Luis Hector Chavez | 21a249e | 2017-07-26 17:38:05 +0000 | [diff] [blame^] | 1 | // Copyright 2013 The Chromium Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
| 5 | #ifndef MOJO_PUBLIC_CPP_BINDINGS_ARRAY_H_ |
| 6 | #define MOJO_PUBLIC_CPP_BINDINGS_ARRAY_H_ |
| 7 | |
| 8 | #include <stddef.h> |
| 9 | #include <string.h> |
| 10 | #include <algorithm> |
| 11 | #include <set> |
| 12 | #include <string> |
| 13 | #include <utility> |
| 14 | #include <vector> |
| 15 | |
| 16 | #include "base/macros.h" |
| 17 | #include "mojo/public/cpp/bindings/lib/array_internal.h" |
| 18 | #include "mojo/public/cpp/bindings/lib/bindings_internal.h" |
| 19 | #include "mojo/public/cpp/bindings/lib/clone_equals_util.h" |
| 20 | #include "mojo/public/cpp/bindings/lib/template_util.h" |
| 21 | #include "mojo/public/cpp/bindings/type_converter.h" |
| 22 | |
| 23 | namespace mojo { |
| 24 | |
| 25 | // Represents a moveable array with contents of type |T|. The array can be null, |
| 26 | // meaning that no value has been assigned to it. Null is distinct from empty. |
| 27 | template <typename T> |
| 28 | class Array { |
| 29 | public: |
| 30 | using ConstRefType = typename std::vector<T>::const_reference; |
| 31 | using RefType = typename std::vector<T>::reference; |
| 32 | |
| 33 | using Element = T; |
| 34 | |
| 35 | using iterator = typename std::vector<T>::iterator; |
| 36 | using const_iterator = typename std::vector<T>::const_iterator; |
| 37 | |
| 38 | // Constructs an empty array. |
| 39 | Array() : is_null_(false) {} |
| 40 | // Constructs a null array. |
| 41 | Array(std::nullptr_t null_pointer) : is_null_(true) {} |
| 42 | |
| 43 | // Constructs a new non-null array of the specified size. The elements will |
| 44 | // be value-initialized (meaning that they will be initialized by their |
| 45 | // default constructor, if any, or else zero-initialized). |
| 46 | explicit Array(size_t size) : vec_(size), is_null_(false) {} |
| 47 | ~Array() {} |
| 48 | |
| 49 | // Copies the contents of |other| into this array. |
| 50 | Array(const std::vector<T>& other) : vec_(other), is_null_(false) {} |
| 51 | |
| 52 | // Moves the contents of |other| into this array. |
| 53 | Array(std::vector<T>&& other) : vec_(std::move(other)), is_null_(false) {} |
| 54 | Array(Array&& other) : is_null_(true) { Take(&other); } |
| 55 | |
| 56 | Array& operator=(std::vector<T>&& other) { |
| 57 | vec_ = std::move(other); |
| 58 | is_null_ = false; |
| 59 | return *this; |
| 60 | } |
| 61 | Array& operator=(Array&& other) { |
| 62 | Take(&other); |
| 63 | return *this; |
| 64 | } |
| 65 | |
| 66 | Array& operator=(std::nullptr_t null_pointer) { |
| 67 | is_null_ = true; |
| 68 | vec_.clear(); |
| 69 | return *this; |
| 70 | } |
| 71 | |
| 72 | // Creates a non-null array of the specified size. The elements will be |
| 73 | // value-initialized (meaning that they will be initialized by their default |
| 74 | // constructor, if any, or else zero-initialized). |
| 75 | static Array New(size_t size) { return Array(size); } |
| 76 | |
| 77 | // Creates a new array with a copy of the contents of |other|. |
| 78 | template <typename U> |
| 79 | static Array From(const U& other) { |
| 80 | return TypeConverter<Array, U>::Convert(other); |
| 81 | } |
| 82 | |
| 83 | // Copies the contents of this array to a new object of type |U|. |
| 84 | template <typename U> |
| 85 | U To() const { |
| 86 | return TypeConverter<U, Array>::Convert(*this); |
| 87 | } |
| 88 | |
| 89 | // Indicates whether the array is null (which is distinct from empty). |
| 90 | bool is_null() const { return is_null_; } |
| 91 | |
| 92 | // Indicates whether the array is empty (which is distinct from null). |
| 93 | bool empty() const { return vec_.empty() && !is_null_; } |
| 94 | |
| 95 | // Returns a reference to the first element of the array. Calling this on a |
