blob: 3f657db491fe54936b500e6555bbe80bd419b601 [file] [log] [blame]
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +00001/*
2 * jchuff.c
3 *
Thomas G. Lane4a6b7301992-03-17 00:00:00 +00004 * Copyright (C) 1991, 1992, Thomas G. Lane.
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +00005 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains Huffman entropy encoding routines.
9 * These routines are invoked via the methods entropy_encode,
Thomas G. Lane88aeed41992-12-10 00:00:00 +000010 * entropy_encode_init/term, and entropy_optimize.
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +000011 */
12
13#include "jinclude.h"
14
15
16/* Static variables to avoid passing 'round extra parameters */
17
18static compress_info_ptr cinfo;
19
20static INT32 huff_put_buffer; /* current bit-accumulation buffer */
21static int huff_put_bits; /* # of bits now in it */
22
23static char * output_buffer; /* output buffer */
24static int bytes_in_buffer;
25
26
27
28LOCAL void
29fix_huff_tbl (HUFF_TBL * htbl)
30/* Compute derived values for a Huffman table */
31{
32 int p, i, l, lastp, si;
33 char huffsize[257];
34 UINT16 huffcode[257];
35 UINT16 code;
36
Thomas G. Lane4a6b7301992-03-17 00:00:00 +000037 /* Figure C.1: make table of Huffman code length for each symbol */
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +000038 /* Note that this is in code-length order. */
39
40 p = 0;
41 for (l = 1; l <= 16; l++) {
Thomas G. Lanebd543f01991-12-13 00:00:00 +000042 for (i = 1; i <= (int) htbl->bits[l]; i++)
43 huffsize[p++] = (char) l;
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +000044 }
45 huffsize[p] = 0;
46 lastp = p;
47
Thomas G. Lane4a6b7301992-03-17 00:00:00 +000048 /* Figure C.2: generate the codes themselves */
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +000049 /* Note that this is in code-length order. */
50
51 code = 0;
52 si = huffsize[0];
53 p = 0;
54 while (huffsize[p]) {
Thomas G. Lanebd543f01991-12-13 00:00:00 +000055 while (((int) huffsize[p]) == si) {
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +000056 huffcode[p++] = code;
57 code++;
58 }
59 code <<= 1;
60 si++;
61 }
62
Thomas G. Lane4a6b7301992-03-17 00:00:00 +000063 /* Figure C.3: generate encoding tables */
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +000064 /* These are code and size indexed by symbol value */
65
Thomas G. Lane4a6b7301992-03-17 00:00:00 +000066 /* Set any codeless symbols to have code length 0;
67 * this allows emit_bits to detect any attempt to emit such symbols.
68 */
Thomas G. Lane88aeed41992-12-10 00:00:00 +000069 MEMZERO(htbl->ehufsi, SIZEOF(htbl->ehufsi));
Thomas G. Lane4a6b7301992-03-17 00:00:00 +000070
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +000071 for (p = 0; p < lastp; p++) {
72 htbl->ehufco[htbl->huffval[p]] = huffcode[p];
73 htbl->ehufsi[htbl->huffval[p]] = huffsize[p];
74 }
75
Thomas G. Lane4a6b7301992-03-17 00:00:00 +000076 /* We don't bother to fill in the decoding tables mincode[], maxcode[], */
77 /* and valptr[], since they are not used for encoding. */
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +000078}
79
80
81/* Outputting bytes to the file */
82
83LOCAL void
84flush_bytes (void)
85{
86 if (bytes_in_buffer)
87 (*cinfo->methods->entropy_output) (cinfo, output_buffer, bytes_in_buffer);
88 bytes_in_buffer = 0;
89}
90
91
Thomas G. Lanebd543f01991-12-13 00:00:00 +000092#define emit_byte(val) \
93 MAKESTMT( if (bytes_in_buffer >= JPEG_BUF_SIZE) \
94 flush_bytes(); \
95 output_buffer[bytes_in_buffer++] = (char) (val); )
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +000096
97
98
99/* Outputting bits to the file */
100
101/* Only the right 24 bits of huff_put_buffer are used; the valid bits are
102 * left-justified in this part. At most 16 bits can be passed to emit_bits
103 * in one call, and we never retain more than 7 bits in huff_put_buffer
104 * between calls, so 24 bits are sufficient.
