| /* |
| * jmemmgr.c |
| * |
| * This file was part of the Independent JPEG Group's software: |
| * Copyright (C) 1991-1997, Thomas G. Lane. |
| * libjpeg-turbo Modifications: |
| * Copyright (C) 2016, D. R. Commander. |
| * For conditions of distribution and use, see the accompanying README.ijg |
| * file. |
| * |
| * This file contains the JPEG system-independent memory management |
| * routines. This code is usable across a wide variety of machines; most |
| * of the system dependencies have been isolated in a separate file. |
| * The major functions provided here are: |
| * * pool-based allocation and freeing of memory; |
| * * policy decisions about how to divide available memory among the |
| * virtual arrays; |
| * * control logic for swapping virtual arrays between main memory and |
| * backing storage. |
| * The separate system-dependent file provides the actual backing-storage |
| * access code, and it contains the policy decision about how much total |
| * main memory to use. |
| * This file is system-dependent in the sense that some of its functions |
| * are unnecessary in some systems. For example, if there is enough virtual |
| * memory so that backing storage will never be used, much of the virtual |
| * array control logic could be removed. (Of course, if you have that much |
| * memory then you shouldn't care about a little bit of unused code...) |
| */ |
| |
| #define JPEG_INTERNALS |
| #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ |
| #include "jinclude.h" |
| #include "jpeglib.h" |
| #include "jmemsys.h" /* import the system-dependent declarations */ |
| |
| #ifndef NO_GETENV |
| #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ |
| extern char *getenv (const char *name); |
| #endif |
| #endif |
| |
| |
| LOCAL(size_t) |
| round_up_pow2 (size_t a, size_t b) |
| /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */ |
| /* Assumes a >= 0, b > 0, and b is a power of 2 */ |
| { |
| return ((a + b - 1) & (~(b - 1))); |
| } |
| |
| |
| /* |
| * Some important notes: |
| * The allocation routines provided here must never return NULL. |
| * They should exit to error_exit if unsuccessful. |
| * |
| * It's not a good idea to try to merge the sarray and barray routines, |
| * even though they are textually almost the same, because samples are |
| * usually stored as bytes while coefficients are shorts or ints. Thus, |
| * in machines where byte pointers have a different representation from |
| * word pointers, the resulting machine code could not be the same. |
| */ |
| |
| |
| /* |
| * Many machines require storage alignment: longs must start on 4-byte |
| * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() |
| * always returns pointers that are multiples of the worst-case alignment |
| * requirement, and we had better do so too. |
| * There isn't any really portable way to determine the worst-case alignment |
| * requirement. This module assumes that the alignment requirement is |
| * multiples of ALIGN_SIZE. |
| * By default, we define ALIGN_SIZE as sizeof(double). This is necessary on |
| * some workstations (where doubles really do need 8-byte alignment) and will |
| * work fine on nearly everything. If your machine has lesser alignment needs, |
| * you can save a few bytes by making ALIGN_SIZE smaller. |
| * The only place I know of where this will NOT work is certain Macintosh |
| * 680x0 compilers that define double as a 10-byte IEEE extended float. |
| * Doing 10-byte alignment is counterproductive because longwords won't be |
| * aligned well. Put "#define ALIGN_SIZE 4" in jconfig.h if you have |
| * such a compiler. |
| */ |
| |
| #ifndef ALIGN_SIZE /* so can override from jconfig.h */ |
| #ifndef WITH_SIMD |
| #define ALIGN_SIZE sizeof(double) |
| #else |
| #define ALIGN_SIZE 32 /* Most of the SIMD instructions we support require |
| 16-byte (128-bit) alignment, but AVX2 requires |
| 32-byte alignment. */ |
| #endif |
| #endif |
| |
| /* |
| * We allocate objects from "pools", where each pool is gotten with a single |
| * request to jpeg_get_small() or jpeg_get_large(). There is no per-object |
| * overhead within a pool, except for alignment padding. Each pool has a |
| * header with a link to the next pool of the same class. |
| * Small and large pool headers are identical. |
| */ |
| |
| typedef struct small_pool_struct *small_pool_ptr; |
| |
| typedef struct small_pool_struct { |
| small_pool_ptr next; /* next in list of pools */ |
| size_t bytes_used; /* how many bytes already used within pool */ |
| size_t bytes_left; /* bytes still available in this pool */ |
| } small_pool_hdr; |
| |
| typedef struct large_pool_struct *large_pool_ptr; |
| |
| typedef struct large_pool_struct { |
| large_pool_ptr next; /* next in list of pools */ |
| size_t bytes_used; /* how many bytes already used within pool */ |
| size_t bytes_left; /* bytes still available in this pool */ |
| } large_pool_hdr; |
| |
| /* |
| * Here is the full definition of a memory manager object. |
| */ |
| |
| typedef struct { |
| struct jpeg_memory_mgr pub; /* public fields */ |
| |
| /* Each pool identifier (lifetime class) names a linked list of pools. */ |
| small_pool_ptr small_list[JPOOL_NUMPOOLS]; |
| large_pool_ptr large_list[JPOOL_NUMPOOLS]; |
| |
| /* Since we only have one lifetime class of virtual arrays, only one |
| * linked list is necessary (for each datatype). Note that the virtual |
| * array control blocks being linked together are actually stored somewhere |
