Harish Mahendrakar | 0d8951c | 2014-05-16 10:31:13 -0700 | [diff] [blame^] | 1 | /****************************************************************************** |
| 2 | * |
| 3 | * Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore |
| 4 | * |
| 5 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | * you may not use this file except in compliance with the License. |
| 7 | * You may obtain a copy of the License at: |
| 8 | * |
| 9 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | * |
| 11 | * Unless required by applicable law or agreed to in writing, software |
| 12 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | * See the License for the specific language governing permissions and |
| 15 | * limitations under the License. |
| 16 | * |
| 17 | ******************************************************************************/ |
| 18 | /** |
| 19 | ******************************************************************************* |
| 20 | * @file |
| 21 | * ihevc_itrans_recon_16x16.c |
| 22 | * |
| 23 | * @brief |
| 24 | * Contains function definitions for inverse transform and reconstruction 16x16 |
| 25 | * |
| 26 | * |
| 27 | * @author |
| 28 | * 100470 |
| 29 | * |
| 30 | * @par List of Functions: |
| 31 | * - ihevc_itrans_recon_16x16() |
| 32 | * |
| 33 | * @remarks |
| 34 | * None |
| 35 | * |
| 36 | ******************************************************************************* |
| 37 | */ |
| 38 | #include <stdio.h> |
| 39 | #include <string.h> |
| 40 | #include "ihevc_typedefs.h" |
| 41 | #include "ihevc_macros.h" |
| 42 | #include "ihevc_platform_macros.h" |
| 43 | #include "ihevc_defs.h" |
| 44 | #include "ihevc_trans_tables.h" |
| 45 | #include "ihevc_itrans_recon.h" |
| 46 | #include "ihevc_func_selector.h" |
| 47 | #include "ihevc_trans_macros.h" |
| 48 | |
| 49 | /** |
| 50 | ******************************************************************************* |
| 51 | * |
| 52 | * @brief |
| 53 | * This function performs Inverse transform and reconstruction for 16x16 |
| 54 | * input block |
| 55 | * |
| 56 | * @par Description: |
| 57 | * Performs inverse transform and adds the prediction data and clips output |
| 58 | * to 8 bit |
| 59 | * |
| 60 | * @param[in] pi2_src |
| 61 | * Input 16x16 coefficients |
| 62 | * |
| 63 | * @param[in] pi2_tmp |
| 64 | * Temporary 16x16 buffer for storing inverse |
| 65 | * |
| 66 | * transform |
| 67 | * 1st stage output |
| 68 | * |
| 69 | * @param[in] pu1_pred |
| 70 | * Prediction 16x16 block |
| 71 | * |
| 72 | * @param[out] pu1_dst |
| 73 | * Output 16x16 block |
| 74 | * |
| 75 | * @param[in] src_strd |
| 76 | * Input stride |
| 77 | * |
| 78 | * @param[in] pred_strd |
| 79 | * Prediction stride |
| 80 | * |
| 81 | * @param[in] dst_strd |
| 82 | * Output Stride |
| 83 | * |
| 84 | * @param[in] shift |
| 85 | * Output shift |
| 86 | * |
| 87 | * @param[in] zero_cols |
| 88 | * Zero columns in pi2_src |
| 89 | * |
| 90 | * @returns Void |
| 91 | * |
| 92 | * @remarks |
| 93 | * None |
| 94 | * |
| 95 | ******************************************************************************* |
| 96 | */ |
| 97 | |
| 98 | void ihevc_itrans_recon_16x16(WORD16 *pi2_src, |
| 99 | WORD16 *pi2_tmp, |
| 100 | UWORD8 *pu1_pred, |
| 101 | UWORD8 *pu1_dst, |
| 102 | WORD32 src_strd, |
| 103 | WORD32 pred_strd, |
| 104 | WORD32 dst_strd, |
| 105 | WORD32 zero_cols, |
| 106 | WORD32 zero_rows) |
| 107 | { |
| 108 | WORD32 j, k; |
| 109 | WORD32 e[8], o[8]; |
| 110 | WORD32 ee[4], eo[4]; |
| 111 | WORD32 eee[2], eeo[2]; |
| 112 | WORD32 add; |
| 113 | WORD32 shift; |
| 114 | WORD16 *pi2_tmp_orig; |
| 115 | WORD32 trans_size; |
| 116 | WORD32 zero_rows_2nd_stage = zero_cols; |
| 117 | WORD32 row_limit_2nd_stage; |
| 118 | |
| 119 | if((zero_cols & 0xFFF0) == 0xFFF0) |
| 120 | row_limit_2nd_stage = 4; |
| 121 | else if((zero_cols & 0xFF00) == 0xFF00) |
| 122 | row_limit_2nd_stage = 8; |
| 123 | else |
| 124 | row_limit_2nd_stage = TRANS_SIZE_16; |
| 125 | |
| 126 | trans_size = TRANS_SIZE_16; |
