| /*********************************************************************** |
| Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
| Redistribution and use in source and binary forms, with or without |
| modification, (subject to the limitations in the disclaimer below) |
| are permitted provided that the following conditions are met: |
| - Redistributions of source code must retain the above copyright notice, |
| this list of conditions and the following disclaimer. |
| - Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| - Neither the name of Skype Limited, nor the names of specific |
| contributors, may be used to endorse or promote products derived from |
| this software without specific prior written permission. |
| NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED |
| BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND |
| CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, |
| BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND |
| FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF |
| USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| ***********************************************************************/ |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #include "main.h" |
| |
| #define STORE_LSF_DATA_FOR_TRAINING 0 |
| |
| /***********************/ |
| /* NLSF vector encoder */ |
| /***********************/ |
| opus_int32 silk_NLSF_encode( /* O Returns RD value in Q25 */ |
| opus_int8 *NLSFIndices, /* I Codebook path vector [ LPC_ORDER + 1 ] */ |
| opus_int16 *pNLSF_Q15, /* I/O Quantized NLSF vector [ LPC_ORDER ] */ |
| const silk_NLSF_CB_struct *psNLSF_CB, /* I Codebook object */ |
| const opus_int16 *pW_QW, /* I NLSF weight vector [ LPC_ORDER ] */ |
| const opus_int NLSF_mu_Q20, /* I Rate weight for the RD optimization */ |
| const opus_int nSurvivors, /* I Max survivors after first stage */ |
| const opus_int signalType /* I Signal type: 0/1/2 */ |
| ) |
| { |
| opus_int i, s, ind1, bestIndex, prob_Q8, bits_q7; |
| opus_int32 W_tmp_Q9; |
| opus_int32 err_Q26[ NLSF_VQ_MAX_VECTORS ]; |
| opus_int32 RD_Q25[ NLSF_VQ_MAX_SURVIVORS ]; |
| opus_int tempIndices1[ NLSF_VQ_MAX_SURVIVORS ]; |
| opus_int8 tempIndices2[ NLSF_VQ_MAX_SURVIVORS * MAX_LPC_ORDER ]; |
| opus_int16 res_Q15[ MAX_LPC_ORDER ]; |
| opus_int16 res_Q10[ MAX_LPC_ORDER ]; |
| opus_int16 NLSF_tmp_Q15[ MAX_LPC_ORDER ]; |
| opus_int16 W_tmp_QW[ MAX_LPC_ORDER ]; |
| opus_int16 W_adj_Q5[ MAX_LPC_ORDER ]; |
| opus_uint8 pred_Q8[ MAX_LPC_ORDER ]; |
| opus_int16 ec_ix[ MAX_LPC_ORDER ]; |
| const opus_uint8 *pCB_element, *iCDF_ptr; |
| |
| #if STORE_LSF_DATA_FOR_TRAINING |
| opus_int16 pNLSF_Q15_orig[MAX_LPC_ORDER ]; |
| DEBUG_STORE_DATA( NLSF.dat, pNLSF_Q15, psNLSF_CB->order * sizeof( opus_int16 ) ); |
