| /* |
| * jcarith.c |
| * |
| * Developed 1997-2009 by Guido Vollbeding. |
| * This file is part of the Independent JPEG Group's software. |
| * For conditions of distribution and use, see the accompanying README file. |
| * |
| * This file contains portable arithmetic entropy encoding routines for JPEG |
| * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). |
| * |
| * Both sequential and progressive modes are supported in this single module. |
| * |
| * Suspension is not currently supported in this module. |
| */ |
| |
| #define JPEG_INTERNALS |
| #include "jinclude.h" |
| #include "jpeglib.h" |
| |
| |
| /* Expanded entropy encoder object for arithmetic encoding. */ |
| |
| typedef struct { |
| struct jpeg_entropy_encoder pub; /* public fields */ |
| |
| INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */ |
| INT32 a; /* A register, normalized size of coding interval */ |
| INT32 sc; /* counter for stacked 0xFF values which might overflow */ |
| INT32 zc; /* counter for pending 0x00 output values which might * |
| * be discarded at the end ("Pacman" termination) */ |
| int ct; /* bit shift counter, determines when next byte will be written */ |
| int buffer; /* buffer for most recent output byte != 0xFF */ |
| |
| int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
| int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ |
| |
| unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
| int next_restart_num; /* next restart number to write (0-7) */ |
| |
| /* Pointers to statistics areas (these workspaces have image lifespan) */ |
| unsigned char * dc_stats[NUM_ARITH_TBLS]; |
| unsigned char * ac_stats[NUM_ARITH_TBLS]; |
| |
| /* Statistics bin for coding with fixed probability 0.5 */ |
| unsigned char fixed_bin[4]; |
| } arith_entropy_encoder; |
| |
| typedef arith_entropy_encoder * arith_entropy_ptr; |
| |
| /* The following two definitions specify the allocation chunk size |
| * for the statistics area. |
| * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least |
| * 49 statistics bins for DC, and 245 statistics bins for AC coding. |
| * |
| * We use a compact representation with 1 byte per statistics bin, |
| * thus the numbers directly represent byte sizes. |
| * This 1 byte per statistics bin contains the meaning of the MPS |
| * (more probable symbol) in the highest bit (mask 0x80), and the |
| * index into the probability estimation state machine table |
| * in the lower bits (mask 0x7F). |
| */ |
| |
| #define DC_STAT_BINS 64 |
| #define AC_STAT_BINS 256 |
| |
| /* NOTE: Uncomment the following #define if you want to use the |
| * given formula for calculating the AC conditioning parameter Kx |
| * for spectral selection progressive coding in section G.1.3.2 |
| * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4). |
| * Although the spec and P&M authors claim that this "has proven |
| * to give good results for 8 bit precision samples", I'm not |
| * convinced yet that this is really beneficial. |
| * Early tests gave only very marginal compression enhancements |
| * (a few - around 5 or so - bytes even for very large files), |
| * which would turn out rather negative if we'd suppress the |
| * DAC (Define Arithmetic Conditioning) marker segments for |
| * the default parameters in the future. |
| * Note that currently the marker writing module emits 12-byte |
| * DAC segments for a full-component scan in a color image. |
| * This is not worth worrying about IMHO. However, since the |
| * spec defines the default values to be used if the tables |
| * are omitted (unlike Huffman tables, which are required |
