blob: c6c42f9bdd709657907b0ba91e0297bf024ee655 [file] [log] [blame]
Leon Scroggins III3993b372018-07-16 10:43:45 -04001;
2; jidctfst.asm - fast integer IDCT (64-bit SSE2)
3;
4; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
5; Copyright (C) 2009, 2016, D. R. Commander.
6;
7; Based on the x86 SIMD extension for IJG JPEG library
8; Copyright (C) 1999-2006, MIYASAKA Masaru.
9; For conditions of distribution and use, see copyright notice in jsimdext.inc
10;
11; This file should be assembled with NASM (Netwide Assembler),
12; can *not* be assembled with Microsoft's MASM or any compatible
13; assembler (including Borland's Turbo Assembler).
14; NASM is available from http://nasm.sourceforge.net/ or
15; http://sourceforge.net/project/showfiles.php?group_id=6208
16;
17; This file contains a fast, not so accurate integer implementation of
18; the inverse DCT (Discrete Cosine Transform). The following code is
19; based directly on the IJG's original jidctfst.c; see the jidctfst.c
20; for more details.
21;
22; [TAB8]
23
24%include "jsimdext.inc"
25%include "jdct.inc"
26
27; --------------------------------------------------------------------------
28
29%define CONST_BITS 8 ; 14 is also OK.
30%define PASS1_BITS 2
31
32%if IFAST_SCALE_BITS != PASS1_BITS
33%error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'."
34%endif
35
36%if CONST_BITS == 8
37F_1_082 equ 277 ; FIX(1.082392200)
38F_1_414 equ 362 ; FIX(1.414213562)
39F_1_847 equ 473 ; FIX(1.847759065)
40F_2_613 equ 669 ; FIX(2.613125930)
41F_1_613 equ (F_2_613 - 256) ; FIX(2.613125930) - FIX(1)
42%else
43; NASM cannot do compile-time arithmetic on floating-point constants.
44%define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n))
45F_1_082 equ DESCALE(1162209775, 30 - CONST_BITS) ; FIX(1.082392200)
46F_1_414 equ DESCALE(1518500249, 30 - CONST_BITS) ; FIX(1.414213562)
47F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065)
48F_2_613 equ DESCALE(2805822602, 30 - CONST_BITS) ; FIX(2.613125930)
49F_1_613 equ (F_2_613 - (1 << CONST_BITS)) ; FIX(2.613125930) - FIX(1)
50%endif
51
52; --------------------------------------------------------------------------
53 SECTION SEG_CONST
54
55; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
56; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
57
58%define PRE_MULTIPLY_SCALE_BITS 2
59%define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
60
61 alignz 32
62 GLOBAL_DATA(jconst_idct_ifast_sse2)
63
64EXTN(jconst_idct_ifast_sse2):
65
66PW_F1414 times 8 dw F_1_414 << CONST_SHIFT
67PW_F1847 times 8 dw F_1_847 << CONST_SHIFT
68PW_MF1613 times 8 dw -F_1_613 << CONST_SHIFT
69PW_F1082 times 8 dw F_1_082 << CONST_SHIFT
70PB_CENTERJSAMP times 16 db CENTERJSAMPLE
71
72 alignz 32
73
74; --------------------------------------------------------------------------
75 SECTION SEG_TEXT
76 BITS 64
77;
78; Perform dequantization and inverse DCT on one block of coefficients.
79;
80; GLOBAL(void)
81; jsimd_idct_ifast_sse2(void *dct_table, JCOEFPTR coef_block,
82; JSAMPARRAY output_buf, JDIMENSION output_col)
83;
84
85; r10 = jpeg_component_info *compptr
86; r11 = JCOEFPTR coef_block
87; r12 = JSAMPARRAY output_buf
88; r13d = JDIMENSION output_col
89
90%define original_rbp rbp + 0
91%define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_XMMWORD
92 ; xmmword wk[WK_NUM]
93%define WK_NUM 2
94
95 align 32
96 GLOBAL_FUNCTION(jsimd_idct_ifast_sse2)
97
98EXTN(jsimd_idct_ifast_sse2):
99 push rbp
100 mov rax, rsp ; rax = original rbp
101 sub rsp, byte 4
102 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
103 mov [rsp], rax
104 mov rbp, rsp ; rbp = aligned rbp
105 lea rsp, [wk(0)]
106 collect_args 4
107
108 ; ---- Pass 1: process columns from input.
