blob: ab6f6d08253ca882f80f21cd5cd913eea47c3771 [file] [log] [blame]
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001/*
2 * jfdctflt.c
3 *
Thomas G. Lane489583f1996-02-07 00:00:00 +00004 * Copyright (C) 1994-1996, Thomas G. Lane.
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00005 * This file is part of the Independent JPEG Group's software.
Alex Naidis6eb7d372016-10-16 23:10:08 +02006 * For conditions of distribution and use, see the accompanying README.ijg
7 * file.
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00008 *
9 * This file contains a floating-point implementation of the
10 * forward DCT (Discrete Cosine Transform).
11 *
12 * This implementation should be more accurate than either of the integer
13 * DCT implementations. However, it may not give the same results on all
14 * machines because of differences in roundoff behavior. Speed will depend
15 * on the hardware's floating point capacity.
16 *
17 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
18 * on each column. Direct algorithms are also available, but they are
19 * much more complex and seem not to be any faster when reduced to code.
20 *
21 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
22 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
23 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
Alex Naidis6eb7d372016-10-16 23:10:08 +020024 * JPEG textbook (see REFERENCES section in file README.ijg). The following
25 * code is based directly on figure 4-8 in P&M.
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000026 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
27 * possible to arrange the computation so that many of the multiplies are
28 * simple scalings of the final outputs. These multiplies can then be
29 * folded into the multiplications or divisions by the JPEG quantization
30 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
31 * to be done in the DCT itself.
32 * The primary disadvantage of this method is that with a fixed-point
33 * implementation, accuracy is lost due to imprecise representation of the
34 * scaled quantization values. However, that problem does not arise if
35 * we use floating point arithmetic.
36 */
37
38#define JPEG_INTERNALS
39#include "jinclude.h"
40#include "jpeglib.h"
DRCe5eaf372014-05-09 18:00:32 +000041#include "jdct.h" /* Private declarations for DCT subsystem */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000042
43#ifdef DCT_FLOAT_SUPPORTED
44
45
46/*
47 * This module is specialized to the case DCTSIZE = 8.
48 */
49
50#if DCTSIZE != 8
51 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
52#endif
53
54
55/*
56 * Perform the forward DCT on one block of samples.
57 */
58
Thomas G. Lane489583f1996-02-07 00:00:00 +000059GLOBAL(void)
Leon Scroggins III3993b372018-07-16 10:43:45 -040060jpeg_fdct_float(FAST_FLOAT *data)
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000061{
62 FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
63 FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
64 FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
65 FAST_FLOAT *dataptr;
66 int ctr;
67
68 /* Pass 1: process rows. */
69
70 dataptr = data;
Leon Scroggins III3993b372018-07-16 10:43:45 -040071 for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) {
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000072 tmp0 = dataptr[0] + dataptr[7];
73 tmp7 = dataptr[0] - dataptr[7];
74 tmp1 = dataptr[1] + dataptr[6];
75 tmp6 = dataptr[1] - dataptr[6];
76 tmp2 = dataptr[2] + dataptr[5];
77 tmp5 = dataptr[2] - dataptr[5];
78 tmp3 = dataptr[3] + dataptr[4];
79 tmp4 = dataptr[3] - dataptr[4];
DRCe5eaf372014-05-09 18:00:32 +000080
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000081 /* Even part */
DRCe5eaf372014-05-09 18:00:32 +000082
83 tmp10 = tmp0 + tmp3; /* phase 2 */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000084 tmp13 = tmp0 - tmp3;
85 tmp11 = tmp1 + tmp2;
86 tmp12 = tmp1 - tmp2;
DRCe5eaf372014-05-09 18:00:32 +000087
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000088 dataptr[0] = tmp10 + tmp11; /* phase 3 */
89 dataptr[4] = tmp10 - tmp11;
DRCe5eaf372014-05-09 18:00:32 +000090