| * anyway), one might optimize this behaviour in the future, |
| * and then it would be disadvantageous to use custom tables if |
| * they don't provide sufficient gain to exceed the DAC size. |
| * |
| * On the other hand, I'd consider it as a reasonable result |
| * that the conditioning has no significant influence on the |
| * compression performance. This means that the basic |
| * statistical model is already rather stable. |
| * |
| * Thus, at the moment, we use the default conditioning values |
| * anyway, and do not use the custom formula. |
| * |
| #define CALCULATE_SPECTRAL_CONDITIONING |
| */ |
| |
| /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. |
| * We assume that int right shift is unsigned if INT32 right shift is, |
| * which should be safe. |
| */ |
| |
| #ifdef RIGHT_SHIFT_IS_UNSIGNED |
| #define ISHIFT_TEMPS int ishift_temp; |
| #define IRIGHT_SHIFT(x,shft) \ |
| ((ishift_temp = (x)) < 0 ? \ |
| (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ |
| (ishift_temp >> (shft))) |
| #else |
| #define ISHIFT_TEMPS |
| #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
| #endif |
| |
| |
| LOCAL(void) |
| emit_byte (int val, j_compress_ptr cinfo) |
| /* Write next output byte; we do not support suspension in this module. */ |
| { |
| struct jpeg_destination_mgr * dest = cinfo->dest; |
| |
| *dest->next_output_byte++ = (JOCTET) val; |
| if (--dest->free_in_buffer == 0) |
| if (! (*dest->empty_output_buffer) (cinfo)) |
| ERREXIT(cinfo, JERR_CANT_SUSPEND); |
| } |
| |
| |
| /* |
| * Finish up at the end of an arithmetic-compressed scan. |
| */ |
| |
| METHODDEF(void) |
| finish_pass (j_compress_ptr cinfo) |
| { |
| arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
| INT32 temp; |
| |
| /* Section D.1.8: Termination of encoding */ |
| |
| /* Find the e->c in the coding interval with the largest |
| * number of trailing zero bits */ |
| if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c) |
| e->c = temp + 0x8000L; |
| else |
| e->c = temp; |
| /* Send remaining bytes to output */ |
| e->c <<= e->ct; |
| if (e->c & 0xF8000000L) { |
| /* One final overflow has to be handled */ |
| if (e->buffer >= 0) { |
| if (e->zc) |
| do emit_byte(0x00, cinfo); |
| while (--e->zc); |
| emit_byte(e->buffer + 1, cinfo); |
| if (e->buffer + 1 == 0xFF) |
| emit_byte(0x00, cinfo); |
| } |
| e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ |
| e->sc = 0; |
| } else { |
| if (e->buffer == 0) |
| ++e->zc; |
| else if (e->buffer >= 0) { |
| if (e->zc) |
| do emit_byte(0x00, cinfo); |
| while (--e->zc); |
| emit_byte(e->buffer, cinfo); |
| } |
| if (e->sc) { |
| if (e->zc) |
| do emit_byte(0x00, cinfo); |
| while (--e->zc); |
| do { |
| emit_byte(0xFF, cinfo); |
| emit_byte(0x00, cinfo); |
| } while (--e->sc); |
| } |
| } |
| /* Output final bytes only if they are not 0x00 */ |
| if (e->c & 0x7FFF800L) { |
| if (e->zc) /* output final pending zero bytes */ |
| do emit_byte(0x00, cinfo); |
| while (--e->zc); |
| emit_byte((e->c >> 19) & 0xFF, cinfo); |
| if (((e->c >> 19) & 0xFF) == 0xFF) |
| emit_byte(0x00, cinfo); |
| if (e->c & 0x7F800L) { |
| emit_byte((e->c >> 11) & 0xFF, cinfo); |
| if (((e->c >> 11) & 0xFF) == 0xFF) |
| emit_byte(0x00, cinfo); |
| } |
| } |
| } |
| |
| |
| /* |
| * The core arithmetic encoding routine (common in JPEG and JBIG). |
| * This needs to go as fast as possible. |
| * Machine-dependent optimization facilities |
| * are not utilized in this portable implementation. |
| * However, this code should be fairly efficient and |
| * may be a good base for further optimizations anyway. |
| * |
| * Parameter 'val' to be encoded may be 0 or 1 (binary decision). |