| * in the small-pool list. |
| */ |
| jvirt_sarray_ptr virt_sarray_list; |
| jvirt_barray_ptr virt_barray_list; |
| |
| /* This counts total space obtained from jpeg_get_small/large */ |
| size_t total_space_allocated; |
| |
| /* alloc_sarray and alloc_barray set this value for use by virtual |
| * array routines. |
| */ |
| JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ |
| } my_memory_mgr; |
| |
| typedef my_memory_mgr *my_mem_ptr; |
| |
| |
| /* |
| * The control blocks for virtual arrays. |
| * Note that these blocks are allocated in the "small" pool area. |
| * System-dependent info for the associated backing store (if any) is hidden |
| * inside the backing_store_info struct. |
| */ |
| |
| struct jvirt_sarray_control { |
| JSAMPARRAY mem_buffer; /* => the in-memory buffer */ |
| JDIMENSION rows_in_array; /* total virtual array height */ |
| JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ |
| JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ |
| JDIMENSION rows_in_mem; /* height of memory buffer */ |
| JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
| JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
| JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
| boolean pre_zero; /* pre-zero mode requested? */ |
| boolean dirty; /* do current buffer contents need written? */ |
| boolean b_s_open; /* is backing-store data valid? */ |
| jvirt_sarray_ptr next; /* link to next virtual sarray control block */ |
| backing_store_info b_s_info; /* System-dependent control info */ |
| }; |
| |
| struct jvirt_barray_control { |
| JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ |
| JDIMENSION rows_in_array; /* total virtual array height */ |
| JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ |
| JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ |
| JDIMENSION rows_in_mem; /* height of memory buffer */ |
| JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
| JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
| JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
| boolean pre_zero; /* pre-zero mode requested? */ |
| boolean dirty; /* do current buffer contents need written? */ |
| boolean b_s_open; /* is backing-store data valid? */ |
| jvirt_barray_ptr next; /* link to next virtual barray control block */ |
| backing_store_info b_s_info; /* System-dependent control info */ |
| }; |
| |
| |
| #ifdef MEM_STATS /* optional extra stuff for statistics */ |
| |
| LOCAL(void) |
| print_mem_stats (j_common_ptr cinfo, int pool_id) |
| { |
| my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
| small_pool_ptr shdr_ptr; |
| large_pool_ptr lhdr_ptr; |
| |
| /* Since this is only a debugging stub, we can cheat a little by using |
| * fprintf directly rather than going through the trace message code. |
| * This is helpful because message parm array can't handle longs. |
| */ |
| fprintf(stderr, "Freeing pool %d, total space = %ld\n", |
| pool_id, mem->total_space_allocated); |
| |
| for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; |
| lhdr_ptr = lhdr_ptr->next) { |
| fprintf(stderr, " Large chunk used %ld\n", |
| (long) lhdr_ptr->bytes_used); |
| } |
| |
| for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; |
| shdr_ptr = shdr_ptr->next) { |
| fprintf(stderr, " Small chunk used %ld free %ld\n", |
| (long) shdr_ptr->bytes_used, |
| (long) shdr_ptr->bytes_left); |
| } |
| } |
| |
| #endif /* MEM_STATS */ |
| |
| |
| LOCAL(void) |
| out_of_memory (j_common_ptr cinfo, int which) |
| /* Report an out-of-memory error and stop execution */ |
| /* If we compiled MEM_STATS support, report alloc requests before dying */ |
| { |
| #ifdef MEM_STATS |
| cinfo->err->trace_level = 2; /* force self_destruct to report stats */ |
| #endif |
| ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); |
| } |
| |
| |
| /* |
| * Allocation of "small" objects. |
| * |
| * For these, we use pooled storage. When a new pool must be created, |
| * we try to get enough space for the current request plus a "slop" factor, |
| * where the slop will be the amount of leftover space in the new pool. |
| * The speed vs. space tradeoff is largely determined by the slop values. |
| * A different slop value is provided for each pool class (lifetime), |
| * and we also distinguish the first pool of a class from later ones. |
| * NOTE: the values given work fairly well on both 16- and 32-bit-int |
| * machines, but may be too small if longs are 64 bits or more. |
| * |
| * Since we do not know what alignment malloc() gives us, we have to |
| * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment |
| * adjustment. |
| */ |
| |
| static const size_t first_pool_slop[JPOOL_NUMPOOLS] = |
| { |
| 1600, /* first PERMANENT pool */ |
| 16000 /* first IMAGE pool */ |
| }; |
| |
| static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = |
| { |
| 0, /* additional PERMANENT pools */ |
| 5000 /* additional IMAGE pools */ |
| }; |
| |
| #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ |
| |
| |
| METHODDEF(void *) |
| alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
| /* Allocate a "small" object */ |
| { |
| my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
| small_pool_ptr hdr_ptr, prev_hdr_ptr; |
| char *data_ptr; |
| size_t min_request, slop; |
| |
| /* |
| * Round up the requested size to a multiple of ALIGN_SIZE in order |
| * to assure alignment for the next object allocated in the same pool |