109
110 mov rdx, r10 ; quantptr
111 mov rsi, r11 ; inptr
112
113%ifndef NO_ZERO_COLUMN_TEST_IFAST_SSE2
114 mov eax, DWORD [DWBLOCK(1,0,rsi,SIZEOF_JCOEF)]
115 or eax, DWORD [DWBLOCK(2,0,rsi,SIZEOF_JCOEF)]
116 jnz near .columnDCT
117
118 movdqa xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)]
119 movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)]
120 por xmm0, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)]
121 por xmm1, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)]
122 por xmm0, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)]
123 por xmm1, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)]
124 por xmm0, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)]
125 por xmm1, xmm0
126 packsswb xmm1, xmm1
127 packsswb xmm1, xmm1
128 movd eax, xmm1
129 test rax, rax
130 jnz short .columnDCT
131
132 ; -- AC terms all zero
133
134 movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)]
135 pmullw xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)]
136
137 movdqa xmm7, xmm0 ; xmm0=in0=(00 01 02 03 04 05 06 07)
138 punpcklwd xmm0, xmm0 ; xmm0=(00 00 01 01 02 02 03 03)
139 punpckhwd xmm7, xmm7 ; xmm7=(04 04 05 05 06 06 07 07)
140
141 pshufd xmm6, xmm0, 0x00 ; xmm6=col0=(00 00 00 00 00 00 00 00)
142 pshufd xmm2, xmm0, 0x55 ; xmm2=col1=(01 01 01 01 01 01 01 01)
143 pshufd xmm5, xmm0, 0xAA ; xmm5=col2=(02 02 02 02 02 02 02 02)
144 pshufd xmm0, xmm0, 0xFF ; xmm0=col3=(03 03 03 03 03 03 03 03)
145 pshufd xmm1, xmm7, 0x00 ; xmm1=col4=(04 04 04 04 04 04 04 04)
146 pshufd xmm4, xmm7, 0x55 ; xmm4=col5=(05 05 05 05 05 05 05 05)
147 pshufd xmm3, xmm7, 0xAA ; xmm3=col6=(06 06 06 06 06 06 06 06)
148 pshufd xmm7, xmm7, 0xFF ; xmm7=col7=(07 07 07 07 07 07 07 07)
149
150 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=col1
151 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=col3
152 jmp near .column_end
153%endif
154.columnDCT:
155
156 ; -- Even part
157
158 movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)]
159 movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)]
160 pmullw xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_IFAST_MULT_TYPE)]
161 pmullw xmm1, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_IFAST_MULT_TYPE)]
162 movdqa xmm2, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)]
163 movdqa xmm3, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)]
164 pmullw xmm2, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_IFAST_MULT_TYPE)]
165 pmullw xmm3, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_IFAST_MULT_TYPE)]
166
167 movdqa xmm4, xmm0
168 movdqa xmm5, xmm1
169 psubw xmm0, xmm2 ; xmm0=tmp11
170 psubw xmm1, xmm3
171 paddw xmm4, xmm2 ; xmm4=tmp10
172 paddw xmm5, xmm3 ; xmm5=tmp13
173
174 psllw xmm1, PRE_MULTIPLY_SCALE_BITS
175 pmulhw xmm1, [rel PW_F1414]
176 psubw xmm1, xmm5 ; xmm1=tmp12
177
178 movdqa xmm6, xmm4
179 movdqa xmm7, xmm0
180 psubw xmm4, xmm5 ; xmm4=tmp3
181 psubw xmm0, xmm1 ; xmm0=tmp2