| * |
| * Note: I've added full "Pacman" termination support to the |
| * byte output routines, which is equivalent to the optional |
| * Discard_final_zeros procedure (Figure D.15) in the spec. |
| * Thus, we always produce the shortest possible output |
| * stream compliant to the spec (no trailing zero bytes, |
| * except for FF stuffing). |
| * |
| * I've also introduced a new scheme for accessing |
| * the probability estimation state machine table, |
| * derived from Markus Kuhn's JBIG implementation. |
| */ |
| |
| LOCAL(void) |
| arith_encode (j_compress_ptr cinfo, unsigned char *st, int val) |
| { |
| register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
| register unsigned char nl, nm; |
| register INT32 qe, temp; |
| register int sv; |
| |
| /* Fetch values from our compact representation of Table D.2: |
| * Qe values and probability estimation state machine |
| */ |
| sv = *st; |
| qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ |
| nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ |
| nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ |
| |
| /* Encode & estimation procedures per sections D.1.4 & D.1.5 */ |
| e->a -= qe; |
| if (val != (sv >> 7)) { |
| /* Encode the less probable symbol */ |
| if (e->a >= qe) { |
| /* If the interval size (qe) for the less probable symbol (LPS) |
| * is larger than the interval size for the MPS, then exchange |
| * the two symbols for coding efficiency, otherwise code the LPS |
| * as usual: */ |
| e->c += e->a; |
| e->a = qe; |
| } |
| *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ |
| } else { |
| /* Encode the more probable symbol */ |
| if (e->a >= 0x8000L) |
| return; /* A >= 0x8000 -> ready, no renormalization required */ |
| if (e->a < qe) { |
| /* If the interval size (qe) for the less probable symbol (LPS) |
| * is larger than the interval size for the MPS, then exchange |
| * the two symbols for coding efficiency: */ |
| e->c += e->a; |
| e->a = qe; |
| } |
| *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ |
| } |
| |
| /* Renormalization & data output per section D.1.6 */ |
| do { |
| e->a <<= 1; |
| e->c <<= 1; |
| if (--e->ct == 0) { |
| /* Another byte is ready for output */ |
| temp = e->c >> 19; |
| if (temp > 0xFF) { |
| /* Handle overflow over all stacked 0xFF bytes */ |
| if (e->buffer >= 0) { |
| if (e->zc) |
| do emit_byte(0x00, cinfo); |
| while (--e->zc); |
| emit_byte(e->buffer + 1, cinfo); |
| if (e->buffer + 1 == 0xFF) |
| emit_byte(0x00, cinfo); |
| } |
| e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ |
| e->sc = 0; |
| /* Note: The 3 spacer bits in the C register guarantee |
| * that the new buffer byte can't be 0xFF here |
| * (see page 160 in the P&M JPEG book). */ |
| e->buffer = temp & 0xFF; /* new output byte, might overflow later */ |
| } else if (temp == 0xFF) { |
| ++e->sc; /* stack 0xFF byte (which might overflow later) */ |
| } else { |
| /* Output all stacked 0xFF bytes, they will not overflow any more */ |
| if (e->buffer == 0) |
| ++e->zc; |
| else if (e->buffer >= 0) { |
| if (e->zc) |
| do emit_byte(0x00, cinfo); |
| while (--e->zc); |
| emit_byte(e->buffer, cinfo); |
| } |
| if (e->sc) { |
| if (e->zc) |
| do emit_byte(0x00, cinfo); |
| while (--e->zc); |
| do { |
| emit_byte(0xFF, cinfo); |
| emit_byte(0x00, cinfo); |
| } while (--e->sc); |
| } |
| e->buffer = temp & 0xFF; /* new output byte (can still overflow) */ |
| } |
| e->c &= 0x7FFFFL; |
| e->ct += 8; |
| } |
| } while (e->a < 0x8000L); |
| } |
| |
| |
| /* |
| * Emit a restart marker & resynchronize predictions. |
| */ |
| |
| LOCAL(void) |
