blob: 7984f5800f00fd8496abc6e09bb3d246e1916743 [file] [log] [blame]
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +00001/*
2 * jquant2.c
3 *
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00004 * Copyright (C) 1991-1994, Thomas G. Lane.
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +00005 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains 2-pass color quantization (color mapping) routines.
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00009 * These routines provide selection of a custom color map for an image,
10 * followed by mapping of the image to that color map, with optional
11 * Floyd-Steinberg dithering.
12 * It is also possible to use just the second pass to map to an arbitrary
13 * externally-given color map.
14 *
15 * Note: ordered dithering is not supported, since there isn't any fast
16 * way to compute intercolor distances; it's unclear that ordered dither's
17 * fundamental assumptions even hold with an irregularly spaced color map.
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +000018 */
19
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000020#define JPEG_INTERNALS
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +000021#include "jinclude.h"
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000022#include "jpeglib.h"
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +000023
24#ifdef QUANT_2PASS_SUPPORTED
25
26
27/*
Thomas G. Lane4a6b7301992-03-17 00:00:00 +000028 * This module implements the well-known Heckbert paradigm for color
29 * quantization. Most of the ideas used here can be traced back to
30 * Heckbert's seminal paper
31 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
32 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
33 *
34 * In the first pass over the image, we accumulate a histogram showing the
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000035 * usage count of each possible color. To keep the histogram to a reasonable
Thomas G. Lane4a6b7301992-03-17 00:00:00 +000036 * size, we reduce the precision of the input; typical practice is to retain
37 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000038 * in the same histogram cell.
39 *
40 * Next, the color-selection step begins with a box representing the whole
41 * color space, and repeatedly splits the "largest" remaining box until we
42 * have as many boxes as desired colors. Then the mean color in each
43 * remaining box becomes one of the possible output colors.
44 *
Thomas G. Lane4a6b7301992-03-17 00:00:00 +000045 * The second pass over the image maps each input pixel to the closest output
46 * color (optionally after applying a Floyd-Steinberg dithering correction).
47 * This mapping is logically trivial, but making it go fast enough requires
48 * considerable care.
49 *
50 * Heckbert-style quantizers vary a good deal in their policies for choosing
51 * the "largest" box and deciding where to cut it. The particular policies
52 * used here have proved out well in experimental comparisons, but better ones
53 * may yet be found.
54 *
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000055 * In earlier versions of the IJG code, this module quantized in YCbCr color
56 * space, processing the raw upsampled data without a color conversion step.
57 * This allowed the color conversion math to be done only once per colormap
58 * entry, not once per pixel. However, that optimization precluded other
59 * useful optimizations (such as merging color conversion with upsampling)
60 * and it also interfered with desired capabilities such as quantizing to an
61 * externally-supplied colormap. We have therefore abandoned that approach.
62 * The present code works in the post-conversion color space, typically RGB.
63 *
64 * To improve the visual quality of the results, we actually work in scaled
65 * RGB space, giving G distances more weight than R, and R in turn more than
66 * B. To do everything in integer math, we must use integer scale factors.
67 * The 2/3/1 scale factors used here correspond loosely to the relative
68 * weights of the colors in the NTSC grayscale equation.
69 * If you want to use this code to quantize a non-RGB color space, you'll
70 * probably need to change these scale factors.
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +000071 */
72
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000073#define R_SCALE 2 /* scale R distances by this much */
74#define G_SCALE 3 /* scale G distances by this much */
75#define B_SCALE 1 /* and B by this much */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +000076
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000077/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
78 * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
79 * and B,G,R orders. If you define some other weird order in jmorecfg.h,
80 * you'll get compile errors until you extend this logic. In that case
81 * you'll probably want to tweak the histogram sizes too.
82 */
83
84#if RGB_RED == 0
85#define C0_SCALE R_SCALE
86#endif
87#if RGB_BLUE == 0
88#define C0_SCALE B_SCALE
89#endif
90#if RGB_GREEN == 1
91#define C1_SCALE G_SCALE
92#endif
93#if RGB_RED == 2
94#define C2_SCALE R_SCALE
95#endif
96#if RGB_BLUE == 2
97#define C2_SCALE B_SCALE
98#endif
Thomas G. Lane4a6b7301992-03-17 00:00:00 +000099
100
101/*
102 * First we have the histogram data structure and routines for creating it.
103 *
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000104 * The number of bits of precision can be adjusted by changing these symbols.
105 * We recommend keeping 6 bits for G and 5 each for R and B.
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000106 * If you have plenty of memory and cycles, 6 bits all around gives marginally
107 * better results; if you are short of memory, 5 bits all around will save
108 * some space but degrade the results.
109 * To maintain a fully accurate histogram, we'd need to allocate a "long"
110 * (preferably unsigned long) for each cell. In practice this is overkill;
111 * we can get by with 16 bits per cell. Few of the cell counts will overflow,
112 * and clamping those that do overflow to the maximum value will give close-
113 * enough results. This reduces the recommended histogram size from 256Kb
114 * to 128Kb, which is a useful savings on PC-class machines.
115 * (In the second pass the histogram space is re-used for pixel mapping data;
116 * in that capacity, each cell must be able to store zero to the number of
117 * desired colors. 16 bits/cell is plenty for that too.)
118 * Since the JPEG code is intended to run in small memory model on 80x86
119 * machines, we can't just allocate the histogram in one chunk. Instead
120 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000121 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
122 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000123 * on 80x86 machines, the pointer row is in near memory but the actual
124 * arrays are in far memory (same arrangement as we use for image arrays).
125 */
126
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000127#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000128
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000129/* These will do the right thing for either R,G,B or B,G,R color order,
130 * but you may not like the results for other color orders.