105 */
106
Thomas G. Lane88aeed41992-12-10 00:00:00 +0000107INLINE
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000108LOCAL void
109emit_bits (UINT16 code, int size)
110{
111 /* This routine is heavily used, so it's worth coding tightly. */
112 register INT32 put_buffer = code;
113 register int put_bits = huff_put_bits;
114
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000115 /* if size is 0, caller used an invalid Huffman table entry */
116 if (size == 0)
117 ERREXIT(cinfo->emethods, "Missing Huffman code table entry");
118
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000119 put_buffer &= (((INT32) 1) << size) - 1; /* Mask off any excess bits in code */
120
121 put_bits += size; /* new number of bits in buffer */
122
123 put_buffer <<= 24 - put_bits; /* align incoming bits */
124
125 put_buffer |= huff_put_buffer; /* and merge with old buffer contents */
126
127 while (put_bits >= 8) {
128 int c = (int) ((put_buffer >> 16) & 0xFF);
129
130 emit_byte(c);
131 if (c == 0xFF) { /* need to stuff a zero byte? */
132 emit_byte(0);
133 }
134 put_buffer <<= 8;
135 put_bits -= 8;
136 }
137
138 huff_put_buffer = put_buffer; /* Update global variables */
139 huff_put_bits = put_bits;
140}
141
142
143LOCAL void
144flush_bits (void)
145{
146 emit_bits((UINT16) 0x7F, 7); /* fill any partial byte with ones */
147 huff_put_buffer = 0; /* and reset bit-buffer to empty */
148 huff_put_bits = 0;
149}
150
151
152
153/* Encode a single block's worth of coefficients */
154/* Note that the DC coefficient has already been converted to a difference */
155
156LOCAL void
157encode_one_block (JBLOCK block, HUFF_TBL *dctbl, HUFF_TBL *actbl)
158{
Thomas G. Lanebd543f01991-12-13 00:00:00 +0000159 register int temp, temp2;
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000160 register int nbits;
161 register int k, r, i;
162
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000163 /* Encode the DC coefficient difference per section F.1.2.1 */
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000164
Thomas G. Lanebd543f01991-12-13 00:00:00 +0000165 temp = temp2 = block[0];
166
167 if (temp < 0) {
168 temp = -temp; /* temp is abs value of input */
169 /* For a negative input, want temp2 = bitwise complement of abs(input) */
170 /* This code assumes we are on a two's complement machine */
171 temp2--;
172 }
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000173
Thomas G. Lanebd543f01991-12-13 00:00:00 +0000174 /* Find the number of bits needed for the magnitude of the coefficient */
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000175 nbits = 0;
176 while (temp) {
177 nbits++;
178 temp >>= 1;
179 }
180
181 /* Emit the Huffman-coded symbol for the number of bits */
182 emit_bits(dctbl->ehufco[nbits], dctbl->ehufsi[nbits]);
Thomas G. Lanebd543f01991-12-13 00:00:00 +0000183
184 /* Emit that number of bits of the value, if positive, */
185 /* or the complement of its magnitude, if negative. */
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000186 if (nbits) /* emit_bits rejects calls with size 0 */
187 emit_bits((UINT16) temp2, nbits);
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000188
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000189 /* Encode the AC coefficients per section F.1.2.2 */
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000190
191 r = 0; /* r = run length of zeros */
192
193 for (k = 1; k < DCTSIZE2; k++) {
194 if ((temp = block[k]) == 0) {
195 r++;
196 } else {
197 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
198 while (r > 15) {
199 emit_bits(actbl->ehufco[0xF0], actbl->ehufsi[0xF0]);
200 r -= 16;
201 }
Thomas G. Lanebd543f01991-12-13 00:00:00 +0000202
203 temp2 = temp;
204 if (temp < 0) {
205 temp = -temp; /* temp is abs value of input */
206 /* This code assumes we are on a two's complement machine */
207 temp2--;
208 }
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000209
210 /* Find the number of bits needed for the magnitude of the coefficient */
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000211 nbits = 1; /* there must be at least one 1 bit */
212 while (temp >>= 1)
213 nbits++;
214
215 /* Emit Huffman symbol for run length / number of bits */
216 i = (r << 4) + nbits;
217 emit_bits(actbl->ehufco[i], actbl->ehufsi[i]);
218
Thomas G. Lanebd543f01991-12-13 00:00:00 +0000219 /* Emit that number of bits of the value, if positive, */
220 /* or the complement of its magnitude, if negative. */
221 emit_bits((UINT16) temp2, nbits);
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000222
223 r = 0;
224 }
225 }
226
227 /* If the last coef(s) were zero, emit an end-of-block code */
228 if (r > 0)
229 emit_bits(actbl->ehufco[0], actbl->ehufsi[0]);
230}
231
232
233
234/*
235 * Initialize for a Huffman-compressed scan.
