| dnl AC_NEED_BYTEORDER_H ( HEADER-TO-GENERATE ) |
| dnl $Id$ |
| dnl Copyright 2001-2002 by Dan Fandrich <dan@coneharvesters.com> |
| dnl This file may be copied and used freely without restrictions. No warranty |
| dnl is expressed or implied. |
| dnl |
| dnl Create a header file that guarantees that byte swapping macros of the |
| dnl ntohl variety as well as the extended types included in OpenBSD and |
| dnl NetBSD such as le32toh are defined. If possible, the standard ntohl |
| dnl are overloaded as they are optimized for the given platform, but when |
| dnl this is not possible (e.g. on a big-endian machine) they are defined |
| dnl in this file. |
| |
| dnl Look for a symbol in a header file |
| dnl AC_HAVE_SYMBOL ( IDENTIFIER, HEADER-FILE, ACTION-IF-FOUND, ACTION-IF-NOT-FOUND ) |
| AC_DEFUN([AC_HAVE_SYMBOL], |
| [ |
| AC_MSG_CHECKING(for $1 in $2) |
| AC_EGREP_CPP([symbol is present|\<$1\>],[ |
| #include <$2> |
| #ifdef $1 |
| symbol is present |
| #endif |
| ], |
| [AC_MSG_RESULT(yes) |
| $3 |
| ], |
| [AC_MSG_RESULT(no) |
| $4 |
| ])]) |
| |
| |
| dnl Create a header file that defines extended byte swapping macros |
| AC_DEFUN([AC_NEED_BYTEORDER_H], |
| [ |
| changequote(, )dnl |
| ac_dir=`echo $1|sed 's%/[^/][^/]*$%%'` |
| changequote([, ])dnl |
| if test "$ac_dir" != "$1" && test "$ac_dir" != .; then |
| # The file is in a subdirectory. |
| test ! -d "$ac_dir" && mkdir "$ac_dir" |
| fi |
| |
| # We're only interested in the target CPU, but it's not always set |
| effective_target="$target" |
| if test "x$effective_target" = xNONE -o "x$effective_target" = x ; then |
| effective_target="$host" |
| fi |
| AC_SUBST(effective_target) |
| |
| cat > "$1" << EOF |
| /* This file is generated automatically by configure */ |
| /* It is valid only for the system type ${effective_target} */ |
| |
| #ifndef __BYTEORDER_H |
| #define __BYTEORDER_H |
| |
| EOF |
| |
| dnl First, do an endian check |
| AC_C_BIGENDIAN |
| |
| dnl Look for NetBSD-style extended byte swapping macros |
| AC_HAVE_SYMBOL(le32toh,machine/endian.h, |
| [HAVE_LE32TOH=1 |
| cat >> "$1" << EOF |
| /* extended byte swapping macros are already available */ |
| #include <machine/endian.h> |
| |
| EOF], |
| |
| [ |
| |
| dnl Look for standard byte swapping macros |
| AC_HAVE_SYMBOL(ntohl,arpa/inet.h, |
| [cat >> "$1" << EOF |
| /* ntohl and relatives live here */ |
| #include <arpa/inet.h> |
| |
| EOF], |
| |
| [AC_HAVE_SYMBOL(ntohl,netinet/in.h, |
| [cat >> "$1" << EOF |
| /* ntohl and relatives live here */ |
| #include <netinet/in.h> |
| |
| EOF],true)]) |
| ]) |
| |
| dnl Look for generic byte swapping macros |
| |
| dnl OpenBSD |
| AC_HAVE_SYMBOL(swap32,machine/endian.h, |
| [cat >> "$1" << EOF |
| /* swap32 and swap16 are defined in machine/endian.h */ |
| |
| EOF], |
| |
| [ |
| dnl Linux GLIBC |
| AC_HAVE_SYMBOL(bswap_32,byteswap.h, |
| [cat >> "$1" << EOF |
| /* Define generic byte swapping functions */ |
| #include <byteswap.h> |
| #define swap16(x) bswap_16(x) |
| #define swap32(x) bswap_32(x) |