182 paddw xmm6, xmm5 ; xmm6=tmp0
183 paddw xmm7, xmm1 ; xmm7=tmp1
184
185 movdqa XMMWORD [wk(1)], xmm4 ; wk(1)=tmp3
186 movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=tmp2
187
188 ; -- Odd part
189
190 movdqa xmm2, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)]
191 movdqa xmm3, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)]
192 pmullw xmm2, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_IFAST_MULT_TYPE)]
193 pmullw xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_IFAST_MULT_TYPE)]
194 movdqa xmm5, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)]
195 movdqa xmm1, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)]
196 pmullw xmm5, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_IFAST_MULT_TYPE)]
197 pmullw xmm1, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_IFAST_MULT_TYPE)]
198
199 movdqa xmm4, xmm2
200 movdqa xmm0, xmm5
201 psubw xmm2, xmm1 ; xmm2=z12
202 psubw xmm5, xmm3 ; xmm5=z10
203 paddw xmm4, xmm1 ; xmm4=z11
204 paddw xmm0, xmm3 ; xmm0=z13
205
206 movdqa xmm1, xmm5 ; xmm1=z10(unscaled)
207 psllw xmm2, PRE_MULTIPLY_SCALE_BITS
208 psllw xmm5, PRE_MULTIPLY_SCALE_BITS
209
210 movdqa xmm3, xmm4
211 psubw xmm4, xmm0
212 paddw xmm3, xmm0 ; xmm3=tmp7
213
214 psllw xmm4, PRE_MULTIPLY_SCALE_BITS
215 pmulhw xmm4, [rel PW_F1414] ; xmm4=tmp11
216
217 ; To avoid overflow...
218 ;
219 ; (Original)
220 ; tmp12 = -2.613125930 * z10 + z5;
221 ;
222 ; (This implementation)
223 ; tmp12 = (-1.613125930 - 1) * z10 + z5;
224 ; = -1.613125930 * z10 - z10 + z5;
225
226 movdqa xmm0, xmm5
227 paddw xmm5, xmm2
228 pmulhw xmm5, [rel PW_F1847] ; xmm5=z5
229 pmulhw xmm0, [rel PW_MF1613]
230 pmulhw xmm2, [rel PW_F1082]
231 psubw xmm0, xmm1
232 psubw xmm2, xmm5 ; xmm2=tmp10
233 paddw xmm0, xmm5 ; xmm0=tmp12
234
235 ; -- Final output stage
236
237 psubw xmm0, xmm3 ; xmm0=tmp6
238 movdqa xmm1, xmm6
239 movdqa xmm5, xmm7
240 paddw xmm6, xmm3 ; xmm6=data0=(00 01 02 03 04 05 06 07)
241 paddw xmm7, xmm0 ; xmm7=data1=(10 11 12 13 14 15 16 17)
242 psubw xmm1, xmm3 ; xmm1=data7=(70 71 72 73 74 75 76 77)
243 psubw xmm5, xmm0 ; xmm5=data6=(60 61 62 63 64 65 66 67)
244 psubw xmm4, xmm0 ; xmm4=tmp5
245
246 movdqa xmm3, xmm6 ; transpose coefficients(phase 1)
247 punpcklwd xmm6, xmm7 ; xmm6=(00 10 01 11 02 12 03 13)
248 punpckhwd xmm3, xmm7 ; xmm3=(04 14 05 15 06 16 07 17)
249 movdqa xmm0, xmm5 ; transpose coefficients(phase 1)
250 punpcklwd xmm5, xmm1 ; xmm5=(60 70 61 71 62 72 63 73)
251 punpckhwd xmm0, xmm1 ; xmm0=(64 74 65 75 66 76 67 77)
252
253 movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp2
254 movdqa xmm1, XMMWORD [wk(1)] ; xmm1=tmp3
255
256 movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(60 70 61 71 62 72 63 73)
257 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(64 74 65 75 66 76 67 77)
258
259 paddw xmm2, xmm4 ; xmm2=tmp4
260 movdqa xmm5, xmm7
261 movdqa xmm0, xmm1
262 paddw xmm7, xmm4 ; xmm7=data2=(20 21 22 23 24 25 26 27)