| 127 | pi2_tmp_orig = pi2_tmp; |
| 128 | if((zero_rows & 0xFFF0) == 0xFFF0) /* First 4 rows of input are non-zero */ |
| 129 | { |
| 130 | /* Inverse Transform 1st stage */ |
| 131 | /************************************************************************************************/ |
| 132 | /**********************************START - IT_RECON_16x16****************************************/ |
| 133 | /************************************************************************************************/ |
| 134 | |
| 135 | shift = IT_SHIFT_STAGE_1; |
| 136 | add = 1 << (shift - 1); |
| 137 | |
| 138 | for(j = 0; j < row_limit_2nd_stage; j++) |
| 139 | { |
| 140 | /* Checking for Zero Cols */ |
| 141 | if((zero_cols & 1) == 1) |
| 142 | { |
| 143 | memset(pi2_tmp, 0, trans_size * sizeof(WORD16)); |
| 144 | } |
| 145 | else |
| 146 | { |
| 147 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| 148 | for(k = 0; k < 8; k++) |
| 149 | { |
| 150 | o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_src[src_strd] |
| 151 | + g_ai2_ihevc_trans_16[3][k] |
| 152 | * pi2_src[3 * src_strd]; |
| 153 | } |
| 154 | for(k = 0; k < 4; k++) |
| 155 | { |
| 156 | eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_src[2 * src_strd]; |
| 157 | } |
| 158 | eeo[0] = 0; |
| 159 | eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_src[0]; |
| 160 | eeo[1] = 0; |
| 161 | eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_src[0]; |
| 162 | |
| 163 | /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| 164 | for(k = 0; k < 2; k++) |
| 165 | { |
| 166 | ee[k] = eee[k] + eeo[k]; |
| 167 | ee[k + 2] = eee[1 - k] - eeo[1 - k]; |
| 168 | } |
| 169 | for(k = 0; k < 4; k++) |
| 170 | { |
| 171 | e[k] = ee[k] + eo[k]; |
| 172 | e[k + 4] = ee[3 - k] - eo[3 - k]; |
| 173 | } |
| 174 | for(k = 0; k < 8; k++) |
| 175 | { |
| 176 | pi2_tmp[k] = |
| 177 | CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| 178 | pi2_tmp[k + 8] = |
| 179 | CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); |
| 180 | } |
| 181 | } |
| 182 | pi2_src++; |
| 183 | pi2_tmp += trans_size; |
| 184 | zero_cols = zero_cols >> 1; |
| 185 | } |
| 186 | |
| 187 | pi2_tmp = pi2_tmp_orig; |
| 188 | |
| 189 | /* Inverse Transform 2nd stage */ |
| 190 | shift = IT_SHIFT_STAGE_2; |
| 191 | add = 1 << (shift - 1); |
| 192 | |
| 193 | if((zero_rows_2nd_stage & 0xFFF0) == 0xFFF0) /* First 4 rows of output of 1st stage are non-zero */ |
| 194 | { |
| 195 | for(j = 0; j < trans_size; j++) |
| 196 | { |
| 197 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| 198 | for(k = 0; k < 8; k++) |
| 199 | { |
| 200 | o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] |
| 201 | + g_ai2_ihevc_trans_16[3][k] |
| 202 | * pi2_tmp[3 * trans_size]; |
| 203 | } |
| 204 | for(k = 0; k < 4; k++) |
| 205 | { |
| 206 | eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size]; |
| 207 | } |
| 208 | eeo[0] = 0; |
| 209 | eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0]; |
| 210 | eeo[1] = 0; |
| 211 | eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0]; |
| 212 | |
| 213 | /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| 214 | for(k = 0; k < 2; k++) |
| 215 | { |
| 216 | ee[k] = eee[k] + eeo[k]; |
| 217 | ee[k + 2] = eee[1 - k] - eeo[1 - k]; |
| 218 | } |
| 219 | for(k = 0; k < 4; k++) |
| 220 | { |
| 221 | e[k] = ee[k] + eo[k]; |
| 222 | e[k + 4] = ee[3 - k] - eo[3 - k]; |
| 223 | } |
| 224 | for(k = 0; k < 8; k++) |
| 225 | { |
| 226 | WORD32 itrans_out; |
| 227 | itrans_out = |
| 228 | CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| 229 | pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); |
| 230 | itrans_out = |
| 231 | CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); |
| 232 | pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); |
| 233 | } |
| 234 | pi2_tmp++; |
| 235 | pu1_pred += pred_strd; |
| 236 | pu1_dst += dst_strd; |
| 237 | } |
| 238 | } |
| 239 | else if((zero_rows_2nd_stage & 0xFF00) == 0xFF00) /* First 4 rows of output of 1st stage are non-zero */ |