| emit_restart (j_compress_ptr cinfo, int restart_num) |
| { |
| arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| int ci; |
| jpeg_component_info * compptr; |
| |
| finish_pass(cinfo); |
| |
| emit_byte(0xFF, cinfo); |
| emit_byte(JPEG_RST0 + restart_num, cinfo); |
| |
| /* Re-initialize statistics areas */ |
| for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| compptr = cinfo->cur_comp_info[ci]; |
| /* DC needs no table for refinement scan */ |
| if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
| MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); |
| /* Reset DC predictions to 0 */ |
| entropy->last_dc_val[ci] = 0; |
| entropy->dc_context[ci] = 0; |
| } |
| /* AC needs no table when not present */ |
| if (cinfo->progressive_mode == 0 || cinfo->Se) { |
| MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); |
| } |
| } |
| |
| /* Reset arithmetic encoding variables */ |
| entropy->c = 0; |
| entropy->a = 0x10000L; |
| entropy->sc = 0; |
| entropy->zc = 0; |
| entropy->ct = 11; |
| entropy->buffer = -1; /* empty */ |
| } |
| |
| |
| /* |
| * MCU encoding for DC initial scan (either spectral selection, |
| * or first pass of successive approximation). |
| */ |
| |
| METHODDEF(boolean) |
| encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| { |
| arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| JBLOCKROW block; |
| unsigned char *st; |
| int blkn, ci, tbl; |
| int v, v2, m; |
| ISHIFT_TEMPS |
| |
| /* Emit restart marker if needed */ |
| if (cinfo->restart_interval) { |
| if (entropy->restarts_to_go == 0) { |
| emit_restart(cinfo, entropy->next_restart_num); |
| entropy->restarts_to_go = cinfo->restart_interval; |
| entropy->next_restart_num++; |
| entropy->next_restart_num &= 7; |
| } |
| entropy->restarts_to_go--; |
| } |
| |
| /* Encode the MCU data blocks */ |
| for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| block = MCU_data[blkn]; |
| ci = cinfo->MCU_membership[blkn]; |
| tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; |
| |
| /* Compute the DC value after the required point transform by Al. |
| * This is simply an arithmetic right shift. |
| */ |
| m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al); |
| |
| /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ |
| |
| /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
| st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
| |
| /* Figure F.4: Encode_DC_DIFF */ |
| if ((v = m - entropy->last_dc_val[ci]) == 0) { |
| arith_encode(cinfo, st, 0); |
| entropy->dc_context[ci] = 0; /* zero diff category */ |
| } else { |
| entropy->last_dc_val[ci] = m; |
| arith_encode(cinfo, st, 1); |
| /* Figure F.6: Encoding nonzero value v */ |
| /* Figure F.7: Encoding the sign of v */ |
| if (v > 0) { |
| arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ |
| st += 2; /* Table F.4: SP = S0 + 2 */ |
| entropy->dc_context[ci] = 4; /* small positive diff category */ |
| } else { |
| v = -v; |
| arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ |
| st += 3; /* Table F.4: SN = S0 + 3 */ |
| entropy->dc_context[ci] = 8; /* small negative diff category */ |
| } |
| /* Figure F.8: Encoding the magnitude category of v */ |
| m = 0; |
| if (v -= 1) { |
| arith_encode(cinfo, st, 1); |
| m = 1; |
| v2 = v; |
| st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
| while (v2 >>= 1) { |
| arith_encode(cinfo, st, 1); |
| m <<= 1; |
| st += 1; |
| } |
| } |
| arith_encode(cinfo, st, 0); |
| /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
| if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
| entropy->dc_context[ci] = 0; /* zero diff category */ |
