| /* Copyright (c) 2007-2008 CSIRO |
| Copyright (c) 2007-2010 Xiph.Org Foundation |
| Copyright (c) 2008 Gregory Maxwell |
| Written by Jean-Marc Valin and Gregory Maxwell */ |
| /* |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| |
| - Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| - Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
| OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #define CELT_ENCODER_C |
| |
| #include "os_support.h" |
| #include "mdct.h" |
| #include <math.h> |
| #include "celt.h" |
| #include "pitch.h" |
| #include "bands.h" |
| #include "modes.h" |
| #include "entcode.h" |
| #include "quant_bands.h" |
| #include "rate.h" |
| #include "stack_alloc.h" |
| #include "mathops.h" |
| #include "float_cast.h" |
| #include <stdarg.h> |
| #include "celt_lpc.h" |
| #include "vq.h" |
| |
| |
| /** Encoder state |
| @brief Encoder state |
| */ |
| struct OpusCustomEncoder { |
| const OpusCustomMode *mode; /**< Mode used by the encoder */ |
| int overlap; |
| int channels; |
| int stream_channels; |
| |
| int force_intra; |
| int clip; |
| int disable_pf; |
| int complexity; |
| int upsample; |
| int start, end; |
| |
| opus_int32 bitrate; |
| int vbr; |
| int signalling; |
| int constrained_vbr; /* If zero, VBR can do whatever it likes with the rate */ |
| int loss_rate; |
| int lsb_depth; |
| int variable_duration; |
| |
| /* Everything beyond this point gets cleared on a reset */ |
| #define ENCODER_RESET_START rng |
| |
| opus_uint32 rng; |
| int spread_decision; |
| opus_val32 delayedIntra; |
| int tonal_average; |
| int lastCodedBands; |
| int hf_average; |
| int tapset_decision; |
| |
| int prefilter_period; |
| opus_val16 prefilter_gain; |
| int prefilter_tapset; |
| #ifdef RESYNTH |
| int prefilter_period_old; |
| opus_val16 prefilter_gain_old; |
| int prefilter_tapset_old; |
| #endif |
| int consec_transient; |
| AnalysisInfo analysis; |
| |
| opus_val32 preemph_memE[2]; |
| opus_val32 preemph_memD[2]; |
| |
| /* VBR-related parameters */ |
| opus_int32 vbr_reservoir; |
| opus_int32 vbr_drift; |
| opus_int32 vbr_offset; |
| opus_int32 vbr_count; |
| opus_val16 overlap_max; |
| opus_val16 stereo_saving; |
| int intensity; |
| |
| #ifdef RESYNTH |
| /* +MAX_PERIOD/2 to make space for overlap */ |
| celt_sig syn_mem[2][2*MAX_PERIOD+MAX_PERIOD/2]; |
| #endif |
| |
| celt_sig in_mem[1]; /* Size = channels*mode->overlap */ |
| /* celt_sig prefilter_mem[], Size = channels*COMBFILTER_MAXPERIOD */ |
| /* opus_val16 oldBandE[], Size = channels*mode->nbEBands */ |
| /* opus_val16 oldLogE[], Size = channels*mode->nbEBands */ |
| /* opus_val16 oldLogE2[], Size = channels*mode->nbEBands */ |
| }; |
| |
| int celt_encoder_get_size(int channels) |
| { |
| CELTMode *mode = opus_custom_mode_create(48000, 960, NULL); |
| return opus_custom_encoder_get_size(mode, channels); |
| } |
| |
| OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_get_size(const CELTMode *mode, int channels) |
| { |
| int size = sizeof(struct CELTEncoder) |
| + (channels*mode->overlap-1)*sizeof(celt_sig) /* celt_sig in_mem[channels*mode->overlap]; */ |
| + channels*COMBFILTER_MAXPERIOD*sizeof(celt_sig) /* celt_sig prefilter_mem[channels*COMBFILTER_MAXPERIOD]; */ |