263 paddw xmm1, xmm2 ; xmm1=data4=(40 41 42 43 44 45 46 47)
264 psubw xmm5, xmm4 ; xmm5=data5=(50 51 52 53 54 55 56 57)
265 psubw xmm0, xmm2 ; xmm0=data3=(30 31 32 33 34 35 36 37)
266
267 movdqa xmm4, xmm7 ; transpose coefficients(phase 1)
268 punpcklwd xmm7, xmm0 ; xmm7=(20 30 21 31 22 32 23 33)
269 punpckhwd xmm4, xmm0 ; xmm4=(24 34 25 35 26 36 27 37)
270 movdqa xmm2, xmm1 ; transpose coefficients(phase 1)
271 punpcklwd xmm1, xmm5 ; xmm1=(40 50 41 51 42 52 43 53)
272 punpckhwd xmm2, xmm5 ; xmm2=(44 54 45 55 46 56 47 57)
273
274 movdqa xmm0, xmm3 ; transpose coefficients(phase 2)
275 punpckldq xmm3, xmm4 ; xmm3=(04 14 24 34 05 15 25 35)
276 punpckhdq xmm0, xmm4 ; xmm0=(06 16 26 36 07 17 27 37)
277 movdqa xmm5, xmm6 ; transpose coefficients(phase 2)
278 punpckldq xmm6, xmm7 ; xmm6=(00 10 20 30 01 11 21 31)
279 punpckhdq xmm5, xmm7 ; xmm5=(02 12 22 32 03 13 23 33)
280
281 movdqa xmm4, XMMWORD [wk(0)] ; xmm4=(60 70 61 71 62 72 63 73)
282 movdqa xmm7, XMMWORD [wk(1)] ; xmm7=(64 74 65 75 66 76 67 77)
283
284 movdqa XMMWORD [wk(0)], xmm3 ; wk(0)=(04 14 24 34 05 15 25 35)
285 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(06 16 26 36 07 17 27 37)
286
287 movdqa xmm3, xmm1 ; transpose coefficients(phase 2)
288 punpckldq xmm1, xmm4 ; xmm1=(40 50 60 70 41 51 61 71)
289 punpckhdq xmm3, xmm4 ; xmm3=(42 52 62 72 43 53 63 73)
290 movdqa xmm0, xmm2 ; transpose coefficients(phase 2)
291 punpckldq xmm2, xmm7 ; xmm2=(44 54 64 74 45 55 65 75)
292 punpckhdq xmm0, xmm7 ; xmm0=(46 56 66 76 47 57 67 77)
293
294 movdqa xmm4, xmm6 ; transpose coefficients(phase 3)
295 punpcklqdq xmm6, xmm1 ; xmm6=col0=(00 10 20 30 40 50 60 70)
296 punpckhqdq xmm4, xmm1 ; xmm4=col1=(01 11 21 31 41 51 61 71)
297 movdqa xmm7, xmm5 ; transpose coefficients(phase 3)
298 punpcklqdq xmm5, xmm3 ; xmm5=col2=(02 12 22 32 42 52 62 72)
299 punpckhqdq xmm7, xmm3 ; xmm7=col3=(03 13 23 33 43 53 63 73)
300
301 movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(04 14 24 34 05 15 25 35)
302 movdqa xmm3, XMMWORD [wk(1)] ; xmm3=(06 16 26 36 07 17 27 37)
303
304 movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=col1
305 movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=col3
306
307 movdqa xmm4, xmm1 ; transpose coefficients(phase 3)
308 punpcklqdq xmm1, xmm2 ; xmm1=col4=(04 14 24 34 44 54 64 74)
309 punpckhqdq xmm4, xmm2 ; xmm4=col5=(05 15 25 35 45 55 65 75)
310 movdqa xmm7, xmm3 ; transpose coefficients(phase 3)
311 punpcklqdq xmm3, xmm0 ; xmm3=col6=(06 16 26 36 46 56 66 76)
312 punpckhqdq xmm7, xmm0 ; xmm7=col7=(07 17 27 37 47 57 67 77)
313.column_end:
314
315 ; -- Prefetch the next coefficient block
316
317 prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 0*32]
318 prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 1*32]
319 prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 2*32]
320 prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 3*32]
321
322 ; ---- Pass 2: process rows from work array, store into output array.