| 96 | // null or empty array causes undefined behavior. |
| 97 | ConstRefType front() const { return vec_.front(); } |
| 98 | RefType front() { return vec_.front(); } |
| 99 | |
| 100 | iterator begin() { return vec_.begin(); } |
| 101 | const_iterator begin() const { return vec_.begin(); } |
| 102 | iterator end() { return vec_.end(); } |
| 103 | const_iterator end() const { return vec_.end(); } |
| 104 | |
| 105 | // Returns the size of the array, which will be zero if the array is null. |
| 106 | size_t size() const { return vec_.size(); } |
| 107 | |
| 108 | // Returns a reference to the element at zero-based |offset|. Calling this on |
| 109 | // an array with size less than |offset|+1 causes undefined behavior. |
| 110 | ConstRefType at(size_t offset) const { return vec_.at(offset); } |
| 111 | ConstRefType operator[](size_t offset) const { return at(offset); } |
| 112 | RefType at(size_t offset) { return vec_.at(offset); } |
| 113 | RefType operator[](size_t offset) { return at(offset); } |
| 114 | |
| 115 | // Pushes |value| onto the back of the array. If this array was null, it will |
| 116 | // become non-null with a size of 1. |
| 117 | void push_back(const T& value) { |
| 118 | is_null_ = false; |
| 119 | vec_.push_back(value); |
| 120 | } |
| 121 | void push_back(T&& value) { |
| 122 | is_null_ = false; |
| 123 | vec_.push_back(std::move(value)); |
| 124 | } |
| 125 | |
| 126 | // Resizes the array to |size| and makes it non-null. Otherwise, works just |
| 127 | // like the resize method of |std::vector|. |
| 128 | void resize(size_t size) { |
| 129 | is_null_ = false; |
| 130 | vec_.resize(size); |
| 131 | } |
| 132 | |
| 133 | // Sets the array to empty (even if previously it was null.) |
| 134 | void SetToEmpty() { resize(0); } |
| 135 | |
| 136 | // Returns a const reference to the |std::vector| managed by this class. If |
| 137 | // the array is null, this will be an empty vector. |
| 138 | const std::vector<T>& storage() const { return vec_; } |
| 139 | |
| 140 | // Passes the underlying storage and resets this array to null. |
| 141 | std::vector<T> PassStorage() { |
| 142 | is_null_ = true; |
| 143 | return std::move(vec_); |
| 144 | } |
| 145 | |
| 146 | operator const std::vector<T>&() const { return vec_; } |
| 147 | |
| 148 | void Swap(Array* other) { |
| 149 | std::swap(is_null_, other->is_null_); |
| 150 | vec_.swap(other->vec_); |
| 151 | } |
| 152 | |
| 153 | // Swaps the contents of this array with the specified vector, making this |
| 154 | // array non-null. Since the vector cannot represent null, it will just be |
| 155 | // made empty if this array is null. |
| 156 | void Swap(std::vector<T>* other) { |
| 157 | is_null_ = false; |
| 158 | vec_.swap(*other); |
| 159 | } |
| 160 | |
| 161 | // Returns a copy of the array where each value of the new array has been |
| 162 | // "cloned" from the corresponding value of this array. If the element type |
| 163 | // defines a Clone() method, it will be used; otherwise copy |
| 164 | // constructor/assignment will be used. |
| 165 | // |
| 166 | // Please note that calling this method will fail compilation if the element |
| 167 | // type cannot be cloned (which usually means that it is a Mojo handle type or |
| 168 | // a type containing Mojo handles). |
| 169 | Array Clone() const { |
| 170 | Array result; |
| 171 | result.is_null_ = is_null_; |
| 172 | result.vec_ = internal::Clone(vec_); |
| 173 | return result; |
| 174 | } |
| 175 | |
| 176 | // Indicates whether the contents of this array are equal to |other|. A null |
| 177 | // array is only equal to another null array. If the element type defines an |
| 178 | // Equals() method, it will be used; otherwise == operator will be used. |
| 179 | bool Equals(const Array& other) const { |
| 180 | if (is_null() != other.is_null()) |
| 181 | return false; |
| 182 | return internal::Equals(vec_, other.vec_); |