| * and so that algorithms can straddle outside the proper area up |
| * to the next alignment. |
| */ |
| if (sizeofobject > MAX_ALLOC_CHUNK) { |
| /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
| is close to SIZE_MAX. */ |
| out_of_memory(cinfo, 7); |
| } |
| sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); |
| |
| /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
| if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > |
| MAX_ALLOC_CHUNK) |
| out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ |
| |
| /* See if space is available in any existing pool */ |
| if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
| ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
| prev_hdr_ptr = NULL; |
| hdr_ptr = mem->small_list[pool_id]; |
| while (hdr_ptr != NULL) { |
| if (hdr_ptr->bytes_left >= sizeofobject) |
| break; /* found pool with enough space */ |
| prev_hdr_ptr = hdr_ptr; |
| hdr_ptr = hdr_ptr->next; |
| } |
| |
| /* Time to make a new pool? */ |
| if (hdr_ptr == NULL) { |
| /* min_request is what we need now, slop is what will be leftover */ |
| min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1; |
| if (prev_hdr_ptr == NULL) /* first pool in class? */ |
| slop = first_pool_slop[pool_id]; |
| else |
| slop = extra_pool_slop[pool_id]; |
| /* Don't ask for more than MAX_ALLOC_CHUNK */ |
| if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) |
| slop = (size_t) (MAX_ALLOC_CHUNK-min_request); |
| /* Try to get space, if fail reduce slop and try again */ |
| for (;;) { |
| hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); |
| if (hdr_ptr != NULL) |
| break; |
| slop /= 2; |
| if (slop < MIN_SLOP) /* give up when it gets real small */ |
| out_of_memory(cinfo, 2); /* jpeg_get_small failed */ |
| } |
| mem->total_space_allocated += min_request + slop; |
| /* Success, initialize the new pool header and add to end of list */ |
| hdr_ptr->next = NULL; |
| hdr_ptr->bytes_used = 0; |
| hdr_ptr->bytes_left = sizeofobject + slop; |
| if (prev_hdr_ptr == NULL) /* first pool in class? */ |
| mem->small_list[pool_id] = hdr_ptr; |
| else |
| prev_hdr_ptr->next = hdr_ptr; |
| } |
| |
| /* OK, allocate the object from the current pool */ |
| data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */ |
| data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ |
| if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ |
| data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; |
| data_ptr += hdr_ptr->bytes_used; /* point to place for object */ |
| hdr_ptr->bytes_used += sizeofobject; |
| hdr_ptr->bytes_left -= sizeofobject; |
| |
| return (void *) data_ptr; |
| } |
| |
| |
| /* |
| * Allocation of "large" objects. |
| * |
| * The external semantics of these are the same as "small" objects. However, |
| * the pool management heuristics are quite different. We assume that each |
| * request is large enough that it may as well be passed directly to |
| * jpeg_get_large; the pool management just links everything together |
| * so that we can free it all on demand. |
| * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY |
| * structures. The routines that create these structures (see below) |
| * deliberately bunch rows together to ensure a large request size. |
| */ |
| |
| METHODDEF(void *) |
| alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
| /* Allocate a "large" object */ |
| { |
| my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
| large_pool_ptr hdr_ptr; |
| char *data_ptr; |
| |
| /* |
| * Round up the requested size to a multiple of ALIGN_SIZE so that |
| * algorithms can straddle outside the proper area up to the next |
| * alignment. |
| */ |
| if (sizeofobject > MAX_ALLOC_CHUNK) { |
| /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
| is close to SIZE_MAX. */ |
| out_of_memory(cinfo, 8); |
| } |
| sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); |
| |
| /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
| if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > |
| MAX_ALLOC_CHUNK) |
| out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ |
| |
| /* Always make a new pool */ |
| if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
| ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
| |
| hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + |
| sizeof(large_pool_hdr) + |
| ALIGN_SIZE - 1); |
| if (hdr_ptr == NULL) |
| out_of_memory(cinfo, 4); /* jpeg_get_large failed */ |
| mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) + |
| ALIGN_SIZE - 1; |
| |
| /* Success, initialize the new pool header and add to list */ |
| hdr_ptr->next = mem->large_list[pool_id]; |
| /* We maintain space counts in each pool header for statistical purposes, |
| * even though they are not needed for allocation. |
| */ |
| hdr_ptr->bytes_used = sizeofobject; |
| hdr_ptr->bytes_left = 0; |
| mem->large_list[pool_id] = hdr_ptr; |
| |
| data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */ |
| data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ |
| if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ |
| data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; |
| |
| return (void *) data_ptr; |
| } |
| |
| |
| /* |
| * Creation of 2-D sample arrays. |
| * |
| * To minimize allocation overhead and to allow I/O of large contiguous |
| * blocks, we allocate the sample rows in groups of as many rows as possible |
| * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. |
| * NB: the virtual array control routines, later in this file, know about |