323
324 mov rax, [original_rbp]
325 mov rdi, r12 ; (JSAMPROW *)
326 mov eax, r13d
327
328 ; -- Even part
329
330 ; xmm6=col0, xmm5=col2, xmm1=col4, xmm3=col6
331
332 movdqa xmm2, xmm6
333 movdqa xmm0, xmm5
334 psubw xmm6, xmm1 ; xmm6=tmp11
335 psubw xmm5, xmm3
336 paddw xmm2, xmm1 ; xmm2=tmp10
337 paddw xmm0, xmm3 ; xmm0=tmp13
338
339 psllw xmm5, PRE_MULTIPLY_SCALE_BITS
340 pmulhw xmm5, [rel PW_F1414]
341 psubw xmm5, xmm0 ; xmm5=tmp12
342
343 movdqa xmm1, xmm2
344 movdqa xmm3, xmm6
345 psubw xmm2, xmm0 ; xmm2=tmp3
346 psubw xmm6, xmm5 ; xmm6=tmp2
347 paddw xmm1, xmm0 ; xmm1=tmp0
348 paddw xmm3, xmm5 ; xmm3=tmp1
349
350 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=col1
351 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=col3
352
353 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=tmp3
354 movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=tmp2
355
356 ; -- Odd part
357
358 ; xmm0=col1, xmm5=col3, xmm4=col5, xmm7=col7
359
360 movdqa xmm2, xmm0
361 movdqa xmm6, xmm4
362 psubw xmm0, xmm7 ; xmm0=z12
363 psubw xmm4, xmm5 ; xmm4=z10
364 paddw xmm2, xmm7 ; xmm2=z11
365 paddw xmm6, xmm5 ; xmm6=z13
366
367 movdqa xmm7, xmm4 ; xmm7=z10(unscaled)
368 psllw xmm0, PRE_MULTIPLY_SCALE_BITS
369 psllw xmm4, PRE_MULTIPLY_SCALE_BITS
370
371 movdqa xmm5, xmm2
372 psubw xmm2, xmm6
373 paddw xmm5, xmm6 ; xmm5=tmp7
374
375 psllw xmm2, PRE_MULTIPLY_SCALE_BITS
376 pmulhw xmm2, [rel PW_F1414] ; xmm2=tmp11
377
378 ; To avoid overflow...
379 ;
380 ; (Original)
381 ; tmp12 = -2.613125930 * z10 + z5;
382 ;
383 ; (This implementation)
384 ; tmp12 = (-1.613125930 - 1) * z10 + z5;
385 ; = -1.613125930 * z10 - z10 + z5;
386
387 movdqa xmm6, xmm4
388 paddw xmm4, xmm0
389 pmulhw xmm4, [rel PW_F1847] ; xmm4=z5
390 pmulhw xmm6, [rel PW_MF1613]
391 pmulhw xmm0, [rel PW_F1082]
392 psubw xmm6, xmm7
393 psubw xmm0, xmm4 ; xmm0=tmp10
394 paddw xmm6, xmm4 ; xmm6=tmp12
395
396 ; -- Final output stage
397
398 psubw xmm6, xmm5 ; xmm6=tmp6
399 movdqa xmm7, xmm1
400 movdqa xmm4, xmm3
401 paddw xmm1, xmm5 ; xmm1=data0=(00 10 20 30 40 50 60 70)
402 paddw xmm3, xmm6 ; xmm3=data1=(01 11 21 31 41 51 61 71)
403 psraw xmm1, (PASS1_BITS+3) ; descale
404 psraw xmm3, (PASS1_BITS+3) ; descale
405 psubw xmm7, xmm5 ; xmm7=data7=(07 17 27 37 47 57 67 77)
406 psubw xmm4, xmm6 ; xmm4=data6=(06 16 26 36 46 56 66 76)
407 psraw xmm7, (PASS1_BITS+3) ; descale
408 psraw xmm4, (PASS1_BITS+3) ; descale
409 psubw xmm2, xmm6 ; xmm2=tmp5
410
411 packsswb xmm1, xmm4 ; xmm1=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76)
412 packsswb xmm3, xmm7 ; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77)
413
414 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp2
415 movdqa xmm6, XMMWORD [wk(0)] ; xmm6=tmp3
416
417 paddw xmm0, xmm2 ; xmm0=tmp4
418 movdqa xmm4, xmm5
419 movdqa xmm7, xmm6
420 paddw xmm5, xmm2 ; xmm5=data2=(02 12 22 32 42 52 62 72)
421 paddw xmm6, xmm0 ; xmm6=data4=(04 14 24 34 44 54 64 74)
422 psraw xmm5, (PASS1_BITS+3) ; descale
423 psraw xmm6, (PASS1_BITS+3) ; descale
424 psubw xmm4, xmm2 ; xmm4=data5=(05 15 25 35 45 55 65 75)
425 psubw xmm7, xmm0 ; xmm7=data3=(03 13 23 33 43 53 63 73)
426 psraw xmm4, (PASS1_BITS+3) ; descale
427 psraw xmm7, (PASS1_BITS+3) ; descale
428