236 * This is invoked after writing the SOS marker.
237 * The pipeline controller must establish the entropy_output method pointer
238 * before calling this routine.
239 */
240
241METHODDEF void
242huff_init (compress_info_ptr xinfo)
243{
244 short ci;
245 jpeg_component_info * compptr;
246
247 /* Initialize static variables */
248 cinfo = xinfo;
249 huff_put_buffer = 0;
250 huff_put_bits = 0;
251
252 /* Initialize the output buffer */
253 output_buffer = (char *) (*cinfo->emethods->alloc_small)
254 ((size_t) JPEG_BUF_SIZE);
255 bytes_in_buffer = 0;
256
257 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
258 compptr = cinfo->cur_comp_info[ci];
259 /* Make sure requested tables are present */
260 if (cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no] == NULL ||
261 cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no] == NULL)
262 ERREXIT(cinfo->emethods, "Use of undefined Huffman table");
263 /* Compute derived values for Huffman tables */
264 /* We may do this more than once for same table, but it's not a big deal */
265 fix_huff_tbl(cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no]);
266 fix_huff_tbl(cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no]);
267 /* Initialize DC predictions to 0 */
268 cinfo->last_dc_val[ci] = 0;
269 }
270
271 /* Initialize restart stuff */
272 cinfo->restarts_to_go = cinfo->restart_interval;
273 cinfo->next_restart_num = 0;
274}
275
276
277/*
278 * Emit a restart marker & resynchronize predictions.
279 */
280
281LOCAL void
282emit_restart (compress_info_ptr cinfo)
283{
284 short ci;
285
286 flush_bits();
287
288 emit_byte(0xFF);
289 emit_byte(RST0 + cinfo->next_restart_num);
290
291 /* Re-initialize DC predictions to 0 */
292 for (ci = 0; ci < cinfo->comps_in_scan; ci++)
293 cinfo->last_dc_val[ci] = 0;
294
295 /* Update restart state */
296 cinfo->restarts_to_go = cinfo->restart_interval;
297 cinfo->next_restart_num++;
298 cinfo->next_restart_num &= 7;
299}
300
301
302/*
303 * Encode and output one MCU's worth of Huffman-compressed coefficients.
304 */
305
306METHODDEF void
307huff_encode (compress_info_ptr cinfo, JBLOCK *MCU_data)
308{
309 short blkn, ci;
310 jpeg_component_info * compptr;
311 JCOEF temp;
312
313 /* Account for restart interval, emit restart marker if needed */
314 if (cinfo->restart_interval) {
315 if (cinfo->restarts_to_go == 0)
316 emit_restart(cinfo);
317 cinfo->restarts_to_go--;
318 }
319
320 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
321 ci = cinfo->MCU_membership[blkn];
322 compptr = cinfo->cur_comp_info[ci];
323 /* Convert DC value to difference, update last_dc_val */
324 temp = MCU_data[blkn][0];
325 MCU_data[blkn][0] -= cinfo->last_dc_val[ci];
326 cinfo->last_dc_val[ci] = temp;
327 encode_one_block(MCU_data[blkn],
328 cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no],
329 cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no]);
330 }
331}
332
333
334/*
335 * Finish up at the end of a Huffman-compressed scan.
336 */
337
338METHODDEF void
339huff_term (compress_info_ptr cinfo)
340{
341 /* Flush out the last data */
342 flush_bits();
343 flush_bytes();
344 /* Release the I/O buffer */
345 (*cinfo->emethods->free_small) ((void *) output_buffer);
346}
347
348
349
350
351/*
352 * Huffman coding optimization.
353 *
354 * This actually is optimization, in the sense that we find the best possible
355 * Huffman table(s) for the given data. We first scan the supplied data and
356 * count the number of uses of each symbol that is to be Huffman-coded.
357 * (This process must agree with the code above.) Then we build an
358 * optimal Huffman coding tree for the observed counts.