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000131 */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000132#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
133#define HIST_C1_BITS 6 /* bits of precision in G histogram */
134#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000135
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000136/* Number of elements along histogram axes. */
137#define HIST_C0_ELEMS (1<<HIST_C0_BITS)
138#define HIST_C1_ELEMS (1<<HIST_C1_BITS)
139#define HIST_C2_ELEMS (1<<HIST_C2_BITS)
140
141/* These are the amounts to shift an input value to get a histogram index. */
142#define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
143#define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
144#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000145
146
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000147typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000148
149typedef histcell FAR * histptr; /* for pointers to histogram cells */
150
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000151typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
152typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000153typedef hist2d * hist3d; /* type for top-level pointer */
154
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000155
156/* Declarations for Floyd-Steinberg dithering.
157 *
158 * Errors are accumulated into the array fserrors[], at a resolution of
159 * 1/16th of a pixel count. The error at a given pixel is propagated
160 * to its not-yet-processed neighbors using the standard F-S fractions,
161 * ... (here) 7/16
162 * 3/16 5/16 1/16
163 * We work left-to-right on even rows, right-to-left on odd rows.
164 *
165 * We can get away with a single array (holding one row's worth of errors)
166 * by using it to store the current row's errors at pixel columns not yet
167 * processed, but the next row's errors at columns already processed. We
168 * need only a few extra variables to hold the errors immediately around the
169 * current column. (If we are lucky, those variables are in registers, but
170 * even if not, they're probably cheaper to access than array elements are.)
171 *
172 * The fserrors[] array has (#columns + 2) entries; the extra entry at
173 * each end saves us from special-casing the first and last pixels.
174 * Each entry is three values long, one value for each color component.
175 *
176 * Note: on a wide image, we might not have enough room in a PC's near data
177 * segment to hold the error array; so it is allocated with alloc_large.
178 */
179
180#if BITS_IN_JSAMPLE == 8
181typedef INT16 FSERROR; /* 16 bits should be enough */
182typedef int LOCFSERROR; /* use 'int' for calculation temps */
183#else
184typedef INT32 FSERROR; /* may need more than 16 bits */
185typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
186#endif
187
188typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
189
190
191/* Private subobject */
192
193typedef struct {
194 struct jpeg_color_quantizer pub; /* public fields */
195
196 /* Variables for accumulating image statistics */
197 hist3d histogram; /* pointer to the histogram */
198
199 /* Variables for Floyd-Steinberg dithering */
200 FSERRPTR fserrors; /* accumulated errors */
201 boolean on_odd_row; /* flag to remember which row we are on */
202 int * error_limiter; /* table for clamping the applied error */
203} my_cquantizer;
204
205typedef my_cquantizer * my_cquantize_ptr;
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000206
207
208/*
209 * Prescan some rows of pixels.
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000210 * In this module the prescan simply updates the histogram, which has been
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000211 * initialized to zeroes by start_pass.
212 * An output_buf parameter is required by the method signature, but no data
213 * is actually output (in fact the buffer controller is probably passing a
214 * NULL pointer).
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000215 */
216
217METHODDEF void
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000218prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
219 JSAMPARRAY output_buf, int num_rows)
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000220{
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000221 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
222 register JSAMPROW ptr;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000223 register histptr histp;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000224 register hist3d histogram = cquantize->histogram;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000225 int row;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000226 JDIMENSION col;
227 JDIMENSION width = cinfo->output_width;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000228
229 for (row = 0; row < num_rows; row++) {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000230 ptr = input_buf[row];
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000231 for (col = width; col > 0; col--) {
232 /* get pixel value and index into the histogram */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000233 histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
234 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
235 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000236 /* increment, check for overflow and undo increment if so. */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000237 if (++(*histp) <= 0)
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000238 (*histp)--;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000239 ptr += 3;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000240 }
241 }
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000242}
243
244
245/*
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000246 * Next we have the really interesting routines: selection of a colormap
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000247 * given the completed histogram.
248 * These routines work with a list of "boxes", each representing a rectangular
249 * subset of the input color space (to histogram precision).
250 */
251
252typedef struct {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000253 /* The bounds of the box (inclusive); expressed as histogram indexes */
254 int c0min, c0max;
255 int c1min, c1max;
256 int c2min, c2max;
257 /* The volume (actually 2-norm) of the box */
258 INT32 volume;
259 /* The number of nonzero histogram cells within this box */
260 long colorcount;
261} box;
262
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000263typedef box * boxptr;
264
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000265
266LOCAL boxptr
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000267find_biggest_color_pop (boxptr boxlist, int numboxes)
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000268/* Find the splittable box with the largest color population */
269/* Returns NULL if no splittable boxes remain */
270{
271 register boxptr boxp;
272 register int i;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000273 register long maxc = 0;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000274 boxptr which = NULL;
275
276 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000277 if (boxp->colorcount > maxc && boxp->volume > 0) {
278 which = boxp;
279 maxc = boxp->colorcount;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000280 }
281 }
282 return which;