| * this chunking of rows. The rowsperchunk value is left in the mem manager |
| * object so that it can be saved away if this sarray is the workspace for |
| * a virtual array. |
| * |
| * Since we are often upsampling with a factor 2, we align the size (not |
| * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have |
| * to be as careful about size. |
| */ |
| |
| METHODDEF(JSAMPARRAY) |
| alloc_sarray (j_common_ptr cinfo, int pool_id, |
| JDIMENSION samplesperrow, JDIMENSION numrows) |
| /* Allocate a 2-D sample array */ |
| { |
| my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
| JSAMPARRAY result; |
| JSAMPROW workspace; |
| JDIMENSION rowsperchunk, currow, i; |
| long ltemp; |
| |
| /* Make sure each row is properly aligned */ |
| if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0) |
| out_of_memory(cinfo, 5); /* safety check */ |
| |
| if (samplesperrow > MAX_ALLOC_CHUNK) { |
| /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
| is close to SIZE_MAX. */ |
| out_of_memory(cinfo, 9); |
| } |
| samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / |
| sizeof(JSAMPLE)); |
| |
| /* Calculate max # of rows allowed in one allocation chunk */ |
| ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) / |
| ((long) samplesperrow * sizeof(JSAMPLE)); |
| if (ltemp <= 0) |
| ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
| if (ltemp < (long) numrows) |
| rowsperchunk = (JDIMENSION) ltemp; |
| else |
| rowsperchunk = numrows; |
| mem->last_rowsperchunk = rowsperchunk; |
| |
| /* Get space for row pointers (small object) */ |
| result = (JSAMPARRAY) alloc_small(cinfo, pool_id, |
| (size_t) (numrows * sizeof(JSAMPROW))); |
| |
| /* Get the rows themselves (large objects) */ |
| currow = 0; |
| while (currow < numrows) { |
| rowsperchunk = MIN(rowsperchunk, numrows - currow); |
| workspace = (JSAMPROW) alloc_large(cinfo, pool_id, |
| (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow |
| * sizeof(JSAMPLE))); |
| for (i = rowsperchunk; i > 0; i--) { |
| result[currow++] = workspace; |
| workspace += samplesperrow; |
| } |
| } |
| |
| return result; |
| } |
| |
| |
| /* |
| * Creation of 2-D coefficient-block arrays. |
| * This is essentially the same as the code for sample arrays, above. |
| */ |
| |
| METHODDEF(JBLOCKARRAY) |
| alloc_barray (j_common_ptr cinfo, int pool_id, |
| JDIMENSION blocksperrow, JDIMENSION numrows) |
| /* Allocate a 2-D coefficient-block array */ |
| { |
| my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
| JBLOCKARRAY result; |
| JBLOCKROW workspace; |
| JDIMENSION rowsperchunk, currow, i; |
| long ltemp; |
| |
| /* Make sure each row is properly aligned */ |
| if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0) |
| out_of_memory(cinfo, 6); /* safety check */ |
| |
| /* Calculate max # of rows allowed in one allocation chunk */ |
| ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) / |
| ((long) blocksperrow * sizeof(JBLOCK)); |
| if (ltemp <= 0) |
| ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
| if (ltemp < (long) numrows) |
| rowsperchunk = (JDIMENSION) ltemp; |
| else |
| rowsperchunk = numrows; |
| mem->last_rowsperchunk = rowsperchunk; |
| |
| /* Get space for row pointers (small object) */ |
| result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, |
| (size_t) (numrows * sizeof(JBLOCKROW))); |
| |
| /* Get the rows themselves (large objects) */ |
| currow = 0; |
| while (currow < numrows) { |
| rowsperchunk = MIN(rowsperchunk, numrows - currow); |
| workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, |
| (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow |
| * sizeof(JBLOCK))); |
| for (i = rowsperchunk; i > 0; i--) { |
| result[currow++] = workspace; |
| workspace += blocksperrow; |
| } |
| } |
| |
| return result; |
| } |
| |
| |
| /* |
| * About virtual array management: |
| * |
| * The above "normal" array routines are only used to allocate strip buffers |
| * (as wide as the image, but just a few rows high). Full-image-sized buffers |
| * are handled as "virtual" arrays. The array is still accessed a strip at a |
| * time, but the memory manager must save the whole array for repeated |
| * accesses. The intended implementation is that there is a strip buffer in |
| * memory (as high as is possible given the desired memory limit), plus a |
| * backing file that holds the rest of the array. |
| * |
| * The request_virt_array routines are told the total size of the image and |
| * the maximum number of rows that will be accessed at once. The in-memory |
| * buffer must be at least as large as the maxaccess value. |
| * |
| * The request routines create control blocks but not the in-memory buffers. |
| * That is postponed until realize_virt_arrays is called. At that time the |
| * total amount of space needed is known (approximately, anyway), so free |
| * memory can be divided up fairly. |
| * |
| * The access_virt_array routines are responsible for making a specific strip |
| * area accessible (after reading or writing the backing file, if necessary). |
| * Note that the access routines are told whether the caller intends to modify |
| * the accessed strip; during a read-only pass this saves having to rewrite |
| * data to disk. The access routines are also responsible for pre-zeroing |
| * any newly accessed rows, if pre-zeroing was requested. |
| * |
| * In current usage, the access requests are usually for nonoverlapping |
