcpy(wire_.invocations[4].expected_tx.data(), &frame, frame_size);
frame.header.LEN = 0;
frame.header.NAD = kTeq1Options.host_address;
frame.header.PCB = TEQ1_R(0, 1, 0);
frame.INF[frame.header.LEN] = teq1_compute_LRC(&frame);
frame_size = sizeof(frame.header) + frame.header.LEN + 1;
wire_.invocations[0].rx.resize(frame_size);
memcpy(wire_.invocations[0].rx.data(), &frame, frame_size);
wire_.invocations[1].rx.resize(frame_size);
memcpy(wire_.invocations[1].rx.data(), &frame, frame_size);
wire_.invocations[2].rx.resize(frame_size);
memcpy(wire_.invocations[2].rx.data(), &frame, frame_size);
wire_.invocations[3].rx.resize(frame_size);
memcpy(wire_.invocations[3].rx.data(), &frame, frame_size);
frame.header.LEN = 0;
frame.header.NAD = kTeq1Options.host_address;
frame.header.PCB = TEQ1_S_RESYNC(1);
frame.INF[frame.header.LEN] = teq1_compute_LRC(&frame);
frame_size = sizeof(frame.header) + frame.header.LEN + 1;
wire_.invocations[4].rx.resize(frame_size);
memcpy(wire_.invocations[4].rx.data(), &frame, frame_size);
frame.header.LEN = 0;
frame.header.NAD = kTeq1Options.host_address;
frame.header.PCB = TEQ1_I(0, 0);
frame.INF[frame.header.LEN] = teq1_compute_LRC(&frame);
frame_size = sizeof(frame.header) + frame.header.LEN + 1;
wire_.invocations[5].rx.resize(frame_size);
memcpy(wire_.invocations[5].rx.data(), &frame, frame_size);
const uint8_t payload[] = { 'A', 'B', 'C', 'D' };
uint8_t reply[5]; // Should stay empty.
EXPECT_EQ(0, ese_transceive(&ese_, payload, sizeof(payload), reply, sizeof(reply)));
};
// Error case described in b/63546784
TEST_F(Teq1TransceiveTest, RetransmitResyncLoop) {
EXPECT_EQ(0, ese_open(&ese_, NULL));
// I(0,0) [4] ->
// <- R(0, 1, 0)
// I(0,0) [4] ->
// <- R(0, 1, 0)
// I(0,0) [4] ->
// <- R(0, 1, 0)
// I(0,0) [4] ->
// <- R(0, 1, 0)
// S(RESYNC, REQUEST) ->
// <- S(RESYNC, RESPONSE)
// I(0,0) [4] ->
// <- R(0, 1, 0)
// I(0,0) [4] ->
// <- R(0, 1, 0)
// I(0,0) [4] ->
// <- R(0, 1, 0)
// I(0,0) [4] ->
// <- R(0, 1, 0)
// S(RESYNC, REQUEST) ->
// <- S(RESYNC, RESPONSE)
// ...
// 6 failure loops before a reset then 6 more before a hard failure.
wire_.invocations.resize(5 * 12);
struct Teq1Frame frame;
size_t frame_size = 0;
frame.header.NAD = kTeq1Options.node_address;
frame.header.PCB = TEQ1_I(0, 0);
frame.header.LEN = 4;
frame.INF[0] = 'A';
frame.INF[1] = 'B';
frame.INF[2] = 'C';
frame.INF[3] = 'D';
frame.INF[frame.header.LEN] = teq1_compute_LRC(&frame);
frame_size = sizeof(frame.header) + frame.header.LEN + 1;
// Initialize all invocations to I/R then overwrite with resyncs.
for (auto &invocation : wire_.invocations) {
invocation.expected_tx.resize(frame_size);
memcpy(invocation.expected_tx.data(), &frame.val[0], frame_size);
}
frame.header.LEN = 0;
frame.header.NAD = kTeq1Options.host_address;
frame.header.PCB = TEQ1_R(0, 1, 0);
frame.INF[frame.header.LEN] = teq1_compute_LRC(&frame);
frame_size = sizeof(frame.header) + frame.header.LEN + 1;
for (auto &invocation : wire_.invocations) {
invocation.rx.resize(frame_size);
memcpy(invocation.rx.data(), &frame.val[0], frame_size);
}
frame.header.LEN = 0;
frame.header.NAD = kTeq1Options.node_address;
frame.header.PCB = TEQ1_S_RESYNC(0);
frame.INF[frame.header.LEN] = teq1_compute_LRC(&frame);
frame_size = sizeof(frame.header) + frame.header.LEN + 1;
int count = 0;
for (auto &invocation : wire_.invocations) {
if (++count % 5 == 0) {
invocation.expected_tx.resize(frame_size);
memcpy(invocation.expected_tx.data(), &frame, frame_size);
}
}
frame.header.LEN = 0;
frame.header.NAD = kTeq1Options.host_address;
frame.header.PCB = TEQ1_S_RESYNC(1);
frame.INF[frame.header.LEN] = teq1_compute_LRC(&frame);
frame_size = sizeof(frame.header) + frame.header.LEN + 1;
count = 0;
for (auto &invocation : wire_.invocations) {
if (++count % 5 == 0) {
invocation.rx.resize(frame_size);
memcpy(invocation.rx.data(), &frame, frame_size);
}
}
wire_.invocations[30].expect_reset = 1;
const uint8_t payload[] = { 'A', 'B', 'C', 'D' };
uint8_t reply[5]; // Should stay empty.
EXPECT_EQ(-1, ese_transceive(&ese_, payload, sizeof(payload), reply, sizeof(reply)));
EXPECT_NE(0, ese_error(&ese_));
};