| #define swap64(x) bswap_64(x) |
| |
| EOF], |
| |
| [ |
| dnl NetBSD |
| AC_HAVE_SYMBOL(bswap32,machine/endian.h, |
| dnl We're already including machine/endian.h if this test succeeds |
| [cat >> "$1" << EOF |
| /* Define generic byte swapping functions */ |
| EOF |
| if test "$HAVE_LE32TOH" != "1"; then |
| echo '#include <machine/endian.h>'>> "$1" |
| fi |
| cat >> "$1" << EOF |
| #define swap16(x) bswap16(x) |
| #define swap32(x) bswap32(x) |
| #define swap64(x) bswap64(x) |
| |
| EOF], |
| |
| [ |
| dnl FreeBSD |
| AC_HAVE_SYMBOL(__byte_swap_long,sys/types.h, |
| [cat >> "$1" << EOF |
| /* Define generic byte swapping functions */ |
| #include <sys/types.h> |
| #define swap16(x) __byte_swap_word(x) |
| #define swap32(x) __byte_swap_long(x) |
| /* No optimized 64 bit byte swapping macro is available */ |
| #define swap64(x) ((uint64_t)(((uint64_t)(x) << 56) & 0xff00000000000000ULL | \\ |
| ((uint64_t)(x) << 40) & 0x00ff000000000000ULL | \\ |
| ((uint64_t)(x) << 24) & 0x0000ff0000000000ULL | \\ |
| ((uint64_t)(x) << 8) & 0x000000ff00000000ULL | \\ |
| ((x) >> 8) & 0x00000000ff000000ULL | \\ |
| ((x) >> 24) & 0x0000000000ff0000ULL | \\ |
| ((x) >> 40) & 0x000000000000ff00ULL | \\ |
| ((x) >> 56) & 0x00000000000000ffULL)) |
| |
| EOF], |
| |
| [ |
| dnl OS X |
| AC_HAVE_SYMBOL(NXSwapLong,machine/byte_order.h, |
| [cat >> "$1" << EOF |
| /* Define generic byte swapping functions */ |
| #include <machine/byte_order.h> |
| #define swap16(x) NXSwapShort(x) |
| #define swap32(x) NXSwapLong(x) |
| #define swap64(x) NXSwapLongLong(x) |
| |
| EOF], |
| [ |
| if test $ac_cv_c_bigendian = yes; then |
| cat >> "$1" << EOF |
| /* No other byte swapping functions are available on this big-endian system */ |
| #define swap16(x) ((uint16_t)(((x) << 8) | ((uint16_t)(x) >> 8))) |
| #define swap32(x) ((uint32_t)(((uint32_t)(x) << 24) & 0xff000000UL | \\ |
| ((uint32_t)(x) << 8) & 0x00ff0000UL | \\ |
| ((x) >> 8) & 0x0000ff00UL | \\ |
| ((x) >> 24) & 0x000000ffUL)) |
| #define swap64(x) ((uint64_t)(((uint64_t)(x) << 56) & 0xff00000000000000ULL | \\ |
| ((uint64_t)(x) << 40) & 0x00ff000000000000ULL | \\ |
| ((uint64_t)(x) << 24) & 0x0000ff0000000000ULL | \\ |
| ((uint64_t)(x) << 8) & 0x000000ff00000000ULL | \\ |
| ((x) >> 8) & 0x00000000ff000000ULL | \\ |
| ((x) >> 24) & 0x0000000000ff0000ULL | \\ |
| ((x) >> 40) & 0x000000000000ff00ULL | \\ |
| ((x) >> 56) & 0x00000000000000ffULL)) |
| |
| EOF |
| else |
| cat >> "$1" << EOF |
| /* Use these as generic byteswapping macros on this little endian system */ |
| #define swap16(x) ntohs(x) |
| #define swap32(x) ntohl(x) |
| /* No optimized 64 bit byte swapping macro is available */ |
| #define swap64(x) ((uint64_t)(((uint64_t)(x) << 56) & 0xff00000000000000ULL | \\ |
| ((uint64_t)(x) << 40) & 0x00ff000000000000ULL | \\ |
| ((uint64_t)(x) << 24) & 0x0000ff0000000000ULL | \\ |
| ((uint64_t)(x) << 8) & 0x000000ff00000000ULL | \\ |
| ((x) >> 8) & 0x00000000ff000000ULL | \\ |
| ((x) >> 24) & 0x0000000000ff0000ULL | \\ |
| ((x) >> 40) & 0x000000000000ff00ULL | \\ |