| 240 | { |
| 241 | for(j = 0; j < trans_size; j++) |
| 242 | { |
| 243 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| 244 | for(k = 0; k < 8; k++) |
| 245 | { |
| 246 | o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] |
| 247 | + g_ai2_ihevc_trans_16[3][k] |
| 248 | * pi2_tmp[3 * trans_size] |
| 249 | + g_ai2_ihevc_trans_16[5][k] |
| 250 | * pi2_tmp[5 * trans_size] |
| 251 | + g_ai2_ihevc_trans_16[7][k] |
| 252 | * pi2_tmp[7 * trans_size]; |
| 253 | } |
| 254 | for(k = 0; k < 4; k++) |
| 255 | { |
| 256 | eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size] |
| 257 | + g_ai2_ihevc_trans_16[6][k] |
| 258 | * pi2_tmp[6 * trans_size]; |
| 259 | } |
| 260 | eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size]; |
| 261 | eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0]; |
| 262 | eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size]; |
| 263 | eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0]; |
| 264 | |
| 265 | /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| 266 | for(k = 0; k < 2; k++) |
| 267 | { |
| 268 | ee[k] = eee[k] + eeo[k]; |
| 269 | ee[k + 2] = eee[1 - k] - eeo[1 - k]; |
| 270 | } |
| 271 | for(k = 0; k < 4; k++) |
| 272 | { |
| 273 | e[k] = ee[k] + eo[k]; |
| 274 | e[k + 4] = ee[3 - k] - eo[3 - k]; |
| 275 | } |
| 276 | for(k = 0; k < 8; k++) |
| 277 | { |
| 278 | WORD32 itrans_out; |
| 279 | itrans_out = |
| 280 | CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| 281 | pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); |
| 282 | itrans_out = |
| 283 | CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); |
| 284 | pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); |
| 285 | } |
| 286 | pi2_tmp++; |
| 287 | pu1_pred += pred_strd; |
| 288 | pu1_dst += dst_strd; |
| 289 | } |
| 290 | } |
| 291 | else /* All rows of output of 1st stage are non-zero */ |
| 292 | { |
| 293 | for(j = 0; j < trans_size; j++) |
| 294 | { |
| 295 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| 296 | for(k = 0; k < 8; k++) |
| 297 | { |
| 298 | o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] |
| 299 | + g_ai2_ihevc_trans_16[3][k] |
| 300 | * pi2_tmp[3 * trans_size] |
| 301 | + g_ai2_ihevc_trans_16[5][k] |
| 302 | * pi2_tmp[5 * trans_size] |
| 303 | + g_ai2_ihevc_trans_16[7][k] |
| 304 | * pi2_tmp[7 * trans_size] |
| 305 | + g_ai2_ihevc_trans_16[9][k] |
| 306 | * pi2_tmp[9 * trans_size] |
| 307 | + g_ai2_ihevc_trans_16[11][k] |
| 308 | * pi2_tmp[11 * trans_size] |
| 309 | + g_ai2_ihevc_trans_16[13][k] |
| 310 | * pi2_tmp[13 * trans_size] |
| 311 | + g_ai2_ihevc_trans_16[15][k] |
| 312 | * pi2_tmp[15 * trans_size]; |
| 313 | } |
| 314 | for(k = 0; k < 4; k++) |
| 315 | { |
| 316 | eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size] |
| 317 | + g_ai2_ihevc_trans_16[6][k] |
| 318 | * pi2_tmp[6 * trans_size] |
| 319 | + g_ai2_ihevc_trans_16[10][k] |
| 320 | * pi2_tmp[10 * trans_size] |
| 321 | + g_ai2_ihevc_trans_16[14][k] |
| 322 | * pi2_tmp[14 * trans_size]; |
| 323 | } |
| 324 | eeo[0] = |
| 325 | g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size] |
| 326 | + g_ai2_ihevc_trans_16[12][0] |
| 327 | * pi2_tmp[12 |
| 328 | * trans_size]; |
| 329 | eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0] |
| 330 | + g_ai2_ihevc_trans_16[8][0] * pi2_tmp[8 * trans_size]; |
| 331 | eeo[1] = |
| 332 | g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size] |
| 333 | + g_ai2_ihevc_trans_16[12][1] |
| 334 | * pi2_tmp[12 |
| 335 | * trans_size]; |
| 336 | eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0] |
| 337 | + g_ai2_ihevc_trans_16[8][1] * pi2_tmp[8 * trans_size]; |
| 338 | |
| 339 | /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| 340 | for(k = 0; k < 2; k++) |
| 341 | { |
| 342 | ee[k] = eee[k] + eeo[k]; |
| 343 | ee[k + 2] = eee[1 - k] - eeo[1 - k]; |
| 344 | } |
| 345 | for(k = 0; k < 4; k++) |
| 346 | { |
| 347 | e[k] = ee[k] + eo[k]; |