283}
284
285
286LOCAL boxptr
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000287find_biggest_volume (boxptr boxlist, int numboxes)
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000288/* Find the splittable box with the largest (scaled) volume */
289/* Returns NULL if no splittable boxes remain */
290{
291 register boxptr boxp;
292 register int i;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000293 register INT32 maxv = 0;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000294 boxptr which = NULL;
295
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000296 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000297 if (boxp->volume > maxv) {
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000298 which = boxp;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000299 maxv = boxp->volume;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000300 }
301 }
302 return which;
303}
304
305
306LOCAL void
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000307update_box (j_decompress_ptr cinfo, boxptr boxp)
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000308/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000309/* and recompute its volume and population */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000310{
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000311 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
312 hist3d histogram = cquantize->histogram;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000313 histptr histp;
314 int c0,c1,c2;
315 int c0min,c0max,c1min,c1max,c2min,c2max;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000316 INT32 dist0,dist1,dist2;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000317 long ccount;
318
319 c0min = boxp->c0min; c0max = boxp->c0max;
320 c1min = boxp->c1min; c1max = boxp->c1max;
321 c2min = boxp->c2min; c2max = boxp->c2max;
322
323 if (c0max > c0min)
324 for (c0 = c0min; c0 <= c0max; c0++)
325 for (c1 = c1min; c1 <= c1max; c1++) {
326 histp = & histogram[c0][c1][c2min];
327 for (c2 = c2min; c2 <= c2max; c2++)
328 if (*histp++ != 0) {
329 boxp->c0min = c0min = c0;
330 goto have_c0min;
331 }
332 }
333 have_c0min:
334 if (c0max > c0min)
335 for (c0 = c0max; c0 >= c0min; c0--)
336 for (c1 = c1min; c1 <= c1max; c1++) {
337 histp = & histogram[c0][c1][c2min];
338 for (c2 = c2min; c2 <= c2max; c2++)
339 if (*histp++ != 0) {
340 boxp->c0max = c0max = c0;
341 goto have_c0max;
342 }
343 }
344 have_c0max:
345 if (c1max > c1min)
346 for (c1 = c1min; c1 <= c1max; c1++)
347 for (c0 = c0min; c0 <= c0max; c0++) {
348 histp = & histogram[c0][c1][c2min];
349 for (c2 = c2min; c2 <= c2max; c2++)
350 if (*histp++ != 0) {
351 boxp->c1min = c1min = c1;
352 goto have_c1min;
353 }
354 }
355 have_c1min:
356 if (c1max > c1min)
357 for (c1 = c1max; c1 >= c1min; c1--)
358 for (c0 = c0min; c0 <= c0max; c0++) {
359 histp = & histogram[c0][c1][c2min];
360 for (c2 = c2min; c2 <= c2max; c2++)
361 if (*histp++ != 0) {
362 boxp->c1max = c1max = c1;
363 goto have_c1max;
364 }
365 }
366 have_c1max:
367 if (c2max > c2min)
368 for (c2 = c2min; c2 <= c2max; c2++)
369 for (c0 = c0min; c0 <= c0max; c0++) {
370 histp = & histogram[c0][c1min][c2];
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000371 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000372 if (*histp != 0) {
373 boxp->c2min = c2min = c2;
374 goto have_c2min;
375 }
376 }
377 have_c2min:
378 if (c2max > c2min)
379 for (c2 = c2max; c2 >= c2min; c2--)
380 for (c0 = c0min; c0 <= c0max; c0++) {
381 histp = & histogram[c0][c1min][c2];
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000382 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000383 if (*histp != 0) {
384 boxp->c2max = c2max = c2;
385 goto have_c2max;
386 }
387 }
388 have_c2max:
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000389
390 /* Update box volume.
391 * We use 2-norm rather than real volume here; this biases the method
392 * against making long narrow boxes, and it has the side benefit that
393 * a box is splittable iff norm > 0.
394 * Since the differences are expressed in histogram-cell units,
395 * we have to shift back to JSAMPLE units to get consistent distances;
396 * after which, we scale according to the selected distance scale factors.
397 */
398 dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
399 dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
400 dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
401 boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000402
403 /* Now scan remaining volume of box and compute population */
404 ccount = 0;
405 for (c0 = c0min; c0 <= c0max; c0++)
406 for (c1 = c1min; c1 <= c1max; c1++) {
407 histp = & histogram[c0][c1][c2min];
408 for (c2 = c2min; c2 <= c2max; c2++, histp++)
409 if (*histp != 0) {
410 ccount++;
411 }
412 }
413 boxp->colorcount = ccount;
414}
415
416
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000417LOCAL int
418median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
419 int desired_colors)
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000420/* Repeatedly select and split the largest box until we have enough boxes */
421{
422 int n,lb;
423 int c0,c1,c2,cmax;
424 register boxptr b1,b2;
425
426 while (numboxes < desired_colors) {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000427 /* Select box to split.
428 * Current algorithm: by population for first half, then by volume.
429 */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000430 if (numboxes*2 <= desired_colors) {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000431 b1 = find_biggest_color_pop(boxlist, numboxes);
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000432 } else {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000433 b1 = find_biggest_volume(boxlist, numboxes);
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000434 }
435 if (b1 == NULL) /* no splittable boxes left! */
436 break;
437 b2 = &boxlist[numboxes]; /* where new box will go */
438 /* Copy the color bounds to the new box. */
439 b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
440 b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
441 /* Choose which axis to split the box on.
442 * Current algorithm: longest scaled axis.
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000443 * See notes in update_box about scaling distances.
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000444 */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000445 c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
446 c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
447 c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
448 /* We want to break any ties in favor of green, then red, blue last.
449 * This code does the right thing for R,G,B or B,G,R color orders only.
450 */
451#if RGB_RED == 0
452 cmax = c1; n = 1;
453 if (c0 > cmax) { cmax = c0; n = 0; }
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000454 if (c2 > cmax) { n = 2; }
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000455#else
456 cmax = c1; n = 1;
457 if (c2 > cmax) { cmax = c2; n = 2; }
458 if (c0 > cmax) { n = 0; }
459#endif
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000460 /* Choose split point along selected axis, and update box bounds.
461 * Current algorithm: split at halfway point.
462 * (Since the box has been shrunk to minimum volume,
463 * any split will produce two nonempty subboxes.)
464 * Note that lb value is max for lower box, so must be < old max.