| ((x) >> 56) & 0x00000000000000ffULL)) |
| |
| EOF |
| fi |
| ]) |
| ]) |
| ]) |
| ]) |
| ]) |
| |
| |
| [ |
| if test "$HAVE_LE32TOH" != "1"; then |
| cat >> "$1" << EOF |
| /* The byte swapping macros have the form: */ |
| /* EENN[a]toh or htoEENN[a] where EE is be (big endian) or */ |
| /* le (little-endian), NN is 16 or 32 (number of bits) and a, */ |
| /* if present, indicates that the endian side is a pointer to an */ |
| /* array of uint8_t bytes instead of an integer of the specified length. */ |
| /* h refers to the host's ordering method. */ |
| |
| /* So, to convert a 32-bit integer stored in a buffer in little-endian */ |
| /* format into a uint32_t usable on this machine, you could use: */ |
| /* uint32_t value = le32atoh(&buf[3]); */ |
| /* To put that value back into the buffer, you could use: */ |
| /* htole32a(&buf[3], value); */ |
| |
| /* Define aliases for the standard byte swapping macros */ |
| /* Arguments to these macros must be properly aligned on natural word */ |
| /* boundaries in order to work properly on all architectures */ |
| #define htobe16(x) htons(x) |
| #define htobe32(x) htonl(x) |
| #define be16toh(x) ntohs(x) |
| #define be32toh(x) ntohl(x) |
| |
| #define HTOBE16(x) (x) = htobe16(x) |
| #define HTOBE32(x) (x) = htobe32(x) |
| #define BE32TOH(x) (x) = be32toh(x) |
| #define BE16TOH(x) (x) = be16toh(x) |
| |
| EOF |
| |
| if test $ac_cv_c_bigendian = yes; then |
| cat >> "$1" << EOF |
| /* Define our own extended byte swapping macros for big-endian machines */ |
| #define htole16(x) swap16(x) |
| #define htole32(x) swap32(x) |
| #define le16toh(x) swap16(x) |
| #define le32toh(x) swap32(x) |
| |
| #define htobe64(x) (x) |
| #define be64toh(x) (x) |
| |
| #define HTOLE16(x) (x) = htole16(x) |
| #define HTOLE32(x) (x) = htole32(x) |
| #define LE16TOH(x) (x) = le16toh(x) |
| #define LE32TOH(x) (x) = le32toh(x) |
| |
| #define HTOBE64(x) (void) (x) |
| #define BE64TOH(x) (void) (x) |
| |
| EOF |
| else |
| cat >> "$1" << EOF |
| /* On little endian machines, these macros are null */ |
| #define htole16(x) (x) |
| #define htole32(x) (x) |
| #define htole64(x) (x) |
| #define le16toh(x) (x) |
| #define le32toh(x) (x) |
| #define le64toh(x) (x) |
| |
| #define HTOLE16(x) (void) (x) |
| #define HTOLE32(x) (void) (x) |
| #define HTOLE64(x) (void) (x) |
| #define LE16TOH(x) (void) (x) |
| #define LE32TOH(x) (void) (x) |
| #define LE64TOH(x) (void) (x) |
| |
| /* These don't have standard aliases */ |
| #define htobe64(x) swap64(x) |
| #define be64toh(x) swap64(x) |
| |
| #define HTOBE64(x) (x) = htobe64(x) |
| #define BE64TOH(x) (x) = be64toh(x) |
| |
| EOF |
| fi |
| fi |
| |
| cat >> "$1" << EOF |
| /* Define the C99 standard length-specific integer types */ |
| #include "libptp-stdint.h" |
| |
| EOF |
| |
| case "${effective_target}" in |
| i[3456]86-*) |
| cat >> "$1" << EOF |
| /* Here are some macros to create integers from a byte array */ |
| /* These are used to get and put integers from/into a uint8_t array */ |