359 */
360
361#ifdef ENTROPY_OPT_SUPPORTED
362
363
364/* These are static so htest_one_block can find 'em */
365static long * dc_count_ptrs[NUM_HUFF_TBLS];
366static long * ac_count_ptrs[NUM_HUFF_TBLS];
367
368
369LOCAL void
370gen_huff_coding (compress_info_ptr cinfo, HUFF_TBL *htbl, long freq[])
371/* Generate the optimal coding for the given counts */
372{
373#define MAX_CLEN 32 /* assumed maximum initial code length */
374 UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
375 short codesize[257]; /* codesize[k] = code length of symbol k */
376 short others[257]; /* next symbol in current branch of tree */
377 int c1, c2;
378 int p, i, j;
379 long v;
380
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000381 /* This algorithm is explained in section K.2 of the JPEG standard */
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000382
Thomas G. Lane88aeed41992-12-10 00:00:00 +0000383 MEMZERO(bits, SIZEOF(bits));
384 MEMZERO(codesize, SIZEOF(codesize));
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000385 for (i = 0; i < 257; i++)
386 others[i] = -1; /* init links to empty */
387
388 freq[256] = 1; /* make sure there is a nonzero count */
389 /* including the pseudo-symbol 256 in the Huffman procedure guarantees
390 * that no real symbol is given code-value of all ones, because 256
391 * will be placed in the largest codeword category.
392 */
393
394 /* Huffman's basic algorithm to assign optimal code lengths to symbols */
395
396 for (;;) {
397 /* Find the smallest nonzero frequency, set c1 = its symbol */
398 /* In case of ties, take the larger symbol number */
399 c1 = -1;
400 v = 1000000000L;
401 for (i = 0; i <= 256; i++) {
402 if (freq[i] && freq[i] <= v) {
403 v = freq[i];
404 c1 = i;
405 }
406 }
407
408 /* Find the next smallest nonzero frequency, set c2 = its symbol */
409 /* In case of ties, take the larger symbol number */
410 c2 = -1;
411 v = 1000000000L;
412 for (i = 0; i <= 256; i++) {
413 if (freq[i] && freq[i] <= v && i != c1) {
414 v = freq[i];
415 c2 = i;
416 }
417 }
418
419 /* Done if we've merged everything into one frequency */
420 if (c2 < 0)
421 break;
422
423 /* Else merge the two counts/trees */
424 freq[c1] += freq[c2];
425 freq[c2] = 0;
426
427 /* Increment the codesize of everything in c1's tree branch */
428 codesize[c1]++;
429 while (others[c1] >= 0) {
430 c1 = others[c1];
431 codesize[c1]++;
432 }
433
434 others[c1] = c2; /* chain c2 onto c1's tree branch */
435
436 /* Increment the codesize of everything in c2's tree branch */
437 codesize[c2]++;
438 while (others[c2] >= 0) {
439 c2 = others[c2];
440 codesize[c2]++;
441 }
442 }
443
444 /* Now count the number of symbols of each code length */
445 for (i = 0; i <= 256; i++) {
446 if (codesize[i]) {
447 /* The JPEG standard seems to think that this can't happen, */
448 /* but I'm paranoid... */
449 if (codesize[i] > MAX_CLEN)
450 ERREXIT(cinfo->emethods, "Huffman code size table overflow");
451
452 bits[codesize[i]]++;
453 }
454 }
455
456 /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
457 * Huffman procedure assigned any such lengths, we must adjust the coding.
458 * Here is what the JPEG spec says about how this next bit works:
459 * Since symbols are paired for the longest Huffman code, the symbols are
460 * removed from this length category two at a time. The prefix for the pair
461 * (which is one bit shorter) is allocated to one of the pair; then,
462 * skipping the BITS entry for that prefix length, a code word from the next
463 * shortest nonzero BITS entry is converted into a prefix for two code words
464 * one bit longer.
465 */
466
467 for (i = MAX_CLEN; i > 16; i--) {
468 while (bits[i] > 0) {
469 j = i - 2; /* find length of new prefix to be used */
470 while (bits[j] == 0)
471 j--;
472
473 bits[i] -= 2; /* remove two symbols */
474 bits[i-1]++; /* one goes in this length */
475 bits[j+1] += 2; /* two new symbols in this length */
476 bits[j]--; /* symbol of this length is now a prefix */
477 }
478 }
479
480 /* Remove the count for the pseudo-symbol 256 from the largest codelength */
481 while (bits[i] == 0) /* find largest codelength still in use */
482 i--;
483 bits[i]--;
484
485 /* Return final symbol counts (only for lengths 0..16) */
Thomas G. Lane88aeed41992-12-10 00:00:00 +0000486 MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000487
488 /* Return a list of the symbols sorted by code length */
489 /* It's not real clear to me why we don't need to consider the codelength
490 * changes made above, but the JPEG spec seems to think this works.