| + 3*channels*mode->nbEBands*sizeof(opus_val16); /* opus_val16 oldBandE[channels*mode->nbEBands]; */ |
| /* opus_val16 oldLogE[channels*mode->nbEBands]; */ |
| /* opus_val16 oldLogE2[channels*mode->nbEBands]; */ |
| return size; |
| } |
| |
| #ifdef CUSTOM_MODES |
| CELTEncoder *opus_custom_encoder_create(const CELTMode *mode, int channels, int *error) |
| { |
| int ret; |
| CELTEncoder *st = (CELTEncoder *)opus_alloc(opus_custom_encoder_get_size(mode, channels)); |
| /* init will handle the NULL case */ |
| ret = opus_custom_encoder_init(st, mode, channels); |
| if (ret != OPUS_OK) |
| { |
| opus_custom_encoder_destroy(st); |
| st = NULL; |
| } |
| if (error) |
| *error = ret; |
| return st; |
| } |
| #endif /* CUSTOM_MODES */ |
| |
| int celt_encoder_init(CELTEncoder *st, opus_int32 sampling_rate, int channels) |
| { |
| int ret; |
| ret = opus_custom_encoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels); |
| if (ret != OPUS_OK) |
| return ret; |
| st->upsample = resampling_factor(sampling_rate); |
| return OPUS_OK; |
| } |
| |
| OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_init(CELTEncoder *st, const CELTMode *mode, int channels) |
| { |
| if (channels < 0 || channels > 2) |
| return OPUS_BAD_ARG; |
| |
| if (st==NULL || mode==NULL) |
| return OPUS_ALLOC_FAIL; |
| |
| OPUS_CLEAR((char*)st, opus_custom_encoder_get_size(mode, channels)); |
| |
| st->mode = mode; |
| st->overlap = mode->overlap; |
| st->stream_channels = st->channels = channels; |
| |
| st->upsample = 1; |
| st->start = 0; |
| st->end = st->mode->effEBands; |
| st->signalling = 1; |
| |
| st->constrained_vbr = 1; |
| st->clip = 1; |
| |
| st->bitrate = OPUS_BITRATE_MAX; |
| st->vbr = 0; |
| st->force_intra = 0; |
| st->complexity = 5; |
| st->lsb_depth=24; |
| |
| opus_custom_encoder_ctl(st, OPUS_RESET_STATE); |
| |
| return OPUS_OK; |
| } |
| |
| #ifdef CUSTOM_MODES |
| void opus_custom_encoder_destroy(CELTEncoder *st) |
| { |
| opus_free(st); |
| } |
| #endif /* CUSTOM_MODES */ |
| |
| |
| static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int C, |
| opus_val16 *tf_estimate, int *tf_chan) |
| { |
| int i; |
| VARDECL(opus_val16, tmp); |
| opus_val32 mem0,mem1; |
| int is_transient = 0; |
| opus_int32 mask_metric = 0; |
| int c; |
| opus_val16 tf_max; |
| int len2; |
| /* Table of 6*64/x, trained on real data to minimize the average error */ |
| static const unsigned char inv_table[128] = { |
| 255,255,156,110, 86, 70, 59, 51, 45, 40, 37, 33, 31, 28, 26, 25, |
| 23, 22, 21, 20, 19, 18, 17, 16, 16, 15, 15, 14, 13, 13, 12, 12, |
| 12, 12, 11, 11, 11, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8, |
| 8, 8, 8, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, |
| 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, |
| 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
| 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, |
| 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, |
| }; |
| SAVE_STACK; |
| ALLOC(tmp, len, opus_val16); |
| |
| len2=len/2; |
| tf_max = 0; |
| for (c=0;c<C;c++) |
| { |
| opus_val32 mean; |
| opus_int32 unmask=0; |
| opus_val32 norm; |
| opus_val16 maxE; |
| mem0=0; |
| mem1=0; |
| /* High-pass filter: (1 - 2*z^-1 + z^-2) / (1 - z^-1 + .5*z^-2) */ |
| for (i=0;i<len;i++) |
| { |
| opus_val32 x,y; |