| 348 | e[k + 4] = ee[3 - k] - eo[3 - k]; |
| 349 | } |
| 350 | for(k = 0; k < 8; k++) |
| 351 | { |
| 352 | WORD32 itrans_out; |
| 353 | itrans_out = |
| 354 | CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| 355 | pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); |
| 356 | itrans_out = |
| 357 | CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); |
| 358 | pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); |
| 359 | } |
| 360 | pi2_tmp++; |
| 361 | pu1_pred += pred_strd; |
| 362 | pu1_dst += dst_strd; |
| 363 | } |
| 364 | } |
| 365 | /************************************************************************************************/ |
| 366 | /************************************END - IT_RECON_16x16****************************************/ |
| 367 | /************************************************************************************************/ |
| 368 | } |
| 369 | else if((zero_rows & 0xFF00) == 0xFF00) /* First 8 rows of input are non-zero */ |
| 370 | { |
| 371 | /* Inverse Transform 1st stage */ |
| 372 | /************************************************************************************************/ |
| 373 | /**********************************START - IT_RECON_16x16****************************************/ |
| 374 | /************************************************************************************************/ |
| 375 | |
| 376 | shift = IT_SHIFT_STAGE_1; |
| 377 | add = 1 << (shift - 1); |
| 378 | |
| 379 | for(j = 0; j < row_limit_2nd_stage; j++) |
| 380 | { |
| 381 | /* Checking for Zero Cols */ |
| 382 | if((zero_cols & 1) == 1) |
| 383 | { |
| 384 | memset(pi2_tmp, 0, trans_size * sizeof(WORD16)); |
| 385 | } |
| 386 | else |
| 387 | { |
| 388 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| 389 | for(k = 0; k < 8; k++) |
| 390 | { |
| 391 | o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_src[src_strd] |
| 392 | + g_ai2_ihevc_trans_16[3][k] |
| 393 | * pi2_src[3 * src_strd] |
| 394 | + g_ai2_ihevc_trans_16[5][k] |
| 395 | * pi2_src[5 * src_strd] |
| 396 | + g_ai2_ihevc_trans_16[7][k] |
| 397 | * pi2_src[7 * src_strd]; |
| 398 | } |
| 399 | for(k = 0; k < 4; k++) |
| 400 | { |
| 401 | eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_src[2 * src_strd] |
| 402 | + g_ai2_ihevc_trans_16[6][k] |
| 403 | * pi2_src[6 * src_strd]; |
| 404 | } |
| 405 | eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_src[4 * src_strd]; |
| 406 | eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_src[0]; |
| 407 | eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_src[4 * src_strd]; |
| 408 | eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_src[0]; |
| 409 | |
| 410 | /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| 411 | for(k = 0; k < 2; k++) |
| 412 | { |
| 413 | ee[k] = eee[k] + eeo[k]; |
| 414 | ee[k + 2] = eee[1 - k] - eeo[1 - k]; |
| 415 | } |
| 416 | for(k = 0; k < 4; k++) |
| 417 | { |
| 418 | e[k] = ee[k] + eo[k]; |
| 419 | e[k + 4] = ee[3 - k] - eo[3 - k]; |
| 420 | } |
| 421 | for(k = 0; k < 8; k++) |
| 422 | { |
| 423 | pi2_tmp[k] = |
| 424 | CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| 425 | pi2_tmp[k + 8] = |
| 426 | CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); |
| 427 | } |
| 428 | } |
| 429 | pi2_src++; |
| 430 | pi2_tmp += trans_size; |
| 431 | zero_cols = zero_cols >> 1; |
| 432 | } |
| 433 | |
| 434 | pi2_tmp = pi2_tmp_orig; |
| 435 | |
| 436 | /* Inverse Transform 2nd stage */ |
| 437 | shift = IT_SHIFT_STAGE_2; |
| 438 | add = 1 << (shift - 1); |
| 439 | |
| 440 | if((zero_rows_2nd_stage & 0xFFF0) == 0xFFF0) /* First 4 rows of output of 1st stage are non-zero */ |
| 441 | { |
| 442 | for(j = 0; j < trans_size; j++) |
| 443 | { |
| 444 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| 445 | for(k = 0; k < 8; k++) |
| 446 | { |
| 447 | o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] |
| 448 | + g_ai2_ihevc_trans_16[3][k] |
| 449 | * pi2_tmp[3 * trans_size]; |
| 450 | } |
| 451 | for(k = 0; k < 4; k++) |
| 452 | { |