| else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
| entropy->dc_context[ci] += 8; /* large diff category */ |
| /* Figure F.9: Encoding the magnitude bit pattern of v */ |
| st += 14; |
| while (m >>= 1) |
| arith_encode(cinfo, st, (m & v) ? 1 : 0); |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| |
| /* |
| * MCU encoding for AC initial scan (either spectral selection, |
| * or first pass of successive approximation). |
| */ |
| |
| METHODDEF(boolean) |
| encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| { |
| arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| JBLOCKROW block; |
| unsigned char *st; |
| int tbl, k, ke; |
| int v, v2, m; |
| |
| /* Emit restart marker if needed */ |
| if (cinfo->restart_interval) { |
| if (entropy->restarts_to_go == 0) { |
| emit_restart(cinfo, entropy->next_restart_num); |
| entropy->restarts_to_go = cinfo->restart_interval; |
| entropy->next_restart_num++; |
| entropy->next_restart_num &= 7; |
| } |
| entropy->restarts_to_go--; |
| } |
| |
| /* Encode the MCU data block */ |
| block = MCU_data[0]; |
| tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
| |
| /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ |
| |
| /* Establish EOB (end-of-block) index */ |
| for (ke = cinfo->Se; ke > 0; ke--) |
| /* We must apply the point transform by Al. For AC coefficients this |
| * is an integer division with rounding towards 0. To do this portably |
| * in C, we shift after obtaining the absolute value. |
| */ |
| if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { |
| if (v >>= cinfo->Al) break; |
| } else { |
| v = -v; |
| if (v >>= cinfo->Al) break; |
| } |
| |
| /* Figure F.5: Encode_AC_Coefficients */ |
| for (k = cinfo->Ss; k <= ke; k++) { |
| st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| arith_encode(cinfo, st, 0); /* EOB decision */ |
| for (;;) { |
| if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { |
| if (v >>= cinfo->Al) { |
| arith_encode(cinfo, st + 1, 1); |
| arith_encode(cinfo, entropy->fixed_bin, 0); |
| break; |
| } |
| } else { |
| v = -v; |
| if (v >>= cinfo->Al) { |
| arith_encode(cinfo, st + 1, 1); |
| arith_encode(cinfo, entropy->fixed_bin, 1); |
| break; |
| } |
| } |
| arith_encode(cinfo, st + 1, 0); st += 3; k++; |
| } |
| st += 2; |
| /* Figure F.8: Encoding the magnitude category of v */ |
| m = 0; |
| if (v -= 1) { |
| arith_encode(cinfo, st, 1); |
| m = 1; |
| v2 = v; |
| if (v2 >>= 1) { |
| arith_encode(cinfo, st, 1); |
| m <<= 1; |
| st = entropy->ac_stats[tbl] + |
| (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
| while (v2 >>= 1) { |
| arith_encode(cinfo, st, 1); |
| m <<= 1; |
| st += 1; |
| } |
| } |
| } |
| arith_encode(cinfo, st, 0); |
| /* Figure F.9: Encoding the magnitude bit pattern of v */ |
| st += 14; |
| while (m >>= 1) |
| arith_encode(cinfo, st, (m & v) ? 1 : 0); |
| } |
| /* Encode EOB decision only if k <= cinfo->Se */ |
| if (k <= cinfo->Se) { |
| st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| arith_encode(cinfo, st, 1); |
| } |
| |
| return TRUE; |
| } |
| |
| |
| /* |
| * MCU encoding for DC successive approximation refinement scan. |
| */ |
| |
| METHODDEF(boolean) |
| encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| { |
| arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| unsigned char *st; |
| int Al, blkn; |
| |
| /* Emit restart marker if needed */ |
| if (cinfo->restart_interval) { |
| if (entropy->restarts_to_go == 0) { |
| emit_restart(cinfo, entropy->next_restart_num); |
| entropy->restarts_to_go = cinfo->restart_interval; |
| entropy->next_restart_num++; |
| entropy->next_restart_num &= 7; |