465 */
466 switch (n) {
467 case 0:
468 lb = (b1->c0max + b1->c0min) / 2;
469 b1->c0max = lb;
470 b2->c0min = lb+1;
471 break;
472 case 1:
473 lb = (b1->c1max + b1->c1min) / 2;
474 b1->c1max = lb;
475 b2->c1min = lb+1;
476 break;
477 case 2:
478 lb = (b1->c2max + b1->c2min) / 2;
479 b1->c2max = lb;
480 b2->c2min = lb+1;
481 break;
482 }
483 /* Update stats for boxes */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000484 update_box(cinfo, b1);
485 update_box(cinfo, b2);
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000486 numboxes++;
487 }
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000488 return numboxes;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000489}
490
491
492LOCAL void
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000493compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
494/* Compute representative color for a box, put it in colormap[icolor] */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000495{
496 /* Current algorithm: mean weighted by pixels (not colors) */
497 /* Note it is important to get the rounding correct! */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000498 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
499 hist3d histogram = cquantize->histogram;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000500 histptr histp;
501 int c0,c1,c2;
502 int c0min,c0max,c1min,c1max,c2min,c2max;
503 long count;
504 long total = 0;
505 long c0total = 0;
506 long c1total = 0;
507 long c2total = 0;
508
509 c0min = boxp->c0min; c0max = boxp->c0max;
510 c1min = boxp->c1min; c1max = boxp->c1max;
511 c2min = boxp->c2min; c2max = boxp->c2max;
512
513 for (c0 = c0min; c0 <= c0max; c0++)
514 for (c1 = c1min; c1 <= c1max; c1++) {
515 histp = & histogram[c0][c1][c2min];
516 for (c2 = c2min; c2 <= c2max; c2++) {
517 if ((count = *histp++) != 0) {
518 total += count;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000519 c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
520 c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
521 c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000522 }
523 }
524 }
525
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000526 cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
527 cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
528 cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000529}
530
531
532LOCAL void
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000533select_colors (j_decompress_ptr cinfo)
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000534/* Master routine for color selection */
535{
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000536 boxptr boxlist;
537 int numboxes;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000538 int desired = cinfo->desired_number_of_colors;
539 int i;
540
541 /* Allocate workspace for box list */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000542 boxlist = (boxptr) (*cinfo->mem->alloc_small)
543 ((j_common_ptr) cinfo, JPOOL_IMAGE, desired * SIZEOF(box));
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000544 /* Initialize one box containing whole space */
545 numboxes = 1;
546 boxlist[0].c0min = 0;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000547 boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000548 boxlist[0].c1min = 0;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000549 boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000550 boxlist[0].c2min = 0;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000551 boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000552 /* Shrink it to actually-used volume and set its statistics */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000553 update_box(cinfo, & boxlist[0]);
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000554 /* Perform median-cut to produce final box list */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000555 numboxes = median_cut(cinfo, boxlist, numboxes, desired);
556 /* Compute the representative color for each box, fill colormap */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000557 for (i = 0; i < numboxes; i++)
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000558 compute_color(cinfo, & boxlist[i], i);
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000559 cinfo->actual_number_of_colors = numboxes;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000560 TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000561}
562
563
564/*
565 * These routines are concerned with the time-critical task of mapping input
566 * colors to the nearest color in the selected colormap.
567 *
568 * We re-use the histogram space as an "inverse color map", essentially a
569 * cache for the results of nearest-color searches. All colors within a
570 * histogram cell will be mapped to the same colormap entry, namely the one
571 * closest to the cell's center. This may not be quite the closest entry to
572 * the actual input color, but it's almost as good. A zero in the cache
573 * indicates we haven't found the nearest color for that cell yet; the array
574 * is cleared to zeroes before starting the mapping pass. When we find the
575 * nearest color for a cell, its colormap index plus one is recorded in the
576 * cache for future use. The pass2 scanning routines call fill_inverse_cmap
577 * when they need to use an unfilled entry in the cache.
578 *
579 * Our method of efficiently finding nearest colors is based on the "locally
580 * sorted search" idea described by Heckbert and on the incremental distance
581 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
582 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
583 * the distances from a given colormap entry to each cell of the histogram can
584 * be computed quickly using an incremental method: the differences between
585 * distances to adjacent cells themselves differ by a constant. This allows a
586 * fairly fast implementation of the "brute force" approach of computing the
587 * distance from every colormap entry to every histogram cell. Unfortunately,
588 * it needs a work array to hold the best-distance-so-far for each histogram
589 * cell (because the inner loop has to be over cells, not colormap entries).
590 * The work array elements have to be INT32s, so the work array would need
591 * 256Kb at our recommended precision. This is not feasible in DOS machines.
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000592 *
593 * To get around these problems, we apply Thomas' method to compute the
594 * nearest colors for only the cells within a small subbox of the histogram.
595 * The work array need be only as big as the subbox, so the memory usage
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000596 * problem is solved. Furthermore, we need not fill subboxes that are never
597 * referenced in pass2; many images use only part of the color gamut, so a
598 * fair amount of work is saved. An additional advantage of this
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000599 * approach is that we can apply Heckbert's locality criterion to quickly
600 * eliminate colormap entries that are far away from the subbox; typically
601 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
602 * and we need not compute their distances to individual cells in the subbox.
603 * The speed of this approach is heavily influenced by the subbox size: too
604 * small means too much overhead, too big loses because Heckbert's criterion
605 * can't eliminate as many colormap entries. Empirically the best subbox
606 * size seems to be about 1/512th of the histogram (1/8th in each direction).
607 *
608 * Thomas' article also describes a refined method which is asymptotically
609 * faster than the brute-force method, but it is also far more complex and
610 * cannot efficiently be applied to small subboxes. It is therefore not
611 * useful for programs intended to be portable to DOS machines. On machines
612 * with plenty of memory, filling the whole histogram in one shot with Thomas'
613 * refined method might be faster than the present code --- but then again,
614 * it might not be any faster, and it's certainly more complicated.
615 */
616
617
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000618/* log2(histogram cells in update box) for each axis; this can be adjusted */
619#define BOX_C0_LOG (HIST_C0_BITS-3)
620#define BOX_C1_LOG (HIST_C1_BITS-3)
621#define BOX_C2_LOG (HIST_C2_BITS-3)
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000622
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000623#define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
624#define BOX_C1_ELEMS (1<<BOX_C1_LOG)
625#define BOX_C2_ELEMS (1<<BOX_C2_LOG)
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000626
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000627#define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
628#define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
629#define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000630
631
632/*
633 * The next three routines implement inverse colormap filling. They could
634 * all be folded into one big routine, but splitting them up this way saves
635 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
636 * and may allow some compilers to produce better code by registerizing more
637 * inner-loop variables.
638 */
639
640LOCAL int
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000641find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000642 JSAMPLE colorlist[])
643/* Locate the colormap entries close enough to an update box to be candidates
644 * for the nearest entry to some cell(s) in the update box. The update box
645 * is specified by the center coordinates of its first cell. The number of
646 * candidate colormap entries is returned, and their colormap indexes are
647 * placed in colorlist[].