| 453 | eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size]; |
| 454 | } |
| 455 | eeo[0] = 0; |
| 456 | eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0]; |
| 457 | eeo[1] = 0; |
| 458 | eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0]; |
| 459 | |
| 460 | /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| 461 | for(k = 0; k < 2; k++) |
| 462 | { |
| 463 | ee[k] = eee[k] + eeo[k]; |
| 464 | ee[k + 2] = eee[1 - k] - eeo[1 - k]; |
| 465 | } |
| 466 | for(k = 0; k < 4; k++) |
| 467 | { |
| 468 | e[k] = ee[k] + eo[k]; |
| 469 | e[k + 4] = ee[3 - k] - eo[3 - k]; |
| 470 | } |
| 471 | for(k = 0; k < 8; k++) |
| 472 | { |
| 473 | WORD32 itrans_out; |
| 474 | itrans_out = |
| 475 | CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| 476 | pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); |
| 477 | itrans_out = |
| 478 | CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); |
| 479 | pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); |
| 480 | } |
| 481 | pi2_tmp++; |
| 482 | pu1_pred += pred_strd; |
| 483 | pu1_dst += dst_strd; |
| 484 | } |
| 485 | } |
| 486 | else if((zero_rows_2nd_stage & 0xFF00) == 0xFF00) /* First 4 rows of output of 1st stage are non-zero */ |
| 487 | { |
| 488 | for(j = 0; j < trans_size; j++) |
| 489 | { |
| 490 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| 491 | for(k = 0; k < 8; k++) |
| 492 | { |
| 493 | o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] |
| 494 | + g_ai2_ihevc_trans_16[3][k] |
| 495 | * pi2_tmp[3 * trans_size] |
| 496 | + g_ai2_ihevc_trans_16[5][k] |
| 497 | * pi2_tmp[5 * trans_size] |
| 498 | + g_ai2_ihevc_trans_16[7][k] |
| 499 | * pi2_tmp[7 * trans_size]; |
| 500 | } |
| 501 | for(k = 0; k < 4; k++) |
| 502 | { |
| 503 | eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size] |
| 504 | + g_ai2_ihevc_trans_16[6][k] |
| 505 | * pi2_tmp[6 * trans_size]; |
| 506 | } |
| 507 | eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size]; |
| 508 | eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0]; |
| 509 | eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size]; |
| 510 | eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0]; |
| 511 | |
| 512 | /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| 513 | for(k = 0; k < 2; k++) |
| 514 | { |
| 515 | ee[k] = eee[k] + eeo[k]; |
| 516 | ee[k + 2] = eee[1 - k] - eeo[1 - k]; |
| 517 | } |
| 518 | for(k = 0; k < 4; k++) |
| 519 | { |
| 520 | e[k] = ee[k] + eo[k]; |
| 521 | e[k + 4] = ee[3 - k] - eo[3 - k]; |
| 522 | } |
| 523 | for(k = 0; k < 8; k++) |
| 524 | { |
| 525 | WORD32 itrans_out; |
| 526 | itrans_out = |
| 527 | CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| 528 | pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); |
| 529 | itrans_out = |
| 530 | CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); |
| 531 | pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); |
| 532 | } |
| 533 | pi2_tmp++; |
| 534 | pu1_pred += pred_strd; |
| 535 | pu1_dst += dst_strd; |
| 536 | } |
| 537 | } |
| 538 | else /* All rows of output of 1st stage are non-zero */ |
| 539 | { |
| 540 | for(j = 0; j < trans_size; j++) |
| 541 | { |
| 542 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| 543 | for(k = 0; k < 8; k++) |
| 544 | { |
| 545 | o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] |
| 546 | + g_ai2_ihevc_trans_16[3][k] |
| 547 | * pi2_tmp[3 * trans_size] |
| 548 | + g_ai2_ihevc_trans_16[5][k] |
| 549 | * pi2_tmp[5 * trans_size] |
| 550 | + g_ai2_ihevc_trans_16[7][k] |
| 551 | * pi2_tmp[7 * trans_size] |
| 552 | + g_ai2_ihevc_trans_16[9][k] |
| 553 | * pi2_tmp[9 * trans_size] |
| 554 | + g_ai2_ihevc_trans_16[11][k] |
| 555 | * pi2_tmp[11 * trans_size] |
| 556 | + g_ai2_ihevc_trans_16[13][k] |
| 557 | * pi2_tmp[13 * trans_size] |
| 558 | + g_ai2_ihevc_trans_16[15][k] |
| 559 | * pi2_tmp[15 * trans_size]; |
| 560 | } |
| 561 | for(k = 0; k < 4; k++) |
| 562 | { |
| 563 | eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size] |