| DEBUG_STORE_DATA( WNLSF.dat, pW_Q5, psNLSF_CB->order * sizeof( opus_int16 ) ); |
| DEBUG_STORE_DATA( NLSF_mu.dat, &NLSF_mu_Q20, sizeof( opus_int ) ); |
| DEBUG_STORE_DATA( sigType.dat, &signalType, sizeof( opus_int ) ); |
| silk_memcpy(pNLSF_Q15_orig, pNLSF_Q15, sizeof( pNLSF_Q15_orig )); |
| #endif |
| |
| silk_assert( nSurvivors <= NLSF_VQ_MAX_SURVIVORS ); |
| silk_assert( signalType >= 0 && signalType <= 2 ); |
| silk_assert( NLSF_mu_Q20 <= 32767 && NLSF_mu_Q20 >= 0 ); |
| |
| /* NLSF stabilization */ |
| silk_NLSF_stabilize( pNLSF_Q15, psNLSF_CB->deltaMin_Q15, psNLSF_CB->order ); |
| |
| /* First stage: VQ */ |
| silk_NLSF_VQ( err_Q26, pNLSF_Q15, psNLSF_CB->CB1_NLSF_Q8, psNLSF_CB->nVectors, psNLSF_CB->order ); |
| |
| /* Sort the quantization errors */ |
| silk_insertion_sort_increasing( err_Q26, tempIndices1, psNLSF_CB->nVectors, nSurvivors ); |
| |
| /* Loop over survivors */ |
| for( s = 0; s < nSurvivors; s++ ) { |
| ind1 = tempIndices1[ s ]; |
| |
| /* Residual after first stage */ |
| pCB_element = &psNLSF_CB->CB1_NLSF_Q8[ ind1 * psNLSF_CB->order ]; |
| for( i = 0; i < psNLSF_CB->order; i++ ) { |
| NLSF_tmp_Q15[ i ] = silk_LSHIFT16( ( opus_int16 )pCB_element[ i ], 7 ); |
| res_Q15[ i ] = pNLSF_Q15[ i ] - NLSF_tmp_Q15[ i ]; |
| } |
| |
| /* Weights from codebook vector */ |
| silk_NLSF_VQ_weights_laroia( W_tmp_QW, NLSF_tmp_Q15, psNLSF_CB->order ); |
| |
| /* Apply square-rooted weights */ |
| for( i = 0; i < psNLSF_CB->order; i++ ) { |
| W_tmp_Q9 = silk_SQRT_APPROX( silk_LSHIFT( ( opus_int32 )W_tmp_QW[ i ], 18 - NLSF_W_Q ) ); |
| res_Q10[ i ] = ( opus_int16 )silk_RSHIFT( silk_SMULBB( res_Q15[ i ], W_tmp_Q9 ), 14 ); |
| } |
| |
| /* Modify input weights accordingly */ |
| for( i = 0; i < psNLSF_CB->order; i++ ) { |
| W_adj_Q5[ i ] = silk_DIV32_16( silk_LSHIFT( ( opus_int32 )pW_QW[ i ], 5 ), W_tmp_QW[ i ] ); |
| } |
| |
| /* Unpack entropy table indices and predictor for current CB1 index */ |
| silk_NLSF_unpack( ec_ix, pred_Q8, psNLSF_CB, ind1 ); |
| |
| /* Trellis quantizer */ |
| RD_Q25[ s ] = silk_NLSF_del_dec_quant( &tempIndices2[ s * MAX_LPC_ORDER ], res_Q10, W_adj_Q5, pred_Q8, ec_ix, |
| psNLSF_CB->ec_Rates_Q5, psNLSF_CB->quantStepSize_Q16, psNLSF_CB->invQuantStepSize_Q6, NLSF_mu_Q20, psNLSF_CB->order ); |
| |
| /* Add rate for first stage */ |
| iCDF_ptr = &psNLSF_CB->CB1_iCDF[ ( signalType >> 1 ) * psNLSF_CB->nVectors ]; |
| if( ind1 == 0 ) { |
| prob_Q8 = 256 - iCDF_ptr[ ind1 ]; |
| } else { |
| prob_Q8 = iCDF_ptr[ ind1 - 1 ] - iCDF_ptr[ ind1 ]; |
| } |
| bits_q7 = ( 8 << 7 ) - silk_lin2log( prob_Q8 ); |
| RD_Q25[ s ] = silk_SMLABB( RD_Q25[ s ], bits_q7, silk_RSHIFT( NLSF_mu_Q20, 2 ) ); |
| } |
| |
| /* Find the lowest rate-distortion error */ |