491 */
492 p = 0;
493 for (i = 1; i <= MAX_CLEN; i++) {
494 for (j = 0; j <= 255; j++) {
495 if (codesize[j] == i) {
Thomas G. Lanebd543f01991-12-13 00:00:00 +0000496 htbl->huffval[p] = (UINT8) j;
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000497 p++;
498 }
499 }
500 }
501}
502
503
504/* Process a single block's worth of coefficients */
505/* Note that the DC coefficient has already been converted to a difference */
506
507LOCAL void
508htest_one_block (JBLOCK block, JCOEF block0,
509 long dc_counts[], long ac_counts[])
510{
511 register INT32 temp;
512 register int nbits;
513 register int k, r;
514
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000515 /* Encode the DC coefficient difference per section F.1.2.1 */
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000516
517 /* Find the number of bits needed for the magnitude of the coefficient */
518 temp = block0;
519 if (temp < 0) temp = -temp;
520
521 for (nbits = 0; temp; nbits++)
522 temp >>= 1;
523
524 /* Count the Huffman symbol for the number of bits */
525 dc_counts[nbits]++;
526
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000527 /* Encode the AC coefficients per section F.1.2.2 */
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000528
529 r = 0; /* r = run length of zeros */
530
531 for (k = 1; k < DCTSIZE2; k++) {
532 if ((temp = block[k]) == 0) {
533 r++;
534 } else {
535 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
536 while (r > 15) {
537 ac_counts[0xF0]++;
538 r -= 16;
539 }
540
541 /* Find the number of bits needed for the magnitude of the coefficient */
542 if (temp < 0) temp = -temp;
543
544 for (nbits = 0; temp; nbits++)
545 temp >>= 1;
546
547 /* Count Huffman symbol for run length / number of bits */
548 ac_counts[(r << 4) + nbits]++;
549
550 r = 0;
551 }
552 }
553
554 /* If the last coef(s) were zero, emit an end-of-block code */
555 if (r > 0)
556 ac_counts[0]++;
557}
558
559
560
561/*
562 * Trial-encode one MCU's worth of Huffman-compressed coefficients.
563 */
564
565LOCAL void
566htest_encode (compress_info_ptr cinfo, JBLOCK *MCU_data)
567{
568 short blkn, ci;
569 jpeg_component_info * compptr;
570
571 /* Take care of restart intervals if needed */
572 if (cinfo->restart_interval) {
573 if (cinfo->restarts_to_go == 0) {
574 /* Re-initialize DC predictions to 0 */
575 for (ci = 0; ci < cinfo->comps_in_scan; ci++)
576 cinfo->last_dc_val[ci] = 0;
577 /* Update restart state */
578 cinfo->restarts_to_go = cinfo->restart_interval;
579 }
580 cinfo->restarts_to_go--;
581 }
582
583 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
584 ci = cinfo->MCU_membership[blkn];
585 compptr = cinfo->cur_comp_info[ci];
586 /* NB: unlike the real entropy encoder, we may not change the input data */
587 htest_one_block(MCU_data[blkn],
588 (JCOEF) (MCU_data[blkn][0] - cinfo->last_dc_val[ci]),
589 dc_count_ptrs[compptr->dc_tbl_no],
590 ac_count_ptrs[compptr->ac_tbl_no]);
591 cinfo->last_dc_val[ci] = MCU_data[blkn][0];
592 }
593}
594
595
596
597/*
598 * Find the best coding parameters for a Huffman-coded scan.
599 * When called, the scan data has already been converted to a sequence of
600 * MCU groups of quantized coefficients, which are stored in a "big" array.
601 * The source_method knows how to iterate through that array.
602 * On return, the MCU data is unmodified, but the Huffman tables referenced
603 * by the scan components may have been altered.