| 564 | + g_ai2_ihevc_trans_16[6][k] |
| 565 | * pi2_tmp[6 * trans_size] |
| 566 | + g_ai2_ihevc_trans_16[10][k] |
| 567 | * pi2_tmp[10 * trans_size] |
| 568 | + g_ai2_ihevc_trans_16[14][k] |
| 569 | * pi2_tmp[14 * trans_size]; |
| 570 | } |
| 571 | eeo[0] = |
| 572 | g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size] |
| 573 | + g_ai2_ihevc_trans_16[12][0] |
| 574 | * pi2_tmp[12 |
| 575 | * trans_size]; |
| 576 | eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0] |
| 577 | + g_ai2_ihevc_trans_16[8][0] * pi2_tmp[8 * trans_size]; |
| 578 | eeo[1] = |
| 579 | g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size] |
| 580 | + g_ai2_ihevc_trans_16[12][1] |
| 581 | * pi2_tmp[12 |
| 582 | * trans_size]; |
| 583 | eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0] |
| 584 | + g_ai2_ihevc_trans_16[8][1] * pi2_tmp[8 * trans_size]; |
| 585 | |
| 586 | /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| 587 | for(k = 0; k < 2; k++) |
| 588 | { |
| 589 | ee[k] = eee[k] + eeo[k]; |
| 590 | ee[k + 2] = eee[1 - k] - eeo[1 - k]; |
| 591 | } |
| 592 | for(k = 0; k < 4; k++) |
| 593 | { |
| 594 | e[k] = ee[k] + eo[k]; |
| 595 | e[k + 4] = ee[3 - k] - eo[3 - k]; |
| 596 | } |
| 597 | for(k = 0; k < 8; k++) |
| 598 | { |
| 599 | WORD32 itrans_out; |
| 600 | itrans_out = |
| 601 | CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| 602 | pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); |
| 603 | itrans_out = |
| 604 | CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); |
| 605 | pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); |
| 606 | } |
| 607 | pi2_tmp++; |
| 608 | pu1_pred += pred_strd; |
| 609 | pu1_dst += dst_strd; |
| 610 | } |
| 611 | } |
| 612 | /************************************************************************************************/ |
| 613 | /************************************END - IT_RECON_16x16****************************************/ |
| 614 | /************************************************************************************************/ |
| 615 | } |
| 616 | else /* All rows of input are non-zero */ |
| 617 | { |
| 618 | /* Inverse Transform 1st stage */ |
| 619 | /************************************************************************************************/ |
| 620 | /**********************************START - IT_RECON_16x16****************************************/ |
| 621 | /************************************************************************************************/ |
| 622 | |
| 623 | shift = IT_SHIFT_STAGE_1; |
| 624 | add = 1 << (shift - 1); |
| 625 | |
| 626 | for(j = 0; j < row_limit_2nd_stage; j++) |
| 627 | { |
| 628 | /* Checking for Zero Cols */ |
| 629 | if((zero_cols & 1) == 1) |
| 630 | { |
| 631 | memset(pi2_tmp, 0, trans_size * sizeof(WORD16)); |
| 632 | } |
| 633 | else |
| 634 | { |
| 635 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| 636 | for(k = 0; k < 8; k++) |
| 637 | { |
| 638 | o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_src[src_strd] |
| 639 | + g_ai2_ihevc_trans_16[3][k] |
| 640 | * pi2_src[3 * src_strd] |
| 641 | + g_ai2_ihevc_trans_16[5][k] |
| 642 | * pi2_src[5 * src_strd] |
| 643 | + g_ai2_ihevc_trans_16[7][k] |
| 644 | * pi2_src[7 * src_strd] |
| 645 | + g_ai2_ihevc_trans_16[9][k] |
| 646 | * pi2_src[9 * src_strd] |
| 647 | + g_ai2_ihevc_trans_16[11][k] |
| 648 | * pi2_src[11 * src_strd] |
| 649 | + g_ai2_ihevc_trans_16[13][k] |
| 650 | * pi2_src[13 * src_strd] |
| 651 | + g_ai2_ihevc_trans_16[15][k] |
| 652 | * pi2_src[15 * src_strd]; |
| 653 | } |
| 654 | for(k = 0; k < 4; k++) |
| 655 | { |
| 656 | eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_src[2 * src_strd] |
| 657 | + g_ai2_ihevc_trans_16[6][k] |
| 658 | * pi2_src[6 * src_strd] |
| 659 | + g_ai2_ihevc_trans_16[10][k] |
| 660 | * pi2_src[10 * src_strd] |
| 661 | + g_ai2_ihevc_trans_16[14][k] |
| 662 | * pi2_src[14 * src_strd]; |
| 663 | } |
| 664 | eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_src[4 * src_strd] |