| } |
| entropy->restarts_to_go--; |
| } |
| |
| st = entropy->fixed_bin; /* use fixed probability estimation */ |
| Al = cinfo->Al; |
| |
| /* Encode the MCU data blocks */ |
| for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| /* We simply emit the Al'th bit of the DC coefficient value. */ |
| arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1); |
| } |
| |
| return TRUE; |
| } |
| |
| |
| /* |
| * MCU encoding for AC successive approximation refinement scan. |
| */ |
| |
| METHODDEF(boolean) |
| encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| { |
| arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| JBLOCKROW block; |
| unsigned char *st; |
| int tbl, k, ke, kex; |
| int v; |
| |
| /* Emit restart marker if needed */ |
| if (cinfo->restart_interval) { |
| if (entropy->restarts_to_go == 0) { |
| emit_restart(cinfo, entropy->next_restart_num); |
| entropy->restarts_to_go = cinfo->restart_interval; |
| entropy->next_restart_num++; |
| entropy->next_restart_num &= 7; |
| } |
| entropy->restarts_to_go--; |
| } |
| |
| /* Encode the MCU data block */ |
| block = MCU_data[0]; |
| tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
| |
| /* Section G.1.3.3: Encoding of AC coefficients */ |
| |
| /* Establish EOB (end-of-block) index */ |
| for (ke = cinfo->Se; ke > 0; ke--) |
| /* We must apply the point transform by Al. For AC coefficients this |
| * is an integer division with rounding towards 0. To do this portably |
| * in C, we shift after obtaining the absolute value. |
| */ |
| if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { |
| if (v >>= cinfo->Al) break; |
| } else { |
| v = -v; |
| if (v >>= cinfo->Al) break; |
| } |
| |
| /* Establish EOBx (previous stage end-of-block) index */ |
| for (kex = ke; kex > 0; kex--) |
| if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) { |
| if (v >>= cinfo->Ah) break; |
| } else { |
| v = -v; |
| if (v >>= cinfo->Ah) break; |
| } |
| |
| /* Figure G.10: Encode_AC_Coefficients_SA */ |
| for (k = cinfo->Ss; k <= ke; k++) { |
| st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| if (k > kex) |
| arith_encode(cinfo, st, 0); /* EOB decision */ |
| for (;;) { |
| if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { |
| if (v >>= cinfo->Al) { |
| if (v >> 1) /* previously nonzero coef */ |
| arith_encode(cinfo, st + 2, (v & 1)); |
| else { /* newly nonzero coef */ |
| arith_encode(cinfo, st + 1, 1); |
| arith_encode(cinfo, entropy->fixed_bin, 0); |
| } |
| break; |
| } |
| } else { |
| v = -v; |
| if (v >>= cinfo->Al) { |
| if (v >> 1) /* previously nonzero coef */ |
| arith_encode(cinfo, st + 2, (v & 1)); |
| else { /* newly nonzero coef */ |
| arith_encode(cinfo, st + 1, 1); |
| arith_encode(cinfo, entropy->fixed_bin, 1); |
| } |
| break; |
| } |
| } |
| arith_encode(cinfo, st + 1, 0); st += 3; k++; |
| } |
| } |
| /* Encode EOB decision only if k <= cinfo->Se */ |
| if (k <= cinfo->Se) { |
| st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| arith_encode(cinfo, st, 1); |
| } |
| |
| return TRUE; |
| } |
| |
| |
| /* |
| * Encode and output one MCU's worth of arithmetic-compressed coefficients. |
| */ |
| |
| METHODDEF(boolean) |
| encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| { |
| arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| jpeg_component_info * compptr; |
| JBLOCKROW block; |
| unsigned char *st; |
| int blkn, ci, tbl, k, ke; |
| int v, v2, m; |
| |
| /* Emit restart marker if needed */ |
| if (cinfo->restart_interval) { |
| if (entropy->restarts_to_go == 0) { |
| emit_restart(cinfo, entropy->next_restart_num); |