| * strips; that is, successive access start_row numbers differ by exactly |
| * num_rows = maxaccess. This means we can get good performance with simple |
| * buffer dump/reload logic, by making the in-memory buffer be a multiple |
| * of the access height; then there will never be accesses across bufferload |
| * boundaries. The code will still work with overlapping access requests, |
| * but it doesn't handle bufferload overlaps very efficiently. |
| */ |
| |
| |
| METHODDEF(jvirt_sarray_ptr) |
| request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
| JDIMENSION samplesperrow, JDIMENSION numrows, |
| JDIMENSION maxaccess) |
| /* Request a virtual 2-D sample array */ |
| { |
| my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
| jvirt_sarray_ptr result; |
| |
| /* Only IMAGE-lifetime virtual arrays are currently supported */ |
| if (pool_id != JPOOL_IMAGE) |
| ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
| |
| /* get control block */ |
| result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, |
| sizeof(struct jvirt_sarray_control)); |
| |
| result->mem_buffer = NULL; /* marks array not yet realized */ |
| result->rows_in_array = numrows; |
| result->samplesperrow = samplesperrow; |
| result->maxaccess = maxaccess; |
| result->pre_zero = pre_zero; |
| result->b_s_open = FALSE; /* no associated backing-store object */ |
| result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ |
| mem->virt_sarray_list = result; |
| |
| return result; |
| } |
| |
| |
| METHODDEF(jvirt_barray_ptr) |
| request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
| JDIMENSION blocksperrow, JDIMENSION numrows, |
| JDIMENSION maxaccess) |
| /* Request a virtual 2-D coefficient-block array */ |
| { |
| my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
| jvirt_barray_ptr result; |
| |
| /* Only IMAGE-lifetime virtual arrays are currently supported */ |
| if (pool_id != JPOOL_IMAGE) |
| ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
| |
| /* get control block */ |
| result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, |
| sizeof(struct jvirt_barray_control)); |
| |
| result->mem_buffer = NULL; /* marks array not yet realized */ |
| result->rows_in_array = numrows; |
| result->blocksperrow = blocksperrow; |
| result->maxaccess = maxaccess; |
| result->pre_zero = pre_zero; |
| result->b_s_open = FALSE; /* no associated backing-store object */ |
| result->next = mem->virt_barray_list; /* add to list of virtual arrays */ |
| mem->virt_barray_list = result; |
| |
| return result; |
| } |
| |
| |
| METHODDEF(void) |
| realize_virt_arrays (j_common_ptr cinfo) |
| /* Allocate the in-memory buffers for any unrealized virtual arrays */ |
| { |
| my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
| size_t space_per_minheight, maximum_space, avail_mem; |
| size_t minheights, max_minheights; |
| jvirt_sarray_ptr sptr; |
| jvirt_barray_ptr bptr; |
| |
| /* Compute the minimum space needed (maxaccess rows in each buffer) |
| * and the maximum space needed (full image height in each buffer). |
| * These may be of use to the system-dependent jpeg_mem_available routine. |
| */ |
| space_per_minheight = 0; |
| maximum_space = 0; |
| for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
| if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
| space_per_minheight += (long) sptr->maxaccess * |
| (long) sptr->samplesperrow * sizeof(JSAMPLE); |
| maximum_space += (long) sptr->rows_in_array * |
| (long) sptr->samplesperrow * sizeof(JSAMPLE); |
| } |
| } |
| for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
| if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
| space_per_minheight += (long) bptr->maxaccess * |
| (long) bptr->blocksperrow * sizeof(JBLOCK); |
| maximum_space += (long) bptr->rows_in_array * |
| (long) bptr->blocksperrow * sizeof(JBLOCK); |
| } |
| } |
| |
| if (space_per_minheight <= 0) |
| return; /* no unrealized arrays, no work */ |
| |
| /* Determine amount of memory to actually use; this is system-dependent. */ |
| avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, |
| mem->total_space_allocated); |
| |
| /* If the maximum space needed is available, make all the buffers full |
| * height; otherwise parcel it out with the same number of minheights |
| * in each buffer. |
| */ |
| if (avail_mem >= maximum_space) |
| max_minheights = 1000000000L; |
| else { |
| max_minheights = avail_mem / space_per_minheight; |
| /* If there doesn't seem to be enough space, try to get the minimum |
| * anyway. This allows a "stub" implementation of jpeg_mem_available(). |
| */ |
| if (max_minheights <= 0) |
| max_minheights = 1; |
| } |
| |
| /* Allocate the in-memory buffers and initialize backing store as needed. */ |
| |
| for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
| if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
| minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; |
| if (minheights <= max_minheights) { |
| /* This buffer fits in memory */ |
| sptr->rows_in_mem = sptr->rows_in_array; |
| } else { |
| /* It doesn't fit in memory, create backing store. */ |
| sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); |
| jpeg_open_backing_store(cinfo, & sptr->b_s_info, |
| (long) sptr->rows_in_array * |
| (long) sptr->samplesperrow * |
| (long) sizeof(JSAMPLE)); |
| sptr->b_s_open = TRUE; |
| } |
| sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, |
| sptr->samplesperrow, sptr->rows_in_mem); |