| 665 | + g_ai2_ihevc_trans_16[12][0] |
| 666 | * pi2_src[12 * src_strd]; |
| 667 | eee[0] = |
| 668 | g_ai2_ihevc_trans_16[0][0] * pi2_src[0] |
| 669 | + g_ai2_ihevc_trans_16[8][0] |
| 670 | * pi2_src[8 |
| 671 | * src_strd]; |
| 672 | eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_src[4 * src_strd] |
| 673 | + g_ai2_ihevc_trans_16[12][1] |
| 674 | * pi2_src[12 * src_strd]; |
| 675 | eee[1] = |
| 676 | g_ai2_ihevc_trans_16[0][1] * pi2_src[0] |
| 677 | + g_ai2_ihevc_trans_16[8][1] |
| 678 | * pi2_src[8 |
| 679 | * src_strd]; |
| 680 | |
| 681 | /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| 682 | for(k = 0; k < 2; k++) |
| 683 | { |
| 684 | ee[k] = eee[k] + eeo[k]; |
| 685 | ee[k + 2] = eee[1 - k] - eeo[1 - k]; |
| 686 | } |
| 687 | for(k = 0; k < 4; k++) |
| 688 | { |
| 689 | e[k] = ee[k] + eo[k]; |
| 690 | e[k + 4] = ee[3 - k] - eo[3 - k]; |
| 691 | } |
| 692 | for(k = 0; k < 8; k++) |
| 693 | { |
| 694 | pi2_tmp[k] = |
| 695 | CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| 696 | pi2_tmp[k + 8] = |
| 697 | CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); |
| 698 | } |
| 699 | } |
| 700 | pi2_src++; |
| 701 | pi2_tmp += trans_size; |
| 702 | zero_cols = zero_cols >> 1; |
| 703 | } |
| 704 | |
| 705 | pi2_tmp = pi2_tmp_orig; |
| 706 | |
| 707 | /* Inverse Transform 2nd stage */ |
| 708 | shift = IT_SHIFT_STAGE_2; |
| 709 | add = 1 << (shift - 1); |
| 710 | |
| 711 | if((zero_rows_2nd_stage & 0xFFF0) == 0xFFF0) /* First 4 rows of output of 1st stage are non-zero */ |
| 712 | { |
| 713 | for(j = 0; j < trans_size; j++) |
| 714 | { |
| 715 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| 716 | for(k = 0; k < 8; k++) |
| 717 | { |
| 718 | o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] |
| 719 | + g_ai2_ihevc_trans_16[3][k] |
| 720 | * pi2_tmp[3 * trans_size]; |
| 721 | } |
| 722 | for(k = 0; k < 4; k++) |
| 723 | { |
| 724 | eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size]; |
| 725 | } |
| 726 | eeo[0] = 0; |
| 727 | eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0]; |
| 728 | eeo[1] = 0; |
| 729 | eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0]; |
| 730 | |
| 731 | /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| 732 | for(k = 0; k < 2; k++) |
| 733 | { |
| 734 | ee[k] = eee[k] + eeo[k]; |
| 735 | ee[k + 2] = eee[1 - k] - eeo[1 - k]; |
| 736 | } |
| 737 | for(k = 0; k < 4; k++) |
| 738 | { |
| 739 | e[k] = ee[k] + eo[k]; |
| 740 | e[k + 4] = ee[3 - k] - eo[3 - k]; |
| 741 | } |
| 742 | for(k = 0; k < 8; k++) |
| 743 | { |
| 744 | WORD32 itrans_out; |
| 745 | itrans_out = |
| 746 | CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| 747 | pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); |
| 748 | itrans_out = |
| 749 | CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); |
| 750 | pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); |
| 751 | } |
| 752 | pi2_tmp++; |
| 753 | pu1_pred += pred_strd; |
| 754 | pu1_dst += dst_strd; |
| 755 | } |
| 756 | } |
| 757 | else if((zero_rows_2nd_stage & 0xFF00) == 0xFF00) /* First 4 rows of output of 1st stage are non-zero */ |
| 758 | { |
| 759 | for(j = 0; j < trans_size; j++) |
| 760 | { |
| 761 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| 762 | for(k = 0; k < 8; k++) |
| 763 | { |
| 764 | o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] |
| 765 | + g_ai2_ihevc_trans_16[3][k] |
| 766 | * pi2_tmp[3 * trans_size] |
| 767 | + g_ai2_ihevc_trans_16[5][k] |
| 768 | * pi2_tmp[5 * trans_size] |
| 769 | + g_ai2_ihevc_trans_16[7][k] |
| 770 | * pi2_tmp[7 * trans_size]; |
| 771 | } |
| 772 | for(k = 0; k < 4; k++) |
| 773 | { |
| 774 | eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size] |
| 775 | + g_ai2_ihevc_trans_16[6][k] |
| 776 | * pi2_tmp[6 * trans_size]; |
| 777 | } |
| 778 | eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size]; |
| 779 | eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0]; |
| 780 | eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size]; |