| entropy->restarts_to_go = cinfo->restart_interval; |
| entropy->next_restart_num++; |
| entropy->next_restart_num &= 7; |
| } |
| entropy->restarts_to_go--; |
| } |
| |
| /* Encode the MCU data blocks */ |
| for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| block = MCU_data[blkn]; |
| ci = cinfo->MCU_membership[blkn]; |
| compptr = cinfo->cur_comp_info[ci]; |
| |
| /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ |
| |
| tbl = compptr->dc_tbl_no; |
| |
| /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
| st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
| |
| /* Figure F.4: Encode_DC_DIFF */ |
| if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) { |
| arith_encode(cinfo, st, 0); |
| entropy->dc_context[ci] = 0; /* zero diff category */ |
| } else { |
| entropy->last_dc_val[ci] = (*block)[0]; |
| arith_encode(cinfo, st, 1); |
| /* Figure F.6: Encoding nonzero value v */ |
| /* Figure F.7: Encoding the sign of v */ |
| if (v > 0) { |
| arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ |
| st += 2; /* Table F.4: SP = S0 + 2 */ |
| entropy->dc_context[ci] = 4; /* small positive diff category */ |
| } else { |
| v = -v; |
| arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ |
| st += 3; /* Table F.4: SN = S0 + 3 */ |
| entropy->dc_context[ci] = 8; /* small negative diff category */ |
| } |
| /* Figure F.8: Encoding the magnitude category of v */ |
| m = 0; |
| if (v -= 1) { |
| arith_encode(cinfo, st, 1); |
| m = 1; |
| v2 = v; |
| st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
| while (v2 >>= 1) { |
| arith_encode(cinfo, st, 1); |
| m <<= 1; |
| st += 1; |
| } |
| } |
| arith_encode(cinfo, st, 0); |
| /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
| if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
| entropy->dc_context[ci] = 0; /* zero diff category */ |
| else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
| entropy->dc_context[ci] += 8; /* large diff category */ |
| /* Figure F.9: Encoding the magnitude bit pattern of v */ |
| st += 14; |
| while (m >>= 1) |
| arith_encode(cinfo, st, (m & v) ? 1 : 0); |
| } |
| |
| /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ |
| |
| tbl = compptr->ac_tbl_no; |
| |
| /* Establish EOB (end-of-block) index */ |
| for (ke = DCTSIZE2 - 1; ke > 0; ke--) |
| if ((*block)[jpeg_natural_order[ke]]) break; |
| |
| /* Figure F.5: Encode_AC_Coefficients */ |
| for (k = 1; k <= ke; k++) { |
| st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| arith_encode(cinfo, st, 0); /* EOB decision */ |
| while ((v = (*block)[jpeg_natural_order[k]]) == 0) { |
| arith_encode(cinfo, st + 1, 0); st += 3; k++; |
| } |
| arith_encode(cinfo, st + 1, 1); |
| /* Figure F.6: Encoding nonzero value v */ |
| /* Figure F.7: Encoding the sign of v */ |
| if (v > 0) { |
| arith_encode(cinfo, entropy->fixed_bin, 0); |
| } else { |
| v = -v; |
| arith_encode(cinfo, entropy->fixed_bin, 1); |
| } |
| st += 2; |
| /* Figure F.8: Encoding the magnitude category of v */ |
| m = 0; |
| if (v -= 1) { |
| arith_encode(cinfo, st, 1); |
| m = 1; |
| v2 = v; |
| if (v2 >>= 1) { |
| arith_encode(cinfo, st, 1); |
| m <<= 1; |
| st = entropy->ac_stats[tbl] + |
| (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
| while (v2 >>= 1) { |
| arith_encode(cinfo, st, 1); |
| m <<= 1; |
| st += 1; |
| } |
| } |
| } |
| arith_encode(cinfo, st, 0); |
| /* Figure F.9: Encoding the magnitude bit pattern of v */ |
| st += 14; |
| while (m >>= 1) |
| arith_encode(cinfo, st, (m & v) ? 1 : 0); |
| } |
| /* Encode EOB decision only if k <= DCTSIZE2 - 1 */ |
| if (k <= DCTSIZE2 - 1) { |