648 * This routine uses Heckbert's "locally sorted search" criterion to select
649 * the colors that need further consideration.
650 */
651{
652 int numcolors = cinfo->actual_number_of_colors;
653 int maxc0, maxc1, maxc2;
654 int centerc0, centerc1, centerc2;
655 int i, x, ncolors;
656 INT32 minmaxdist, min_dist, max_dist, tdist;
657 INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
658
659 /* Compute true coordinates of update box's upper corner and center.
660 * Actually we compute the coordinates of the center of the upper-corner
661 * histogram cell, which are the upper bounds of the volume we care about.
662 * Note that since ">>" rounds down, the "center" values may be closer to
663 * min than to max; hence comparisons to them must be "<=", not "<".
664 */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000665 maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000666 centerc0 = (minc0 + maxc0) >> 1;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000667 maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000668 centerc1 = (minc1 + maxc1) >> 1;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000669 maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000670 centerc2 = (minc2 + maxc2) >> 1;
671
672 /* For each color in colormap, find:
673 * 1. its minimum squared-distance to any point in the update box
674 * (zero if color is within update box);
675 * 2. its maximum squared-distance to any point in the update box.
676 * Both of these can be found by considering only the corners of the box.
677 * We save the minimum distance for each color in mindist[];
678 * only the smallest maximum distance is of interest.
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000679 */
680 minmaxdist = 0x7FFFFFFFL;
681
682 for (i = 0; i < numcolors; i++) {
683 /* We compute the squared-c0-distance term, then add in the other two. */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000684 x = GETJSAMPLE(cinfo->colormap[0][i]);
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000685 if (x < minc0) {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000686 tdist = (x - minc0) * C0_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000687 min_dist = tdist*tdist;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000688 tdist = (x - maxc0) * C0_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000689 max_dist = tdist*tdist;
690 } else if (x > maxc0) {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000691 tdist = (x - maxc0) * C0_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000692 min_dist = tdist*tdist;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000693 tdist = (x - minc0) * C0_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000694 max_dist = tdist*tdist;
695 } else {
696 /* within cell range so no contribution to min_dist */
697 min_dist = 0;
698 if (x <= centerc0) {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000699 tdist = (x - maxc0) * C0_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000700 max_dist = tdist*tdist;
701 } else {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000702 tdist = (x - minc0) * C0_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000703 max_dist = tdist*tdist;
704 }
705 }
706
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000707 x = GETJSAMPLE(cinfo->colormap[1][i]);
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000708 if (x < minc1) {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000709 tdist = (x - minc1) * C1_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000710 min_dist += tdist*tdist;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000711 tdist = (x - maxc1) * C1_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000712 max_dist += tdist*tdist;
713 } else if (x > maxc1) {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000714 tdist = (x - maxc1) * C1_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000715 min_dist += tdist*tdist;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000716 tdist = (x - minc1) * C1_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000717 max_dist += tdist*tdist;
718 } else {
719 /* within cell range so no contribution to min_dist */
720 if (x <= centerc1) {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000721 tdist = (x - maxc1) * C1_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000722 max_dist += tdist*tdist;
723 } else {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000724 tdist = (x - minc1) * C1_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000725 max_dist += tdist*tdist;
726 }
727 }
728
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000729 x = GETJSAMPLE(cinfo->colormap[2][i]);
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000730 if (x < minc2) {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000731 tdist = (x - minc2) * C2_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000732 min_dist += tdist*tdist;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000733 tdist = (x - maxc2) * C2_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000734 max_dist += tdist*tdist;
735 } else if (x > maxc2) {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000736 tdist = (x - maxc2) * C2_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000737 min_dist += tdist*tdist;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000738 tdist = (x - minc2) * C2_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000739 max_dist += tdist*tdist;
740 } else {
741 /* within cell range so no contribution to min_dist */
742 if (x <= centerc2) {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000743 tdist = (x - maxc2) * C2_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000744 max_dist += tdist*tdist;
745 } else {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000746 tdist = (x - minc2) * C2_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000747 max_dist += tdist*tdist;
748 }
749 }
750
751 mindist[i] = min_dist; /* save away the results */
752 if (max_dist < minmaxdist)
753 minmaxdist = max_dist;
754 }
755
756 /* Now we know that no cell in the update box is more than minmaxdist
757 * away from some colormap entry. Therefore, only colors that are
758 * within minmaxdist of some part of the box need be considered.
759 */
760 ncolors = 0;
761 for (i = 0; i < numcolors; i++) {
762 if (mindist[i] <= minmaxdist)
763 colorlist[ncolors++] = (JSAMPLE) i;
764 }
765 return ncolors;
766}
767
768
769LOCAL void
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000770find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000771 int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
772/* Find the closest colormap entry for each cell in the update box,
773 * given the list of candidate colors prepared by find_nearby_colors.
774 * Return the indexes of the closest entries in the bestcolor[] array.
775 * This routine uses Thomas' incremental distance calculation method to
776 * find the distance from a colormap entry to successive cells in the box.
777 */
778{
779 int ic0, ic1, ic2;
780 int i, icolor;
781 register INT32 * bptr; /* pointer into bestdist[] array */
782 JSAMPLE * cptr; /* pointer into bestcolor[] array */
783 INT32 dist0, dist1; /* initial distance values */
784 register INT32 dist2; /* current distance in inner loop */
785 INT32 xx0, xx1; /* distance increments */
786 register INT32 xx2;
787 INT32 inc0, inc1, inc2; /* initial values for increments */
788 /* This array holds the distance to the nearest-so-far color for each cell */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000789 INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000790
791 /* Initialize best-distance for each cell of the update box */
792 bptr = bestdist;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000793 for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000794 *bptr++ = 0x7FFFFFFFL;
795
796 /* For each color selected by find_nearby_colors,
797 * compute its distance to the center of each cell in the box.
798 * If that's less than best-so-far, update best distance and color number.