| 183 | } |
| 184 | |
| 185 | private: |
| 186 | typedef std::vector<T> Array::*Testable; |
| 187 | |
| 188 | public: |
| 189 | operator Testable() const { return is_null_ ? 0 : &Array::vec_; } |
| 190 | |
| 191 | private: |
| 192 | // Forbid the == and != operators explicitly, otherwise Array will be |
| 193 | // converted to Testable to do == or != comparison. |
| 194 | template <typename U> |
| 195 | bool operator==(const Array<U>& other) const = delete; |
| 196 | template <typename U> |
| 197 | bool operator!=(const Array<U>& other) const = delete; |
| 198 | |
| 199 | void Take(Array* other) { |
| 200 | operator=(nullptr); |
| 201 | Swap(other); |
| 202 | } |
| 203 | |
| 204 | std::vector<T> vec_; |
| 205 | bool is_null_; |
| 206 | |
| 207 | DISALLOW_COPY_AND_ASSIGN(Array); |
| 208 | }; |
| 209 | |
| 210 | // A |TypeConverter| that will create an |Array<T>| containing a copy of the |
| 211 | // contents of an |std::vector<E>|, using |TypeConverter<T, E>| to copy each |
| 212 | // element. The returned array will always be non-null. |
| 213 | template <typename T, typename E> |
| 214 | struct TypeConverter<Array<T>, std::vector<E>> { |
| 215 | static Array<T> Convert(const std::vector<E>& input) { |
| 216 | Array<T> result(input.size()); |
| 217 | for (size_t i = 0; i < input.size(); ++i) |
| 218 | result[i] = TypeConverter<T, E>::Convert(input[i]); |
| 219 | return std::move(result); |
| 220 | } |
| 221 | }; |
| 222 | |
| 223 | // A |TypeConverter| that will create an |std::vector<E>| containing a copy of |
| 224 | // the contents of an |Array<T>|, using |TypeConverter<E, T>| to copy each |
| 225 | // element. If the input array is null, the output vector will be empty. |
| 226 | template <typename E, typename T> |
| 227 | struct TypeConverter<std::vector<E>, Array<T>> { |
| 228 | static std::vector<E> Convert(const Array<T>& input) { |
| 229 | std::vector<E> result; |
| 230 | if (!input.is_null()) { |
| 231 | result.resize(input.size()); |
| 232 | for (size_t i = 0; i < input.size(); ++i) |
| 233 | result[i] = TypeConverter<E, T>::Convert(input[i]); |
| 234 | } |
| 235 | return result; |
| 236 | } |
| 237 | }; |
| 238 | |
| 239 | // A |TypeConverter| that will create an |Array<T>| containing a copy of the |
| 240 | // contents of an |std::set<E>|, using |TypeConverter<T, E>| to copy each |
| 241 | // element. The returned array will always be non-null. |
| 242 | template <typename T, typename E> |
| 243 | struct TypeConverter<Array<T>, std::set<E>> { |
| 244 | static Array<T> Convert(const std::set<E>& input) { |
| 245 | Array<T> result; |
| 246 | for (auto i : input) |
| 247 | result.push_back(TypeConverter<T, E>::Convert(i)); |
| 248 | return std::move(result); |
| 249 | } |
| 250 | }; |
| 251 | |
| 252 | // A |TypeConverter| that will create an |std::set<E>| containing a copy of |
| 253 | // the contents of an |Array<T>|, using |TypeConverter<E, T>| to copy each |
| 254 | // element. If the input array is null, the output set will be empty. |
| 255 | template <typename E, typename T> |
| 256 | struct TypeConverter<std::set<E>, Array<T>> { |
| 257 | static std::set<E> Convert(const Array<T>& input) { |
| 258 | std::set<E> result; |
| 259 | if (!input.is_null()) { |
| 260 | for (size_t i = 0; i < input.size(); ++i) |
| 261 | result.insert(TypeConverter<E, T>::Convert(input[i])); |
| 262 | } |
| 263 | return result; |
| 264 | } |
| 265 | }; |
| 266 | |
| 267 | // Less than operator to allow Arrays as keys in std maps and sets. |
| 268 | template <typename T> |
| 269 | inline bool operator<(const Array<T>& a, const Array<T>& b) { |
| 270 | if (a.is_null()) |
| 271 | return !b.is_null(); |
| 272 | if (b.is_null()) |
| 273 | return false; |
| 274 | return a.storage() < b.storage(); |
| 275 | } |
| 276 | |
| 277 | } // namespace mojo |
| 278 | |
| 279 | #endif // MOJO_PUBLIC_CPP_BINDINGS_ARRAY_H_ |