| sptr->rowsperchunk = mem->last_rowsperchunk; |
| sptr->cur_start_row = 0; |
| sptr->first_undef_row = 0; |
| sptr->dirty = FALSE; |
| } |
| } |
| |
| for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
| if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
| minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; |
| if (minheights <= max_minheights) { |
| /* This buffer fits in memory */ |
| bptr->rows_in_mem = bptr->rows_in_array; |
| } else { |
| /* It doesn't fit in memory, create backing store. */ |
| bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); |
| jpeg_open_backing_store(cinfo, & bptr->b_s_info, |
| (long) bptr->rows_in_array * |
| (long) bptr->blocksperrow * |
| (long) sizeof(JBLOCK)); |
| bptr->b_s_open = TRUE; |
| } |
| bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, |
| bptr->blocksperrow, bptr->rows_in_mem); |
| bptr->rowsperchunk = mem->last_rowsperchunk; |
| bptr->cur_start_row = 0; |
| bptr->first_undef_row = 0; |
| bptr->dirty = FALSE; |
| } |
| } |
| } |
| |
| |
| LOCAL(void) |
| do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) |
| /* Do backing store read or write of a virtual sample array */ |
| { |
| long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
| |
| bytesperrow = (long) ptr->samplesperrow * sizeof(JSAMPLE); |
| file_offset = ptr->cur_start_row * bytesperrow; |
| /* Loop to read or write each allocation chunk in mem_buffer */ |
| for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
| /* One chunk, but check for short chunk at end of buffer */ |
| rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
| /* Transfer no more than is currently defined */ |
| thisrow = (long) ptr->cur_start_row + i; |
| rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
| /* Transfer no more than fits in file */ |
| rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
| if (rows <= 0) /* this chunk might be past end of file! */ |
| break; |
| byte_count = rows * bytesperrow; |
| if (writing) |
| (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
| (void *) ptr->mem_buffer[i], |
| file_offset, byte_count); |
| else |
| (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
| (void *) ptr->mem_buffer[i], |
| file_offset, byte_count); |
| file_offset += byte_count; |
| } |
| } |
| |
| |
| LOCAL(void) |
| do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) |
| /* Do backing store read or write of a virtual coefficient-block array */ |
| { |
| long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
| |
| bytesperrow = (long) ptr->blocksperrow * sizeof(JBLOCK); |
| file_offset = ptr->cur_start_row * bytesperrow; |
| /* Loop to read or write each allocation chunk in mem_buffer */ |
| for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
| /* One chunk, but check for short chunk at end of buffer */ |
| rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
| /* Transfer no more than is currently defined */ |
| thisrow = (long) ptr->cur_start_row + i; |
| rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
| /* Transfer no more than fits in file */ |
| rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
| if (rows <= 0) /* this chunk might be past end of file! */ |
| break; |
| byte_count = rows * bytesperrow; |
| if (writing) |
| (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
| (void *) ptr->mem_buffer[i], |
| file_offset, byte_count); |
| else |
| (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
| (void *) ptr->mem_buffer[i], |
| file_offset, byte_count); |
| file_offset += byte_count; |
| } |
| } |
| |
| |
| METHODDEF(JSAMPARRAY) |
| access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, |
| JDIMENSION start_row, JDIMENSION num_rows, |
| boolean writable) |
| /* Access the part of a virtual sample array starting at start_row */ |
| /* and extending for num_rows rows. writable is true if */ |
| /* caller intends to modify the accessed area. */ |
| { |
| JDIMENSION end_row = start_row + num_rows; |
| JDIMENSION undef_row; |
| |
| /* debugging check */ |
| if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
| ptr->mem_buffer == NULL) |
| ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
| |
| /* Make the desired part of the virtual array accessible */ |
| if (start_row < ptr->cur_start_row || |
| end_row > ptr->cur_start_row+ptr->rows_in_mem) { |
| if (! ptr->b_s_open) |
| ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
| /* Flush old buffer contents if necessary */ |
| if (ptr->dirty) { |
| do_sarray_io(cinfo, ptr, TRUE); |
| ptr->dirty = FALSE; |
| } |
| /* Decide what part of virtual array to access. |
| * Algorithm: if target address > current window, assume forward scan, |
| * load starting at target address. If target address < current window, |
| * assume backward scan, load so that target area is top of window. |
| * Note that when switching from forward write to forward read, will have |
| * start_row = 0, so the limiting case applies and we load from 0 anyway. |
| */ |
| if (start_row > ptr->cur_start_row) { |
| ptr->cur_start_row = start_row; |
| } else { |
| /* use long arithmetic here to avoid overflow & unsigned problems */ |
| long ltemp; |
| |
| ltemp = (long) end_row - (long) ptr->rows_in_mem; |
| if (ltemp < 0) |
| ltemp = 0; /* don't fall off front end of file */ |
| ptr->cur_start_row = (JDIMENSION) ltemp; |
| } |
| /* Read in the selected part of the array. |
| * During the initial write pass, we will do no actual read |
| * because the selected part is all undefined. |