| /* with a specific endianness. This is the most portable way to generate */ |
| /* and read messages to a network or serial device. Each member of a */ |
| /* packet structure must be handled separately. */ |
| |
| /* The i386 and compatibles can handle unaligned memory access, */ |
| /* so use the optimized macros above to do this job */ |
| #define be16atoh(x) be16toh(*(uint16_t*)(x)) |
| #define be32atoh(x) be32toh(*(uint32_t*)(x)) |
| #define be64atoh(x) be64toh(*(uint64_t*)(x)) |
| #define le16atoh(x) le16toh(*(uint16_t*)(x)) |
| #define le32atoh(x) le32toh(*(uint32_t*)(x)) |
| #define le64atoh(x) le64toh(*(uint64_t*)(x)) |
| |
| #define htobe16a(a,x) *(uint16_t*)(a) = htobe16(x) |
| #define htobe32a(a,x) *(uint32_t*)(a) = htobe32(x) |
| #define htobe64a(a,x) *(uint64_t*)(a) = htobe64(x) |
| #define htole16a(a,x) *(uint16_t*)(a) = htole16(x) |
| #define htole32a(a,x) *(uint32_t*)(a) = htole32(x) |
| #define htole64a(a,x) *(uint64_t*)(a) = htole64(x) |
| |
| EOF |
| ;; |
| |
| *) |
| cat >> "$1" << EOF |
| /* Here are some macros to create integers from a byte array */ |
| /* These are used to get and put integers from/into a uint8_t array */ |
| /* with a specific endianness. This is the most portable way to generate */ |
| /* and read messages to a network or serial device. Each member of a */ |
| /* packet structure must be handled separately. */ |
| |
| /* Non-optimized but portable macros */ |
| #define be16atoh(x) ((uint16_t)(((x)[0]<<8)|(x)[1])) |
| #define be32atoh(x) ((uint32_t)(((x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])) |
| #define be64atoh(x) ((uint64_t)(((x)[0]<<56)|((x)[1]<<48)|((x)[2]<<40)| \\ |
| ((x)[3]<<32)|((x)[4]<<24)|((x)[5]<<16)|((x)[6]<<8)|(x)[7])) |
| #define le16atoh(x) ((uint16_t)(((x)[1]<<8)|(x)[0])) |
| #define le32atoh(x) ((uint32_t)(((x)[3]<<24)|((x)[2]<<16)|((x)[1]<<8)|(x)[0])) |
| #define le64atoh(x) ((uint64_t)(((x)[7]<<56)|((x)[6]<<48)|((x)[5]<<40)| \\ |
| ((x)[4]<<32)|((x)[3]<<24)|((x)[2]<<16)|((x)[1]<<8)|(x)[0])) |
| |
| #define htobe16a(a,x) (a)[0]=(uint8_t)((x)>>8), (a)[1]=(uint8_t)(x) |
| #define htobe32a(a,x) (a)[0]=(uint8_t)((x)>>24), (a)[1]=(uint8_t)((x)>>16), \\ |
| (a)[2]=(uint8_t)((x)>>8), (a)[3]=(uint8_t)(x) |
| #define htobe64a(a,x) (a)[0]=(uint8_t)((x)>>56), (a)[1]=(uint8_t)((x)>>48), \\ |
| (a)[2]=(uint8_t)((x)>>40), (a)[3]=(uint8_t)((x)>>32), \\ |
| (a)[4]=(uint8_t)((x)>>24), (a)[5]=(uint8_t)((x)>>16), \\ |
| (a)[6]=(uint8_t)((x)>>8), (a)[7]=(uint8_t)(x) |
| #define htole16a(a,x) (a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x) |
| #define htole32a(a,x) (a)[3]=(uint8_t)((x)>>24), (a)[2]=(uint8_t)((x)>>16), \\ |
| (a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x) |
| #define htole64a(a,x) (a)[7]=(uint8_t)((x)>>56), (a)[6]=(uint8_t)((x)>>48), \\ |
| (a)[5]=(uint8_t)((x)>>40), (a)[4]=(uint8_t)((x)>>32), \\ |
| (a)[3]=(uint8_t)((x)>>24), (a)[2]=(uint8_t)((x)>>16), \\ |
| (a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x) |
| |
| EOF |
| ;; |
| esac |
| ] |
| |
| cat >> "$1" << EOF |
| #endif /*__BYTEORDER_H*/ |
| EOF]) |