| 781 | eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0]; |
| 782 | |
| 783 | /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| 784 | for(k = 0; k < 2; k++) |
| 785 | { |
| 786 | ee[k] = eee[k] + eeo[k]; |
| 787 | ee[k + 2] = eee[1 - k] - eeo[1 - k]; |
| 788 | } |
| 789 | for(k = 0; k < 4; k++) |
| 790 | { |
| 791 | e[k] = ee[k] + eo[k]; |
| 792 | e[k + 4] = ee[3 - k] - eo[3 - k]; |
| 793 | } |
| 794 | for(k = 0; k < 8; k++) |
| 795 | { |
| 796 | WORD32 itrans_out; |
| 797 | itrans_out = |
| 798 | CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| 799 | pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); |
| 800 | itrans_out = |
| 801 | CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); |
| 802 | pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); |
| 803 | } |
| 804 | pi2_tmp++; |
| 805 | pu1_pred += pred_strd; |
| 806 | pu1_dst += dst_strd; |
| 807 | } |
| 808 | } |
| 809 | else /* All rows of output of 1st stage are non-zero */ |
| 810 | { |
| 811 | for(j = 0; j < trans_size; j++) |
| 812 | { |
| 813 | /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| 814 | for(k = 0; k < 8; k++) |
| 815 | { |
| 816 | o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] |
| 817 | + g_ai2_ihevc_trans_16[3][k] |
| 818 | * pi2_tmp[3 * trans_size] |
| 819 | + g_ai2_ihevc_trans_16[5][k] |
| 820 | * pi2_tmp[5 * trans_size] |
| 821 | + g_ai2_ihevc_trans_16[7][k] |
| 822 | * pi2_tmp[7 * trans_size] |
| 823 | + g_ai2_ihevc_trans_16[9][k] |
| 824 | * pi2_tmp[9 * trans_size] |
| 825 | + g_ai2_ihevc_trans_16[11][k] |
| 826 | * pi2_tmp[11 * trans_size] |
| 827 | + g_ai2_ihevc_trans_16[13][k] |
| 828 | * pi2_tmp[13 * trans_size] |
| 829 | + g_ai2_ihevc_trans_16[15][k] |
| 830 | * pi2_tmp[15 * trans_size]; |
| 831 | } |
| 832 | for(k = 0; k < 4; k++) |
| 833 | { |
| 834 | eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size] |
| 835 | + g_ai2_ihevc_trans_16[6][k] |
| 836 | * pi2_tmp[6 * trans_size] |
| 837 | + g_ai2_ihevc_trans_16[10][k] |
| 838 | * pi2_tmp[10 * trans_size] |
| 839 | + g_ai2_ihevc_trans_16[14][k] |
| 840 | * pi2_tmp[14 * trans_size]; |
| 841 | } |
| 842 | eeo[0] = |
| 843 | g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size] |
| 844 | + g_ai2_ihevc_trans_16[12][0] |
| 845 | * pi2_tmp[12 |
| 846 | * trans_size]; |
| 847 | eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0] |
| 848 | + g_ai2_ihevc_trans_16[8][0] * pi2_tmp[8 * trans_size]; |
| 849 | eeo[1] = |
| 850 | g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size] |
| 851 | + g_ai2_ihevc_trans_16[12][1] |
| 852 | * pi2_tmp[12 |
| 853 | * trans_size]; |
| 854 | eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0] |
| 855 | + g_ai2_ihevc_trans_16[8][1] * pi2_tmp[8 * trans_size]; |
| 856 | |
| 857 | /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| 858 | for(k = 0; k < 2; k++) |
| 859 | { |
| 860 | ee[k] = eee[k] + eeo[k]; |
| 861 | ee[k + 2] = eee[1 - k] - eeo[1 - k]; |
| 862 | } |
| 863 | for(k = 0; k < 4; k++) |
| 864 | { |
| 865 | e[k] = ee[k] + eo[k]; |
| 866 | e[k + 4] = ee[3 - k] - eo[3 - k]; |
| 867 | } |
| 868 | for(k = 0; k < 8; k++) |
| 869 | { |
| 870 | WORD32 itrans_out; |
| 871 | itrans_out = |
| 872 | CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| 873 | pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); |
| 874 | itrans_out = |
| 875 | CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); |
| 876 | pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); |
| 877 | } |
| 878 | pi2_tmp++; |
| 879 | pu1_pred += pred_strd; |
| 880 | pu1_dst += dst_strd; |
| 881 | } |
| 882 | } |
| 883 | /************************************************************************************************/ |
| 884 | /************************************END - IT_RECON_16x16****************************************/ |
| 885 | /************************************************************************************************/ |
| 886 | } |
| 887 | |
| 888 | } |
| 889 | |