| */ |
| do_sarray_io(cinfo, ptr, FALSE); |
| } |
| /* Ensure the accessed part of the array is defined; prezero if needed. |
| * To improve locality of access, we only prezero the part of the array |
| * that the caller is about to access, not the entire in-memory array. |
| */ |
| if (ptr->first_undef_row < end_row) { |
| if (ptr->first_undef_row < start_row) { |
| if (writable) /* writer skipped over a section of array */ |
| ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
| undef_row = start_row; /* but reader is allowed to read ahead */ |
| } else { |
| undef_row = ptr->first_undef_row; |
| } |
| if (writable) |
| ptr->first_undef_row = end_row; |
| if (ptr->pre_zero) { |
| size_t bytesperrow = (size_t) ptr->samplesperrow * sizeof(JSAMPLE); |
| undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
| end_row -= ptr->cur_start_row; |
| while (undef_row < end_row) { |
| jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow); |
| undef_row++; |
| } |
| } else { |
| if (! writable) /* reader looking at undefined data */ |
| ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
| } |
| } |
| /* Flag the buffer dirty if caller will write in it */ |
| if (writable) |
| ptr->dirty = TRUE; |
| /* Return address of proper part of the buffer */ |
| return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
| } |
| |
| |
| METHODDEF(JBLOCKARRAY) |
| access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, |
| JDIMENSION start_row, JDIMENSION num_rows, |
| boolean writable) |
| /* Access the part of a virtual block array starting at start_row */ |
| /* and extending for num_rows rows. writable is true if */ |
| /* caller intends to modify the accessed area. */ |
| { |
| JDIMENSION end_row = start_row + num_rows; |
| JDIMENSION undef_row; |
| |
| /* debugging check */ |
| if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
| ptr->mem_buffer == NULL) |
| ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
| |
| /* Make the desired part of the virtual array accessible */ |
| if (start_row < ptr->cur_start_row || |
| end_row > ptr->cur_start_row+ptr->rows_in_mem) { |
| if (! ptr->b_s_open) |
| ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
| /* Flush old buffer contents if necessary */ |
| if (ptr->dirty) { |
| do_barray_io(cinfo, ptr, TRUE); |
| ptr->dirty = FALSE; |
| } |
| /* Decide what part of virtual array to access. |
| * Algorithm: if target address > current window, assume forward scan, |
| * load starting at target address. If target address < current window, |
| * assume backward scan, load so that target area is top of window. |
| * Note that when switching from forward write to forward read, will have |
| * start_row = 0, so the limiting case applies and we load from 0 anyway. |
| */ |
| if (start_row > ptr->cur_start_row) { |
| ptr->cur_start_row = start_row; |
| } else { |
| /* use long arithmetic here to avoid overflow & unsigned problems */ |
| long ltemp; |
| |
| ltemp = (long) end_row - (long) ptr->rows_in_mem; |
| if (ltemp < 0) |
| ltemp = 0; /* don't fall off front end of file */ |
| ptr->cur_start_row = (JDIMENSION) ltemp; |
| } |
| /* Read in the selected part of the array. |
| * During the initial write pass, we will do no actual read |
| * because the selected part is all undefined. |
| */ |
| do_barray_io(cinfo, ptr, FALSE); |
| } |
| /* Ensure the accessed part of the array is defined; prezero if needed. |
| * To improve locality of access, we only prezero the part of the array |
| * that the caller is about to access, not the entire in-memory array. |
| */ |
| if (ptr->first_undef_row < end_row) { |
| if (ptr->first_undef_row < start_row) { |
| if (writable) /* writer skipped over a section of array */ |
| ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
| undef_row = start_row; /* but reader is allowed to read ahead */ |
| } else { |
| undef_row = ptr->first_undef_row; |
| } |
| if (writable) |
| ptr->first_undef_row = end_row; |
| if (ptr->pre_zero) { |
| size_t bytesperrow = (size_t) ptr->blocksperrow * sizeof(JBLOCK); |
| undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
| end_row -= ptr->cur_start_row; |
| while (undef_row < end_row) { |
| jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow); |
| undef_row++; |
| } |
| } else { |
| if (! writable) /* reader looking at undefined data */ |
| ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
| } |
| } |
| /* Flag the buffer dirty if caller will write in it */ |
| if (writable) |
| ptr->dirty = TRUE; |
| /* Return address of proper part of the buffer */ |
| return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
| } |
| |
| |
| /* |
| * Release all objects belonging to a specified pool. |
| */ |
| |
| METHODDEF(void) |
| free_pool (j_common_ptr cinfo, int pool_id) |
| { |
| my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
| small_pool_ptr shdr_ptr; |
| large_pool_ptr lhdr_ptr; |
| size_t space_freed; |
| |
| if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
| ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
| |
| #ifdef MEM_STATS |
| if (cinfo->err->trace_level > 1) |
| print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ |
| #endif |
| |
| /* If freeing IMAGE pool, close any virtual arrays first */ |
| if (pool_id == JPOOL_IMAGE) { |
| jvirt_sarray_ptr sptr; |
| jvirt_barray_ptr bptr; |
| |
| for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
| if (sptr->b_s_open) { /* there may be no backing store */ |
