| /* Copyright (c) 2002-2008 Jean-Marc Valin |
| Copyright (c) 2007-2008 CSIRO |
| Copyright (c) 2007-2009 Xiph.Org Foundation |
| Written by Jean-Marc Valin */ |
| /** |
| @file mathops.h |
| @brief Various math functions |
| */ |
| /* |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| |
| - Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| - Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
| OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef MATHOPS_H |
| #define MATHOPS_H |
| |
| #include "arch.h" |
| #include "entcode.h" |
| #include "os_support.h" |
| |
| /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */ |
| #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15) |
| |
| unsigned isqrt32(opus_uint32 _val); |
| |
| #ifndef OVERRIDE_CELT_MAXABS16 |
| static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len) |
| { |
| int i; |
| opus_val16 maxval = 0; |
| opus_val16 minval = 0; |
| for (i=0;i<len;i++) |
| { |
| maxval = MAX16(maxval, x[i]); |
| minval = MIN16(minval, x[i]); |
| } |
| return MAX32(EXTEND32(maxval),-EXTEND32(minval)); |
| } |
| #endif |
| |
| #ifndef OVERRIDE_CELT_MAXABS32 |
| #ifdef FIXED_POINT |
| static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len) |
| { |
| int i; |
| opus_val32 maxval = 0; |
| opus_val32 minval = 0; |
| for (i=0;i<len;i++) |
| { |
| maxval = MAX32(maxval, x[i]); |
| minval = MIN32(minval, x[i]); |
| } |
| return MAX32(maxval, -minval); |
| } |
| #else |
| #define celt_maxabs32(x,len) celt_maxabs16(x,len) |
| #endif |
| #endif |
| |
| |
| #ifndef FIXED_POINT |
| |
| #define PI 3.141592653f |
| #define celt_sqrt(x) ((float)sqrt(x)) |
| #define celt_rsqrt(x) (1.f/celt_sqrt(x)) |
| #define celt_rsqrt_norm(x) (celt_rsqrt(x)) |
| #define celt_cos_norm(x) ((float)cos((.5f*PI)*(x))) |
| #define celt_rcp(x) (1.f/(x)) |
| #define celt_div(a,b) ((a)/(b)) |
| #define frac_div32(a,b) ((float)(a)/(b)) |
| |
| #ifdef FLOAT_APPROX |
| |
| /* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127 |
| denorm, +/- inf and NaN are *not* handled */ |
| |
| /** Base-2 log approximation (log2(x)). */ |
| static OPUS_INLINE float celt_log2(float x) |
| { |
| int integer; |
| float frac; |
| union { |
| float f; |
| opus_uint32 i; |
| } in; |
| in.f = x; |
| integer = (in.i>>23)-127; |
| in.i -= integer<<23; |
| frac = in.f - 1.5f; |
| frac = -0.41445418f + frac*(0.95909232f |
| + frac*(-0.33951290f + frac*0.16541097f)); |
| return 1+integer+frac; |
| } |
| |
| /** Base-2 exponential approximation (2^x). */ |
| static OPUS_INLINE float celt_exp2(float x) |
| { |
| int integer; |
| float frac; |
| union { |
| float f; |
| opus_uint32 i; |
| } res; |
| integer = floor(x); |
| if (integer < -50) |
| return 0; |
| frac = x-integer; |
| /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */ |
| res.f = 0.99992522f + frac * (0.69583354f |
| + frac * (0.22606716f + 0.078024523f*frac)); |
| res.i = (res.i + (integer<<23)) & 0x7fffffff; |
| return res.f; |
| } |
| |
| #else |
| #define celt_log2(x) ((float)(1.442695040888963387*log(x))) |
| #define celt_exp2(x) ((float)exp(0.6931471805599453094*(x))) |
| #endif |
| |
| #endif |
| |
| #ifdef FIXED_POINT |
| |
| #include "os_support.h" |
| |
| #ifndef OVERRIDE_CELT_ILOG2 |
| /** Integer log in base2. Undefined for zero and negative numbers */ |
| static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x) |
| { |
| celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers"); |
| return EC_ILOG(x)-1; |
| } |
| #endif |
| |
| |
| /** Integer log in base2. Defined for zero, but not for negative numbers */ |
| static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x) |
| { |
| return x <= 0 ? 0 : celt_ilog2(x); |
| } |
| |
| opus_val16 celt_rsqrt_norm(opus_val32 x); |
| |
| opus_val32 celt_sqrt(opus_val32 x); |
| |
| opus_val16 celt_cos_norm(opus_val32 x); |
| |
| /** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */ |
| static OPUS_INLINE opus_val16 celt_log2(opus_val32 x) |
| { |
| int i; |
| opus_val16 n, frac; |
| /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605, |
| 0.15530808010959576, -0.08556153059057618 */ |
| static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401}; |
| if (x==0) |
| return -32767; |
| i = celt_ilog2(x); |
| n = VSHR32(x,i-15)-32768-16384; |
| frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4])))))))); |
| return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT); |
| } |
| |
| /* |
| K0 = 1 |
| K1 = log(2) |
| K2 = 3-4*log(2) |
| K3 = 3*log(2) - 2 |
| */ |
| #define D0 16383 |
| #define D1 22804 |
| #define D2 14819 |
| #define D3 10204 |
| |
| static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x) |
| { |
| opus_val16 frac; |
| frac = SHL16(x, 4); |
| return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac)))))); |
| } |
| /** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */ |
| static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x) |
| { |
| int integer; |
| opus_val16 frac; |
| integer = SHR16(x,10); |
| if (integer>14) |
| return 0x7f000000; |
| else if (integer < -15) |
| return 0; |
| frac = celt_exp2_frac(x-SHL16(integer,10)); |
| return VSHR32(EXTEND32(frac), -integer-2); |
| } |
| |
| opus_val32 celt_rcp(opus_val32 x); |
| |
| #define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b)) |
| |
| opus_val32 frac_div32(opus_val32 a, opus_val32 b); |
| |
| #define M1 32767 |
| #define M2 -21 |
| #define M3 -11943 |
| #define M4 4936 |
| |
| /* Atan approximation using a 4th order polynomial. Input is in Q15 format |
| and normalized by pi/4. Output is in Q15 format */ |
| static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x) |
| { |
| return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x))))))); |
| } |
| |
| #undef M1 |
| #undef M2 |
| #undef M3 |
| #undef M4 |
| |
| /* atan2() approximation valid for positive input values */ |
| static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x) |
| { |
| if (y < x) |
| { |
| opus_val32 arg; |
| arg = celt_div(SHL32(EXTEND32(y),15),x); |
| if (arg >= 32767) |
| arg = 32767; |
| return SHR16(celt_atan01(EXTRACT16(arg)),1); |
| } else { |
| opus_val32 arg; |
| arg = celt_div(SHL32(EXTEND32(x),15),y); |
| if (arg >= 32767) |
| arg = 32767; |
| return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1); |
| } |
| } |
| |
| #endif /* FIXED_POINT */ |
| #endif /* MATHOPS_H */ |