604 */
605
606METHODDEF void
607huff_optimize (compress_info_ptr cinfo, MCU_output_caller_ptr source_method)
608/* Optimize Huffman-coding parameters (Huffman symbol table) */
609{
610 int i, tbl;
611 HUFF_TBL **htblptr;
612
613 /* Allocate and zero the count tables */
614 /* Note that gen_huff_coding expects 257 entries in each table! */
615
616 for (i = 0; i < NUM_HUFF_TBLS; i++) {
617 dc_count_ptrs[i] = NULL;
618 ac_count_ptrs[i] = NULL;
619 }
620
621 for (i = 0; i < cinfo->comps_in_scan; i++) {
622 /* Create DC table */
623 tbl = cinfo->cur_comp_info[i]->dc_tbl_no;
624 if (dc_count_ptrs[tbl] == NULL) {
625 dc_count_ptrs[tbl] = (long *) (*cinfo->emethods->alloc_small)
626 (257 * SIZEOF(long));
Thomas G. Lane88aeed41992-12-10 00:00:00 +0000627 MEMZERO(dc_count_ptrs[tbl], 257 * SIZEOF(long));
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000628 }
629 /* Create AC table */
630 tbl = cinfo->cur_comp_info[i]->ac_tbl_no;
631 if (ac_count_ptrs[tbl] == NULL) {
632 ac_count_ptrs[tbl] = (long *) (*cinfo->emethods->alloc_small)
633 (257 * SIZEOF(long));
Thomas G. Lane88aeed41992-12-10 00:00:00 +0000634 MEMZERO(ac_count_ptrs[tbl], 257 * SIZEOF(long));
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000635 }
636 }
637
638 /* Initialize DC predictions to 0 */
639 for (i = 0; i < cinfo->comps_in_scan; i++) {
640 cinfo->last_dc_val[i] = 0;
641 }
642 /* Initialize restart stuff */
643 cinfo->restarts_to_go = cinfo->restart_interval;
644
645 /* Scan the MCU data, count symbol uses */
646 (*source_method) (cinfo, htest_encode);
647
648 /* Now generate optimal Huffman tables */
649 for (tbl = 0; tbl < NUM_HUFF_TBLS; tbl++) {
650 if (dc_count_ptrs[tbl] != NULL) {
651 htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
652 if (*htblptr == NULL)
Thomas G. Lanebd543f01991-12-13 00:00:00 +0000653 *htblptr = (HUFF_TBL *) (*cinfo->emethods->alloc_small) (SIZEOF(HUFF_TBL));
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000654 /* Set sent_table FALSE so updated table will be written to JPEG file. */
655 (*htblptr)->sent_table = FALSE;
656 /* Compute the optimal Huffman encoding */
657 gen_huff_coding(cinfo, *htblptr, dc_count_ptrs[tbl]);
658 /* Release the count table */
659 (*cinfo->emethods->free_small) ((void *) dc_count_ptrs[tbl]);
660 }
661 if (ac_count_ptrs[tbl] != NULL) {
662 htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
663 if (*htblptr == NULL)
Thomas G. Lanebd543f01991-12-13 00:00:00 +0000664 *htblptr = (HUFF_TBL *) (*cinfo->emethods->alloc_small) (SIZEOF(HUFF_TBL));
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000665 /* Set sent_table FALSE so updated table will be written to JPEG file. */
666 (*htblptr)->sent_table = FALSE;
667 /* Compute the optimal Huffman encoding */
668 gen_huff_coding(cinfo, *htblptr, ac_count_ptrs[tbl]);
669 /* Release the count table */
670 (*cinfo->emethods->free_small) ((void *) ac_count_ptrs[tbl]);
671 }
672 }
673}
674
675
676#endif /* ENTROPY_OPT_SUPPORTED */
677
678
679/*
680 * The method selection routine for Huffman entropy encoding.
681 */
682
683GLOBAL void
684jselchuffman (compress_info_ptr cinfo)
685{
686 if (! cinfo->arith_code) {
Thomas G. Lane88aeed41992-12-10 00:00:00 +0000687 cinfo->methods->entropy_encode_init = huff_init;
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000688 cinfo->methods->entropy_encode = huff_encode;
Thomas G. Lane88aeed41992-12-10 00:00:00 +0000689 cinfo->methods->entropy_encode_term = huff_term;
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000690#ifdef ENTROPY_OPT_SUPPORTED
691 cinfo->methods->entropy_optimize = huff_optimize;
Thomas G. Lane4a6b7301992-03-17 00:00:00 +0000692 /* The standard Huffman tables are only valid for 8-bit data precision.
693 * If the precision is higher, force optimization on so that usable
694 * tables will be computed. This test can be removed if default tables
695 * are supplied that are valid for the desired precision.
696 */
697 if (cinfo->data_precision > 8)
698 cinfo->optimize_coding = TRUE;
699 if (cinfo->optimize_coding)
700 cinfo->total_passes++; /* one pass needed for entropy optimization */
Thomas G. Lane2cbeb8a1991-10-07 00:00:00 +0000701#endif
702 }
703}