| x = SHR32(in[i+c*len],SIG_SHIFT); |
| y = ADD32(mem0, x); |
| #ifdef FIXED_POINT |
| mem0 = mem1 + y - SHL32(x,1); |
| mem1 = x - SHR32(y,1); |
| #else |
| mem0 = mem1 + y - 2*x; |
| mem1 = x - .5f*y; |
| #endif |
| tmp[i] = EXTRACT16(SHR32(y,2)); |
| /*printf("%f ", tmp[i]);*/ |
| } |
| /*printf("\n");*/ |
| /* First few samples are bad because we don't propagate the memory */ |
| for (i=0;i<12;i++) |
| tmp[i] = 0; |
| |
| #ifdef FIXED_POINT |
| /* Normalize tmp to max range */ |
| { |
| int shift=0; |
| shift = 14-celt_ilog2(1+celt_maxabs16(tmp, len)); |
| if (shift!=0) |
| { |
| for (i=0;i<len;i++) |
| tmp[i] = SHL16(tmp[i], shift); |
| } |
| } |
| #endif |
| |
| mean=0; |
| mem0=0; |
| /* Grouping by two to reduce complexity */ |
| /* Forward pass to compute the post-echo threshold*/ |
| for (i=0;i<len2;i++) |
| { |
| opus_val16 x2 = PSHR32(MULT16_16(tmp[2*i],tmp[2*i]) + MULT16_16(tmp[2*i+1],tmp[2*i+1]),16); |
| mean += x2; |
| #ifdef FIXED_POINT |
| /* FIXME: Use PSHR16() instead */ |
| tmp[i] = mem0 + PSHR32(x2-mem0,4); |
| #else |
| tmp[i] = mem0 + MULT16_16_P15(QCONST16(.0625f,15),x2-mem0); |
| #endif |
| mem0 = tmp[i]; |
| } |
| |
| mem0=0; |
| maxE=0; |
| /* Backward pass to compute the pre-echo threshold */ |
| for (i=len2-1;i>=0;i--) |
| { |
| #ifdef FIXED_POINT |
| /* FIXME: Use PSHR16() instead */ |
| tmp[i] = mem0 + PSHR32(tmp[i]-mem0,3); |
| #else |
| tmp[i] = mem0 + MULT16_16_P15(QCONST16(0.125f,15),tmp[i]-mem0); |
| #endif |
| mem0 = tmp[i]; |
| maxE = MAX16(maxE, mem0); |
| } |
| /*for (i=0;i<len2;i++)printf("%f ", tmp[i]/mean);printf("\n");*/ |
| |
| /* Compute the ratio of the "frame energy" over the harmonic mean of the energy. |
| This essentially corresponds to a bitrate-normalized temporal noise-to-mask |
| ratio */ |
| |
| /* As a compromise with the old transient detector, frame energy is the |
| geometric mean of the energy and half the max */ |
| #ifdef FIXED_POINT |
| /* Costs two sqrt() to avoid overflows */ |
| mean = MULT16_16(celt_sqrt(mean), celt_sqrt(MULT16_16(maxE,len2>>1))); |
| #else |
| mean = celt_sqrt(mean * maxE*.5*len2); |
| #endif |
| /* Inverse of the mean energy in Q15+6 */ |
| norm = SHL32(EXTEND32(len2),6+14)/ADD32(EPSILON,SHR32(mean,1)); |
| /* Compute harmonic mean discarding the unreliable boundaries |
| The data is smooth, so we only take 1/4th of the samples */ |
| unmask=0; |
| for (i=12;i<len2-5;i+=4) |
| { |
| int id; |
| #ifdef FIXED_POINT |
| id = IMAX(0,IMIN(127,MULT16_32_Q15(tmp[i],norm))); /* Do not round to nearest */ |
| #else |
| id = IMAX(0,IMIN(127,(int)floor(64*norm*tmp[i]))); /* Do not round to nearest */ |
| #endif |
| unmask += inv_table[id]; |
| } |
| /*printf("%d\n", unmask);*/ |
| /* Normalize, compensate for the 1/4th of the sample and the factor of 6 in the inverse table */ |
| unmask = 64*unmask*4/(6*(len2-17)); |
| if (unmask>mask_metric) |
| { |
| *tf_chan = c; |
| mask_metric = unmask; |
| } |
| } |
| is_transient = mask_metric>200; |
| |
| /* Arbitrary metric for VBR boost */ |
| tf_max = MAX16(0,celt_sqrt(27*mask_metric)-42); |
| /* *tf_estimate = 1 + MIN16(1, sqrt(MAX16(0, tf_max-30))/20); */ |
| *tf_estimate = celt_sqrt(MAX16(0, SHL32(MULT16_16(QCONST16(0.0069,14),MIN16(163,tf_max)),14)-QCONST32(0.139,28))); |
| /*printf("%d %f\n", tf_max, mask_metric);*/ |