| silk_insertion_sort_increasing( RD_Q25, &bestIndex, nSurvivors, 1 ); |
| |
| NLSFIndices[ 0 ] = ( opus_int8 )tempIndices1[ bestIndex ]; |
| silk_memcpy( &NLSFIndices[ 1 ], &tempIndices2[ bestIndex * MAX_LPC_ORDER ], psNLSF_CB->order * sizeof( opus_int8 ) ); |
| |
| /* Decode */ |
| silk_NLSF_decode( pNLSF_Q15, NLSFIndices, psNLSF_CB ); |
| |
| #if STORE_LSF_DATA_FOR_TRAINING |
| { |
| /* code for training the codebooks */ |
| opus_int32 RD_dec_Q22, Dist_Q22_dec, Rate_Q7, diff_Q15; |
| ind1 = NLSFIndices[ 0 ]; |
| silk_NLSF_unpack( ec_ix, pred_Q8, psNLSF_CB, ind1 ); |
| |
| pCB_element = &psNLSF_CB->CB1_NLSF_Q8[ ind1 * psNLSF_CB->order ]; |
| for( i = 0; i < psNLSF_CB->order; i++ ) { |
| NLSF_tmp_Q15[ i ] = silk_LSHIFT16( ( opus_int16 )pCB_element[ i ], 7 ); |
| } |
| silk_NLSF_VQ_weights_laroia( W_tmp_QW, NLSF_tmp_Q15, psNLSF_CB->order ); |
| for( i = 0; i < psNLSF_CB->order; i++ ) { |
| W_tmp_Q9 = silk_SQRT_APPROX( silk_LSHIFT( ( opus_int32 )W_tmp_QW[ i ], 18 - NLSF_W_Q ) ); |
| res_Q15[ i ] = pNLSF_Q15_orig[ i ] - NLSF_tmp_Q15[ i ]; |
| res_Q10[ i ] = (opus_int16)silk_RSHIFT( silk_SMULBB( res_Q15[ i ], W_tmp_Q9 ), 14 ); |
| DEBUG_STORE_DATA( NLSF_res_q10.dat, &res_Q10[ i ], sizeof( opus_int16 ) ); |
| res_Q15[ i ] = pNLSF_Q15[ i ] - NLSF_tmp_Q15[ i ]; |
| res_Q10[ i ] = (opus_int16)silk_RSHIFT( silk_SMULBB( res_Q15[ i ], W_tmp_Q9 ), 14 ); |
| DEBUG_STORE_DATA( NLSF_resq_q10.dat, &res_Q10[ i ], sizeof( opus_int16 ) ); |
| } |
| |
| Dist_Q22_dec = 0; |
| for( i = 0; i < psNLSF_CB->order; i++ ) { |
| diff_Q15 = pNLSF_Q15_orig[ i ] - pNLSF_Q15[ i ]; |
| Dist_Q22_dec += ( ( (diff_Q15 >> 5) * (diff_Q15 >> 5) ) * pW_Q5[ i ] ) >> 3; |
| } |
| iCDF_ptr = &psNLSF_CB->CB1_iCDF[ ( signalType >> 1 ) * psNLSF_CB->nVectors ]; |
| if( ind1 == 0 ) { |
| prob_Q8 = 256 - iCDF_ptr[ ind1 ]; |
| } else { |
| prob_Q8 = iCDF_ptr[ ind1 - 1 ] - iCDF_ptr[ ind1 ]; |
| } |
| Rate_Q7 = ( 8 << 7 ) - silk_lin2log( prob_Q8 ); |
| for( i = 0; i < psNLSF_CB->order; i++ ) { |
| Rate_Q7 += ((int)psNLSF_CB->ec_Rates_Q5[ ec_ix[ i ] + silk_LIMIT( NLSFIndices[ i + 1 ] + NLSF_QUANT_MAX_AMPLITUDE, 0, 2 * NLSF_QUANT_MAX_AMPLITUDE ) ] ) << 2; |
| if( silk_abs( NLSFIndices[ i + 1 ] ) >= NLSF_QUANT_MAX_AMPLITUDE ) { |
| Rate_Q7 += 128 << ( silk_abs( NLSFIndices[ i + 1 ] ) - NLSF_QUANT_MAX_AMPLITUDE ); |
| } |
| } |
| RD_dec_Q22 = Dist_Q22_dec + Rate_Q7 * NLSF_mu_Q20 >> 5; |
| DEBUG_STORE_DATA( dec_dist_q22.dat, &Dist_Q22_dec, sizeof( opus_int32 ) ); |
| DEBUG_STORE_DATA( dec_rate_q7.dat, &Rate_Q7, sizeof( opus_int32 ) ); |
| DEBUG_STORE_DATA( dec_rd_q22.dat, &RD_dec_Q22, sizeof( opus_int32 ) ); |
| } |
| DEBUG_STORE_DATA( NLSF_ind.dat, NLSFIndices, (psNLSF_CB->order+1) * sizeof( opus_int8 ) ); |
| #endif |
| |
| return RD_Q25[ 0 ]; |
| } |