Leon Scroggins III3993b372018-07-16 10:43:45 -040091 z1 = (tmp12 + tmp13) * ((FAST_FLOAT)0.707106781); /* c4 */
DRCe5eaf372014-05-09 18:00:32 +000092 dataptr[2] = tmp13 + z1; /* phase 5 */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000093 dataptr[6] = tmp13 - z1;
DRCe5eaf372014-05-09 18:00:32 +000094
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000095 /* Odd part */
96
DRCe5eaf372014-05-09 18:00:32 +000097 tmp10 = tmp4 + tmp5; /* phase 2 */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000098 tmp11 = tmp5 + tmp6;
99 tmp12 = tmp6 + tmp7;
100
101 /* The rotator is modified from fig 4-8 to avoid extra negations. */
Leon Scroggins III3993b372018-07-16 10:43:45 -0400102 z5 = (tmp10 - tmp12) * ((FAST_FLOAT)0.382683433); /* c6 */
103 z2 = ((FAST_FLOAT)0.541196100) * tmp10 + z5; /* c2-c6 */
104 z4 = ((FAST_FLOAT)1.306562965) * tmp12 + z5; /* c2+c6 */
105 z3 = tmp11 * ((FAST_FLOAT)0.707106781); /* c4 */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000106
DRCe5eaf372014-05-09 18:00:32 +0000107 z11 = tmp7 + z3; /* phase 5 */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000108 z13 = tmp7 - z3;
109
DRCe5eaf372014-05-09 18:00:32 +0000110 dataptr[5] = z13 + z2; /* phase 6 */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000111 dataptr[3] = z13 - z2;
112 dataptr[1] = z11 + z4;
113 dataptr[7] = z11 - z4;
114
DRCe5eaf372014-05-09 18:00:32 +0000115 dataptr += DCTSIZE; /* advance pointer to next row */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000116 }
117
118 /* Pass 2: process columns. */
119
120 dataptr = data;
Leon Scroggins III3993b372018-07-16 10:43:45 -0400121 for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) {
122 tmp0 = dataptr[DCTSIZE * 0] + dataptr[DCTSIZE * 7];
123 tmp7 = dataptr[DCTSIZE * 0] - dataptr[DCTSIZE * 7];
124 tmp1 = dataptr[DCTSIZE * 1] + dataptr[DCTSIZE * 6];
125 tmp6 = dataptr[DCTSIZE * 1] - dataptr[DCTSIZE * 6];
126 tmp2 = dataptr[DCTSIZE * 2] + dataptr[DCTSIZE * 5];
127 tmp5 = dataptr[DCTSIZE * 2] - dataptr[DCTSIZE * 5];
128 tmp3 = dataptr[DCTSIZE * 3] + dataptr[DCTSIZE * 4];
129 tmp4 = dataptr[DCTSIZE * 3] - dataptr[DCTSIZE * 4];
DRCe5eaf372014-05-09 18:00:32 +0000130
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000131 /* Even part */
DRCe5eaf372014-05-09 18:00:32 +0000132
133 tmp10 = tmp0 + tmp3; /* phase 2 */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000134 tmp13 = tmp0 - tmp3;
135 tmp11 = tmp1 + tmp2;
136 tmp12 = tmp1 - tmp2;
DRCe5eaf372014-05-09 18:00:32 +0000137
Leon Scroggins III3993b372018-07-16 10:43:45 -0400138 dataptr[DCTSIZE * 0] = tmp10 + tmp11; /* phase 3 */
139 dataptr[DCTSIZE * 4] = tmp10 - tmp11;
DRCe5eaf372014-05-09 18:00:32 +0000140
Leon Scroggins III3993b372018-07-16 10:43:45 -0400141 z1 = (tmp12 + tmp13) * ((FAST_FLOAT)0.707106781); /* c4 */
142 dataptr[DCTSIZE * 2] = tmp13 + z1; /* phase 5 */
143 dataptr[DCTSIZE * 6] = tmp13 - z1;
DRCe5eaf372014-05-09 18:00:32 +0000144
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000145 /* Odd part */
146
DRCe5eaf372014-05-09 18:00:32 +0000147 tmp10 = tmp4 + tmp5; /* phase 2 */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000148 tmp11 = tmp5 + tmp6;
149 tmp12 = tmp6 + tmp7;
150
151 /* The rotator is modified from fig 4-8 to avoid extra negations. */
Leon Scroggins III3993b372018-07-16 10:43:45 -0400152 z5 = (tmp10 - tmp12) * ((FAST_FLOAT)0.382683433); /* c6 */
153 z2 = ((FAST_FLOAT)0.541196100) * tmp10 + z5; /* c2-c6 */
154 z4 = ((FAST_FLOAT)1.306562965) * tmp12 + z5; /* c2+c6 */
155 z3 = tmp11 * ((FAST_FLOAT)0.707106781); /* c4 */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000156
DRCe5eaf372014-05-09 18:00:32 +0000157 z11 = tmp7 + z3; /* phase 5 */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000158 z13 = tmp7 - z3;
159
Leon Scroggins III3993b372018-07-16 10:43:45 -0400160 dataptr[DCTSIZE * 5] = z13 + z2; /* phase 6 */
161 dataptr[DCTSIZE * 3] = z13 - z2;
162 dataptr[DCTSIZE * 1] = z11 + z4;
163 dataptr[DCTSIZE * 7] = z11 - z4;
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000164
DRCe5eaf372014-05-09 18:00:32 +0000165 dataptr++; /* advance pointer to next column */
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +0000166 }
167}
168
169#endif /* DCT_FLOAT_SUPPORTED */