| RESTORE_STACK; |
| #ifdef FUZZING |
| is_transient = rand()&0x1; |
| #endif |
| /*printf("%d %f %d\n", is_transient, (float)*tf_estimate, tf_max);*/ |
| return is_transient; |
| } |
| |
| /* Looks for sudden increases of energy to decide whether we need to patch |
| the transient decision */ |
| int patch_transient_decision(opus_val16 *new, opus_val16 *old, int nbEBands, |
| int end, int C) |
| { |
| int i, c; |
| opus_val32 mean_diff=0; |
| opus_val16 spread_old[26]; |
| /* Apply an aggressive (-6 dB/Bark) spreading function to the old frame to |
| avoid false detection caused by irrelevant bands */ |
| if (C==1) |
| { |
| spread_old[0] = old[0]; |
| for (i=1;i<end;i++) |
| spread_old[i] = MAX16(spread_old[i-1]-QCONST16(1.0f, DB_SHIFT), old[i]); |
| } else { |
| spread_old[0] = MAX16(old[0],old[nbEBands]); |
| for (i=1;i<end;i++) |
| spread_old[i] = MAX16(spread_old[i-1]-QCONST16(1.0f, DB_SHIFT), |
| MAX16(old[i],old[i+nbEBands])); |
| } |
| for (i=end-2;i>=0;i--) |
| spread_old[i] = MAX16(spread_old[i], spread_old[i+1]-QCONST16(1.0f, DB_SHIFT)); |
| /* Compute mean increase */ |
| c=0; do { |
| for (i=2;i<end-1;i++) |
| { |
| opus_val16 x1, x2; |
| x1 = MAX16(0, new[i]); |
| x2 = MAX16(0, spread_old[i]); |
| mean_diff = ADD32(mean_diff, EXTEND32(MAX16(0, SUB16(x1, x2)))); |
| } |
| } while (++c<C); |
| mean_diff = DIV32(mean_diff, C*(end-3)); |
| /*printf("%f %f %d\n", mean_diff, max_diff, count);*/ |
| return mean_diff > QCONST16(1.f, DB_SHIFT); |
| } |
| |
| /** Apply window and compute the MDCT for all sub-frames and |
| all channels in a frame */ |
| static void compute_mdcts(const CELTMode *mode, int shortBlocks, celt_sig * OPUS_RESTRICT in, |
| celt_sig * OPUS_RESTRICT out, int C, int CC, int LM, int upsample) |
| { |
| const int overlap = OVERLAP(mode); |
| int N; |
| int B; |
| int shift; |
| int i, b, c; |
| if (shortBlocks) |
| { |
| B = shortBlocks; |
| N = mode->shortMdctSize; |
| shift = mode->maxLM; |
| } else { |
| B = 1; |
| N = mode->shortMdctSize<<LM; |
| shift = mode->maxLM-LM; |
| } |
| c=0; do { |
| for (b=0;b<B;b++) |
| { |
| /* Interleaving the sub-frames while doing the MDCTs */ |
| clt_mdct_forward(&mode->mdct, in+c*(B*N+overlap)+b*N, &out[b+c*N*B], mode->window, overlap, shift, B); |
| } |
| } while (++c<CC); |
| if (CC==2&&C==1) |
| { |
| for (i=0;i<B*N;i++) |
| out[i] = ADD32(HALF32(out[i]), HALF32(out[B*N+i])); |
| } |
| if (upsample != 1) |
| { |
| c=0; do |
| { |
| int bound = B*N/upsample; |
| for (i=0;i<bound;i++) |
| out[c*B*N+i] *= upsample; |
| for (;i<B*N;i++) |
| out[c*B*N+i] = 0; |
| } while (++c<C); |
| } |
| } |
| |
| |
| static void preemphasis(const opus_val16 * OPUS_RESTRICT pcmp, celt_sig * OPUS_RESTRICT inp, |
| int N, int CC, int upsample, const opus_val16 *coef, celt_sig *mem, int clip) |
| { |
| int i; |
| opus_val16 coef0; |
| celt_sig m; |
| int Nu; |
| |
| coef0 = coef[0]; |
| |
| |
| Nu = N/upsample; |
| if (upsample!=1) |
| { |
| for (i=0;i<N;i++) |
| inp[i] = 0; |
| } |
| for (i=0;i<Nu;i++) |
| { |
| celt_sig x; |
| |
| x = SCALEIN(pcmp[CC*i]); |
| #ifndef FIXED_POINT |
| /* Replace NaNs with zeros */ |
| if (!(x==x)) |
| x = 0; |
| #endif |
| inp[i*upsample] = x; |
| } |
| |
| #ifndef FIXED_POINT |
| if (clip) |
| { |