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000799 */
800
801 /* Nominal steps between cell centers ("x" in Thomas article) */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000802#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
803#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
804#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000805
806 for (i = 0; i < numcolors; i++) {
807 icolor = GETJSAMPLE(colorlist[i]);
808 /* Compute (square of) distance from minc0/c1/c2 to this color */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000809 inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000810 dist0 = inc0*inc0;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000811 inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000812 dist0 += inc1*inc1;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000813 inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000814 dist0 += inc2*inc2;
815 /* Form the initial difference increments */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000816 inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
817 inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
818 inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000819 /* Now loop over all cells in box, updating distance per Thomas method */
820 bptr = bestdist;
821 cptr = bestcolor;
822 xx0 = inc0;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000823 for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000824 dist1 = dist0;
825 xx1 = inc1;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000826 for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000827 dist2 = dist1;
828 xx2 = inc2;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000829 for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000830 if (dist2 < *bptr) {
831 *bptr = dist2;
832 *cptr = (JSAMPLE) icolor;
833 }
834 dist2 += xx2;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000835 xx2 += 2 * STEP_C2 * STEP_C2;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000836 bptr++;
837 cptr++;
838 }
839 dist1 += xx1;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000840 xx1 += 2 * STEP_C1 * STEP_C1;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000841 }
842 dist0 += xx0;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000843 xx0 += 2 * STEP_C0 * STEP_C0;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000844 }
845 }
846}
847
848
849LOCAL void
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000850fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000851/* Fill the inverse-colormap entries in the update box that contains */
852/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
853/* we can fill as many others as we wish.) */
854{
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000855 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
856 hist3d histogram = cquantize->histogram;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000857 int minc0, minc1, minc2; /* lower left corner of update box */
858 int ic0, ic1, ic2;
859 register JSAMPLE * cptr; /* pointer into bestcolor[] array */
860 register histptr cachep; /* pointer into main cache array */
861 /* This array lists the candidate colormap indexes. */
862 JSAMPLE colorlist[MAXNUMCOLORS];
863 int numcolors; /* number of candidate colors */
864 /* This array holds the actually closest colormap index for each cell. */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000865 JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000866
867 /* Convert cell coordinates to update box ID */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000868 c0 >>= BOX_C0_LOG;
869 c1 >>= BOX_C1_LOG;
870 c2 >>= BOX_C2_LOG;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000871
872 /* Compute true coordinates of update box's origin corner.
873 * Actually we compute the coordinates of the center of the corner
874 * histogram cell, which are the lower bounds of the volume we care about.
875 */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000876 minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
877 minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
878 minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000879
880 /* Determine which colormap entries are close enough to be candidates
881 * for the nearest entry to some cell in the update box.
882 */
883 numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
884
885 /* Determine the actually nearest colors. */
886 find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
887 bestcolor);
888
889 /* Save the best color numbers (plus 1) in the main cache array */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000890 c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
891 c1 <<= BOX_C1_LOG;
892 c2 <<= BOX_C2_LOG;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000893 cptr = bestcolor;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000894 for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
895 for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000896 cachep = & histogram[c0+ic0][c1+ic1][c2];
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000897 for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000898 *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
899 }
900 }
901 }
902}
903
904
905/*
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000906 * Map some rows of pixels to the output colormapped representation.
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000907 */
908
909METHODDEF void
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000910pass2_no_dither (j_decompress_ptr cinfo,
911 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000912/* This version performs no dithering */
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000913{
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000914 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
915 hist3d histogram = cquantize->histogram;
916 register JSAMPROW inptr, outptr;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000917 register histptr cachep;
918 register int c0, c1, c2;
919 int row;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000920 JDIMENSION col;
921 JDIMENSION width = cinfo->output_width;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000922
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000923 for (row = 0; row < num_rows; row++) {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000924 inptr = input_buf[row];
925 outptr = output_buf[row];
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000926 for (col = width; col > 0; col--) {
927 /* get pixel value and index into the cache */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000928 c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
929 c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
930 c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000931 cachep = & histogram[c0][c1][c2];
932 /* If we have not seen this color before, find nearest colormap entry */
933 /* and update the cache */
934 if (*cachep == 0)
935 fill_inverse_cmap(cinfo, c0,c1,c2);
936 /* Now emit the colormap index for this cell */
937 *outptr++ = (JSAMPLE) (*cachep - 1);
938 }
939 }
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000940}
941
942
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000943METHODDEF void
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000944pass2_fs_dither (j_decompress_ptr cinfo,
945 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000946/* This version performs Floyd-Steinberg dithering */
947{
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000948 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
949 hist3d histogram = cquantize->histogram;
Thomas G. Lanecc7150e1993-02-18 00:00:00 +0000950 register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
951 LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
952 LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
953 register FSERRPTR errorptr; /* => fserrors[] at column before current */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000954 JSAMPROW inptr; /* => current input pixel */
Thomas G. Lanecc7150e1993-02-18 00:00:00 +0000955 JSAMPROW outptr; /* => current output pixel */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000956 histptr cachep;
Thomas G. Lanecc7150e1993-02-18 00:00:00 +0000957 int dir; /* +1 or -1 depending on direction */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000958 int dir3; /* 3*dir, for advancing inptr & errorptr */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000959 int row;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000960 JDIMENSION col;
961 JDIMENSION width = cinfo->output_width;
Thomas G. Lane88aeed41992-12-10 00:00:00 +0000962 JSAMPLE *range_limit = cinfo->sample_range_limit;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000963 int *error_limit = cquantize->error_limiter;
964 JSAMPROW colormap0 = cinfo->colormap[0];
965 JSAMPROW colormap1 = cinfo->colormap[1];
966 JSAMPROW colormap2 = cinfo->colormap[2];
Thomas G. Lane88aeed41992-12-10 00:00:00 +0000967 SHIFT_TEMPS
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000968
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000969 for (row = 0; row < num_rows; row++) {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000970 inptr = input_buf[row];
971 outptr = output_buf[row];
972 if (cquantize->on_odd_row) {
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000973 /* work right to left in this row */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000974 inptr += (width-1) * 3; /* so point to rightmost pixel */
975 outptr += width-1;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000976 dir = -1;
Thomas G. Lanecc7150e1993-02-18 00:00:00 +0000977 dir3 = -3;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000978 errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
979 cquantize->on_odd_row = FALSE; /* flip for next time */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000980 } else {
981 /* work left to right in this row */
982 dir = 1;
Thomas G. Lanecc7150e1993-02-18 00:00:00 +0000983 dir3 = 3;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000984 errorptr = cquantize->fserrors; /* => entry before first real column */
985 cquantize->on_odd_row = TRUE; /* flip for next time */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000986 }
Thomas G. Lanecc7150e1993-02-18 00:00:00 +0000987 /* Preset error values: no error propagated to first pixel from left */
988 cur0 = cur1 = cur2 = 0;
989 /* and no error propagated to row below yet */
990 belowerr0 = belowerr1 = belowerr2 = 0;
991 bpreverr0 = bpreverr1 = bpreverr2 = 0;
992
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000993 for (col = width; col > 0; col--) {
Thomas G. Lanecc7150e1993-02-18 00:00:00 +0000994 /* curN holds the error propagated from the previous pixel on the
995 * current line. Add the error propagated from the previous line
996 * to form the complete error correction term for this pixel, and
997 * round the error term (which is expressed * 16) to an integer.