| sptr->b_s_open = FALSE; /* prevent recursive close if error */ |
| (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); |
| } |
| } |
| mem->virt_sarray_list = NULL; |
| for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
| if (bptr->b_s_open) { /* there may be no backing store */ |
| bptr->b_s_open = FALSE; /* prevent recursive close if error */ |
| (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); |
| } |
| } |
| mem->virt_barray_list = NULL; |
| } |
| |
| /* Release large objects */ |
| lhdr_ptr = mem->large_list[pool_id]; |
| mem->large_list[pool_id] = NULL; |
| |
| while (lhdr_ptr != NULL) { |
| large_pool_ptr next_lhdr_ptr = lhdr_ptr->next; |
| space_freed = lhdr_ptr->bytes_used + |
| lhdr_ptr->bytes_left + |
| sizeof(large_pool_hdr); |
| jpeg_free_large(cinfo, (void *) lhdr_ptr, space_freed); |
| mem->total_space_allocated -= space_freed; |
| lhdr_ptr = next_lhdr_ptr; |
| } |
| |
| /* Release small objects */ |
| shdr_ptr = mem->small_list[pool_id]; |
| mem->small_list[pool_id] = NULL; |
| |
| while (shdr_ptr != NULL) { |
| small_pool_ptr next_shdr_ptr = shdr_ptr->next; |
| space_freed = shdr_ptr->bytes_used + |
| shdr_ptr->bytes_left + |
| sizeof(small_pool_hdr); |
| jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); |
| mem->total_space_allocated -= space_freed; |
| shdr_ptr = next_shdr_ptr; |
| } |
| } |
| |
| |
| /* |
| * Close up shop entirely. |
| * Note that this cannot be called unless cinfo->mem is non-NULL. |
| */ |
| |
| METHODDEF(void) |
| self_destruct (j_common_ptr cinfo) |
| { |
| int pool; |
| |
| /* Close all backing store, release all memory. |
| * Releasing pools in reverse order might help avoid fragmentation |
| * with some (brain-damaged) malloc libraries. |
| */ |
| for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
| free_pool(cinfo, pool); |
| } |
| |
| /* Release the memory manager control block too. */ |
| jpeg_free_small(cinfo, (void *) cinfo->mem, sizeof(my_memory_mgr)); |
| cinfo->mem = NULL; /* ensures I will be called only once */ |
| |
| jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
| } |
| |
| |
| /* |
| * Memory manager initialization. |
| * When this is called, only the error manager pointer is valid in cinfo! |
| */ |
| |
| GLOBAL(void) |
| jinit_memory_mgr (j_common_ptr cinfo) |
| { |
| my_mem_ptr mem; |
| long max_to_use; |
| int pool; |
| size_t test_mac; |
| |
| cinfo->mem = NULL; /* for safety if init fails */ |
| |
| /* Check for configuration errors. |
| * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably |
| * doesn't reflect any real hardware alignment requirement. |
| * The test is a little tricky: for X>0, X and X-1 have no one-bits |
| * in common if and only if X is a power of 2, ie has only one one-bit. |
| * Some compilers may give an "unreachable code" warning here; ignore it. |
| */ |
| if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0) |
| ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); |
| /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be |
| * a multiple of ALIGN_SIZE. |
| * Again, an "unreachable code" warning may be ignored here. |
| * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. |
| */ |
| test_mac = (size_t) MAX_ALLOC_CHUNK; |
| if ((long) test_mac != MAX_ALLOC_CHUNK || |
| (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0) |
| ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); |
| |
| max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ |
| |
| /* Attempt to allocate memory manager's control block */ |
| mem = (my_mem_ptr) jpeg_get_small(cinfo, sizeof(my_memory_mgr)); |
| |
| if (mem == NULL) { |
| jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
| ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); |
| } |
| |
| /* OK, fill in the method pointers */ |
| mem->pub.alloc_small = alloc_small; |
| mem->pub.alloc_large = alloc_large; |
| mem->pub.alloc_sarray = alloc_sarray; |
| mem->pub.alloc_barray = alloc_barray; |
| mem->pub.request_virt_sarray = request_virt_sarray; |
| mem->pub.request_virt_barray = request_virt_barray; |
| mem->pub.realize_virt_arrays = realize_virt_arrays; |
| mem->pub.access_virt_sarray = access_virt_sarray; |
| mem->pub.access_virt_barray = access_virt_barray; |
| mem->pub.free_pool = free_pool; |
| mem->pub.self_destruct = self_destruct; |
| |
| /* Make MAX_ALLOC_CHUNK accessible to other modules */ |
| mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; |
| |
| /* Initialize working state */ |
| mem->pub.max_memory_to_use = max_to_use; |
| |
| for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
| mem->small_list[pool] = NULL; |
| mem->large_list[pool] = NULL; |
| } |
| mem->virt_sarray_list = NULL; |
| mem->virt_barray_list = NULL; |
| |
| mem->total_space_allocated = sizeof(my_memory_mgr); |
| |
| /* Declare ourselves open for business */ |
| cinfo->mem = & mem->pub; |
| |
| /* Check for an environment variable JPEGMEM; if found, override the |
| * default max_memory setting from jpeg_mem_init. Note that the |
| * surrounding application may again override this value. |
| * If your system doesn't support getenv(), define NO_GETENV to disable |
| * this feature. |
| */ |
| #ifndef NO_GETENV |
| { char *memenv; |
| |
| if ((memenv = getenv("JPEGMEM")) != NULL) { |
| char ch = 'x'; |
| |
| if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { |
| if (ch == 'm' || ch == 'M') |
| max_to_use *= 1000L; |
| mem->pub.max_memory_to_use = max_to_use * 1000L; |
| } |
| } |
| } |
| #endif |
| |
| } |