429 movdqa xmm2, [rel PB_CENTERJSAMP] ; xmm2=[rel PB_CENTERJSAMP]
430
431 packsswb xmm5, xmm6 ; xmm5=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74)
432 packsswb xmm7, xmm4 ; xmm7=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75)
433
434 paddb xmm1, xmm2
435 paddb xmm3, xmm2
436 paddb xmm5, xmm2
437 paddb xmm7, xmm2
438
439 movdqa xmm0, xmm1 ; transpose coefficients(phase 1)
440 punpcklbw xmm1, xmm3 ; xmm1=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71)
441 punpckhbw xmm0, xmm3 ; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77)
442 movdqa xmm6, xmm5 ; transpose coefficients(phase 1)
443 punpcklbw xmm5, xmm7 ; xmm5=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73)
444 punpckhbw xmm6, xmm7 ; xmm6=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75)
445
446 movdqa xmm4, xmm1 ; transpose coefficients(phase 2)
447 punpcklwd xmm1, xmm5 ; xmm1=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33)
448 punpckhwd xmm4, xmm5 ; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73)
449 movdqa xmm2, xmm6 ; transpose coefficients(phase 2)
450 punpcklwd xmm6, xmm0 ; xmm6=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37)
451 punpckhwd xmm2, xmm0 ; xmm2=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77)
452
453 movdqa xmm3, xmm1 ; transpose coefficients(phase 3)
454 punpckldq xmm1, xmm6 ; xmm1=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17)
455 punpckhdq xmm3, xmm6 ; xmm3=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37)
456 movdqa xmm7, xmm4 ; transpose coefficients(phase 3)
457 punpckldq xmm4, xmm2 ; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57)
458 punpckhdq xmm7, xmm2 ; xmm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77)
459
460 pshufd xmm5, xmm1, 0x4E ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07)
461 pshufd xmm0, xmm3, 0x4E ; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27)
462 pshufd xmm6, xmm4, 0x4E ; xmm6=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47)
463 pshufd xmm2, xmm7, 0x4E ; xmm2=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67)
464
465 mov rdx, JSAMPROW [rdi+0*SIZEOF_JSAMPROW]
466 mov rsi, JSAMPROW [rdi+2*SIZEOF_JSAMPROW]
467 movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm1
468 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm3
469 mov rdx, JSAMPROW [rdi+4*SIZEOF_JSAMPROW]
470 mov rsi, JSAMPROW [rdi+6*SIZEOF_JSAMPROW]
471 movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm4
472 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm7
473
474 mov rdx, JSAMPROW [rdi+1*SIZEOF_JSAMPROW]
475 mov rsi, JSAMPROW [rdi+3*SIZEOF_JSAMPROW]
476 movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm5
477 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm0
478 mov rdx, JSAMPROW [rdi+5*SIZEOF_JSAMPROW]
479 mov rsi, JSAMPROW [rdi+7*SIZEOF_JSAMPROW]
480 movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm6
481 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm2
482
483 uncollect_args 4
484 mov rsp, rbp ; rsp <- aligned rbp
485 pop rsp ; rsp <- original rbp
486 pop rbp
487 ret
488 ret
489
490; For some reason, the OS X linker does not honor the request to align the
491; segment unless we do this.
492 align 32