Thomas G. Lane88aeed41992-12-10 00:00:00 +0000998 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
Thomas G. Lanecc7150e1993-02-18 00:00:00 +0000999 * for either sign of the error value.
1000 * Note: errorptr points to *previous* column's array entry.
Thomas G. Lane88aeed41992-12-10 00:00:00 +00001001 */
Thomas G. Lanecc7150e1993-02-18 00:00:00 +00001002 cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
1003 cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
1004 cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001005 /* Limit the error using transfer function set by init_error_limit.
1006 * See comments with init_error_limit for rationale.
Thomas G. Lanecc7150e1993-02-18 00:00:00 +00001007 */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001008 cur0 = error_limit[cur0];
1009 cur1 = error_limit[cur1];
1010 cur2 = error_limit[cur2];
1011 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1012 * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1013 * this sets the required size of the range_limit array.
1014 */
1015 cur0 += GETJSAMPLE(inptr[0]);
1016 cur1 += GETJSAMPLE(inptr[1]);
1017 cur2 += GETJSAMPLE(inptr[2]);
Thomas G. Lanecc7150e1993-02-18 00:00:00 +00001018 cur0 = GETJSAMPLE(range_limit[cur0]);
1019 cur1 = GETJSAMPLE(range_limit[cur1]);
1020 cur2 = GETJSAMPLE(range_limit[cur2]);
Thomas G. Lane88aeed41992-12-10 00:00:00 +00001021 /* Index into the cache with adjusted pixel value */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001022 cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
Thomas G. Lane4a6b7301992-03-17 00:00:00 +00001023 /* If we have not seen this color before, find nearest colormap */
1024 /* entry and update the cache */
1025 if (*cachep == 0)
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001026 fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
Thomas G. Lane4a6b7301992-03-17 00:00:00 +00001027 /* Now emit the colormap index for this cell */
Thomas G. Lanecc7150e1993-02-18 00:00:00 +00001028 { register int pixcode = *cachep - 1;
1029 *outptr = (JSAMPLE) pixcode;
1030 /* Compute representation error for this pixel */
1031 cur0 -= GETJSAMPLE(colormap0[pixcode]);
1032 cur1 -= GETJSAMPLE(colormap1[pixcode]);
1033 cur2 -= GETJSAMPLE(colormap2[pixcode]);
1034 }
1035 /* Compute error fractions to be propagated to adjacent pixels.
1036 * Add these into the running sums, and simultaneously shift the
1037 * next-line error sums left by 1 column.
1038 */
1039 { register LOCFSERROR bnexterr, delta;
1040
1041 bnexterr = cur0; /* Process component 0 */
1042 delta = cur0 * 2;
1043 cur0 += delta; /* form error * 3 */
1044 errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1045 cur0 += delta; /* form error * 5 */
1046 bpreverr0 = belowerr0 + cur0;
1047 belowerr0 = bnexterr;
1048 cur0 += delta; /* form error * 7 */
1049 bnexterr = cur1; /* Process component 1 */
1050 delta = cur1 * 2;
1051 cur1 += delta; /* form error * 3 */
1052 errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1053 cur1 += delta; /* form error * 5 */
1054 bpreverr1 = belowerr1 + cur1;
1055 belowerr1 = bnexterr;
1056 cur1 += delta; /* form error * 7 */
1057 bnexterr = cur2; /* Process component 2 */
1058 delta = cur2 * 2;
1059 cur2 += delta; /* form error * 3 */
1060 errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1061 cur2 += delta; /* form error * 5 */
1062 bpreverr2 = belowerr2 + cur2;
1063 belowerr2 = bnexterr;
1064 cur2 += delta; /* form error * 7 */
1065 }
1066 /* At this point curN contains the 7/16 error value to be propagated
1067 * to the next pixel on the current line, and all the errors for the
1068 * next line have been shifted over. We are therefore ready to move on.
1069 */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001070 inptr += dir3; /* Advance pixel pointers to next column */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +00001071 outptr += dir;
Thomas G. Lanecc7150e1993-02-18 00:00:00 +00001072 errorptr += dir3; /* advance errorptr to current column */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +00001073 }
Thomas G. Lanecc7150e1993-02-18 00:00:00 +00001074 /* Post-loop cleanup: we must unload the final error values into the
1075 * final fserrors[] entry. Note we need not unload belowerrN because
1076 * it is for the dummy column before or after the actual array.
1077 */
1078 errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1079 errorptr[1] = (FSERROR) bpreverr1;
1080 errorptr[2] = (FSERROR) bpreverr2;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +00001081 }
Thomas G. Lane4a6b7301992-03-17 00:00:00 +00001082}
1083
1084
1085/*
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001086 * Initialize the error-limiting transfer function (lookup table).