| st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| arith_encode(cinfo, st, 1); |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| |
| /* |
| * Initialize for an arithmetic-compressed scan. |
| */ |
| |
| METHODDEF(void) |
| start_pass (j_compress_ptr cinfo, boolean gather_statistics) |
| { |
| arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| int ci, tbl; |
| jpeg_component_info * compptr; |
| |
| if (gather_statistics) |
| /* Make sure to avoid that in the master control logic! |
| * We are fully adaptive here and need no extra |
| * statistics gathering pass! |
| */ |
| ERREXIT(cinfo, JERR_NOT_COMPILED); |
| |
| /* We assume jcmaster.c already validated the progressive scan parameters. */ |
| |
| /* Select execution routines */ |
| if (cinfo->progressive_mode) { |
| if (cinfo->Ah == 0) { |
| if (cinfo->Ss == 0) |
| entropy->pub.encode_mcu = encode_mcu_DC_first; |
| else |
| entropy->pub.encode_mcu = encode_mcu_AC_first; |
| } else { |
| if (cinfo->Ss == 0) |
| entropy->pub.encode_mcu = encode_mcu_DC_refine; |
| else |
| entropy->pub.encode_mcu = encode_mcu_AC_refine; |
| } |
| } else |
| entropy->pub.encode_mcu = encode_mcu; |
| |
| /* Allocate & initialize requested statistics areas */ |
| for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| compptr = cinfo->cur_comp_info[ci]; |
| /* DC needs no table for refinement scan */ |
| if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
| tbl = compptr->dc_tbl_no; |
| if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
| ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
| if (entropy->dc_stats[tbl] == NULL) |
| entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
| ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); |
| MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); |
| /* Initialize DC predictions to 0 */ |
| entropy->last_dc_val[ci] = 0; |
| entropy->dc_context[ci] = 0; |
| } |
| /* AC needs no table when not present */ |
| if (cinfo->progressive_mode == 0 || cinfo->Se) { |
| tbl = compptr->ac_tbl_no; |
| if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
| ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
| if (entropy->ac_stats[tbl] == NULL) |
| entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
| ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); |
| MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); |
| #ifdef CALCULATE_SPECTRAL_CONDITIONING |
| if (cinfo->progressive_mode) |
| /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */ |
| cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4); |
| #endif |
| } |
| } |
| |
| /* Initialize arithmetic encoding variables */ |
| entropy->c = 0; |
| entropy->a = 0x10000L; |
| entropy->sc = 0; |
| entropy->zc = 0; |
| entropy->ct = 11; |
| entropy->buffer = -1; /* empty */ |
| |
| /* Initialize restart stuff */ |
| entropy->restarts_to_go = cinfo->restart_interval; |
| entropy->next_restart_num = 0; |
| } |
| |
| |
| /* |
| * Module initialization routine for arithmetic entropy encoding. |
| */ |
| |
| GLOBAL(void) |
| jinit_arith_encoder (j_compress_ptr cinfo) |
| { |
| arith_entropy_ptr entropy; |
| int i; |
| |
| entropy = (arith_entropy_ptr) |
| (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| SIZEOF(arith_entropy_encoder)); |
| cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
| entropy->pub.start_pass = start_pass; |
| entropy->pub.finish_pass = finish_pass; |
| |
| /* Mark tables unallocated */ |
| for (i = 0; i < NUM_ARITH_TBLS; i++) { |
| entropy->dc_stats[i] = NULL; |
| entropy->ac_stats[i] = NULL; |
| } |
| |
| /* Initialize index for fixed probability estimation */ |
| entropy->fixed_bin[0] = 113; |
| } |