1087 * The raw F-S error computation can potentially compute error values of up to
1088 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
1089 * much less, otherwise obviously wrong pixels will be created. (Typical
1090 * effects include weird fringes at color-area boundaries, isolated bright
1091 * pixels in a dark area, etc.) The standard advice for avoiding this problem
1092 * is to ensure that the "corners" of the color cube are allocated as output
1093 * colors; then repeated errors in the same direction cannot cause cascading
1094 * error buildup. However, that only prevents the error from getting
1095 * completely out of hand; Aaron Giles reports that error limiting improves
1096 * the results even with corner colors allocated.
1097 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1098 * well, but the smoother transfer function used below is even better. Thanks
1099 * to Aaron Giles for this idea.
Thomas G. Lane4a6b7301992-03-17 00:00:00 +00001100 */
1101
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001102LOCAL void
1103init_error_limit (j_decompress_ptr cinfo)
1104/* Allocate and fill in the error_limiter table */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +00001105{
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001106 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1107 int * table;
1108 int in, out;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +00001109
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001110 table = (int *) (*cinfo->mem->alloc_small)
1111 ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
1112 table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1113 cquantize->error_limiter = table;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +00001114
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001115#define STEPSIZE ((MAXJSAMPLE+1)/16)
1116 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1117 out = 0;
1118 for (in = 0; in < STEPSIZE; in++, out++) {
1119 table[in] = out; table[-in] = -out;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +00001120 }
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001121 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1122 for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1123 table[in] = out; table[-in] = -out;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +00001124 }
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001125 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1126 for (; in <= MAXJSAMPLE; in++) {
1127 table[in] = out; table[-in] = -out;
1128 }
1129#undef STEPSIZE
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +00001130}
1131
1132
1133/*
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001134 * Finish up at the end of each pass.
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +00001135 */
1136
1137METHODDEF void
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001138finish_pass1 (j_decompress_ptr cinfo)
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +00001139{
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001140 /* Select the representative colors and fill in cinfo->colormap */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +00001141 select_colors(cinfo);
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001142}
1143
1144
1145METHODDEF void
1146finish_pass2 (j_decompress_ptr cinfo)
1147{
1148 /* no work */
1149}
1150
1151
1152/*
1153 * Initialize for each processing pass.
1154 */
1155
1156METHODDEF void
1157start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1158{
1159 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1160 hist3d histogram = cquantize->histogram;
1161 int i;
1162
1163 if (is_pre_scan) {
1164 /* Set up method pointers */
1165 cquantize->pub.color_quantize = prescan_quantize;
1166 cquantize->pub.finish_pass = finish_pass1;
1167 } else {
1168 /* Set up method pointers */
1169 if (cinfo->dither_mode == JDITHER_FS)
1170 cquantize->pub.color_quantize = pass2_fs_dither;
1171 else
1172 cquantize->pub.color_quantize = pass2_no_dither;
1173 cquantize->pub.finish_pass = finish_pass2;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +00001174 }
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001175 /* Zero the histogram or inverse color map */
1176 for (i = 0; i < HIST_C0_ELEMS; i++) {
1177 jzero_far((void FAR *) histogram[i],
1178 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1179 }
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +00001180}
1181
1182
1183/*
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001184 * Module initialization routine for 2-pass color quantization.
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +00001185 */
1186
1187GLOBAL void
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001188jinit_2pass_quantizer (j_decompress_ptr cinfo)
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +00001189{
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001190 my_cquantize_ptr cquantize;
1191 int i;
1192
1193 cquantize = (my_cquantize_ptr)
1194 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1195 SIZEOF(my_cquantizer));
1196 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1197 cquantize->pub.start_pass = start_pass_2_quant;
1198
1199 /* Make sure jdmaster didn't give me a case I can't handle */
1200 if (cinfo->out_color_components != 3)
1201 ERREXIT(cinfo, JERR_NOTIMPL);
1202
1203 /* Only F-S dithering or no dithering is supported. */
1204 /* If user asks for ordered dither, give him F-S. */
1205 if (cinfo->dither_mode != JDITHER_NONE)
1206 cinfo->dither_mode = JDITHER_FS;
1207
1208 /* Make sure color count is acceptable */
1209 i = (cinfo->colormap != NULL) ? cinfo->actual_number_of_colors
1210 : cinfo->desired_number_of_colors;
1211 /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1212 if (i < 8)
1213 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1214 /* Make sure colormap indexes can be represented by JSAMPLEs */
1215 if (i > MAXNUMCOLORS)
1216 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1217
1218 /* Allocate the histogram/inverse colormap storage */
1219 cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1220 ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
1221 for (i = 0; i < HIST_C0_ELEMS; i++) {
1222 cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1223 ((j_common_ptr) cinfo, JPOOL_IMAGE,
1224 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1225 }
1226
1227 /* Allocate storage for the completed colormap,
1228 * unless it has been supplied by the application.
1229 * We do this now since it is FAR storage and may affect
1230 * the memory manager's space calculations.
1231 */
1232 if (cinfo->colormap == NULL) {
1233 cinfo->colormap = (*cinfo->mem->alloc_sarray)
1234 ((j_common_ptr) cinfo, JPOOL_IMAGE,
1235 (JDIMENSION) cinfo->desired_number_of_colors, (JDIMENSION) 3);
1236 }
1237
1238 /* Allocate Floyd-Steinberg workspace if necessary. */
1239 /* This isn't needed until pass 2, but again it is FAR storage. */
1240 if (cinfo->dither_mode == JDITHER_FS) {
1241 size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1242 (3 * SIZEOF(FSERROR)));
1243
1244 cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1245 ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1246 /* Initialize the propagated errors to zero. */
1247 jzero_far((void FAR *) cquantize->fserrors, arraysize);
1248 cquantize->on_odd_row = FALSE;
1249 init_error_limit(cinfo);
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +00001250 }
1251}
1252
1253#endif /* QUANT_2PASS_SUPPORTED */