| /* Clip input to avoid encoding non-portable files */ |
| for (i=0;i<Nu;i++) |
| inp[i*upsample] = MAX32(-65536.f, MIN32(65536.f,inp[i*upsample])); |
| } |
| #endif |
| m = *mem; |
| #ifdef CUSTOM_MODES |
| if (coef[1] != 0) |
| { |
| opus_val16 coef1 = coef[1]; |
| opus_val16 coef2 = coef[2]; |
| for (i=0;i<N;i++) |
| { |
| opus_val16 x, tmp; |
| x = inp[i]; |
| /* Apply pre-emphasis */ |
| tmp = MULT16_16(coef2, x); |
| inp[i] = tmp + m; |
| m = MULT16_32_Q15(coef1, inp[i]) - MULT16_32_Q15(coef0, tmp); |
| } |
| } else |
| #endif |
| { |
| for (i=0;i<N;i++) |
| { |
| celt_sig x; |
| x = SHL32(inp[i], SIG_SHIFT); |
| /* Apply pre-emphasis */ |
| inp[i] = x + m; |
| m = - MULT16_32_Q15(coef0, x); |
| } |
| } |
| *mem = m; |
| } |
| |
| |
| |
| static opus_val32 l1_metric(const celt_norm *tmp, int N, int LM, opus_val16 bias) |
| { |
| int i; |
| opus_val32 L1; |
| L1 = 0; |
| for (i=0;i<N;i++) |
| L1 += EXTEND32(ABS16(tmp[i])); |
| /* When in doubt, prefer good freq resolution */ |
| L1 = MAC16_32_Q15(L1, LM*bias, L1); |
| return L1; |
| |
| } |
| |
| static int tf_analysis(const CELTMode *m, int len, int isTransient, |
| int *tf_res, int lambda, celt_norm *X, int N0, int LM, |
| int *tf_sum, opus_val16 tf_estimate, int tf_chan) |
| { |
| int i; |
| VARDECL(int, metric); |
| int cost0; |
| int cost1; |
| VARDECL(int, path0); |
| VARDECL(int, path1); |
| VARDECL(celt_norm, tmp); |
| VARDECL(celt_norm, tmp_1); |
| int sel; |
| int selcost[2]; |
| int tf_select=0; |
| opus_val16 bias; |
| |
| SAVE_STACK; |
| bias = MULT16_16_Q14(QCONST16(.04f,15), MAX16(-QCONST16(.25f,14), QCONST16(.5f,14)-tf_estimate)); |
| /*printf("%f ", bias);*/ |
| |
| ALLOC(metric, len, int); |
| ALLOC(tmp, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm); |
| ALLOC(tmp_1, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm); |
| ALLOC(path0, len, int); |
| ALLOC(path1, len, int); |
| |
| *tf_sum = 0; |
| for (i=0;i<len;i++) |
| { |
| int j, k, N; |
| int narrow; |
| opus_val32 L1, best_L1; |
| int best_level=0; |
| N = (m->eBands[i+1]-m->eBands[i])<<LM; |
| /* band is too narrow to be split down to LM=-1 */ |
| narrow = (m->eBands[i+1]-m->eBands[i])==1; |
| for (j=0;j<N;j++) |
| tmp[j] = X[tf_chan*N0 + j+(m->eBands[i]<<LM)]; |
| /* Just add the right channel if we're in stereo */ |
| /*if (C==2) |
| for (j=0;j<N;j++) |
| tmp[j] = ADD16(SHR16(tmp[j], 1),SHR16(X[N0+j+(m->eBands[i]<<LM)], 1));*/ |
| L1 = l1_metric(tmp, N, isTransient ? LM : 0, bias); |
| best_L1 = L1; |
| /* Check the -1 case for transients */ |
| if (isTransient && !narrow) |
| { |
| for (j=0;j<N;j++) |
| tmp_1[j] = tmp[j]; |
| haar1(tmp_1, N>>LM, 1<<LM); |
| L1 = l1_metric(tmp_1, N, LM+1, bias); |
| if (L1<best_L1) |
| { |
| best_L1 = L1; |
| best_level = -1; |
| } |
| } |
| /*printf ("%f ", L1);*/ |
| for (k=0;k<LM+!(isTransient||narrow);k++) |
| { |
| int B; |
| |
| if (isTransient) |
| B = (LM-k-1); |
| else |
| B = k+1; |
| |
| haar1(tmp, N>>k, 1<<k); |
| |
| L1 = l1_metric(tmp, N, B, bias); |
| |
| if (L1 < best_L1) |
| { |
| best_L1 = L1; |
| best_level = k+1; |
| } |
| } |
| /*printf ("%d ", isTransient ? LM-best_level : best_level);*/ |
| /* metric is in Q1 to be able to select the mid-point (-0.5) for narrower bands */ |
| if (isTransient) |
| metric[i] = 2*best_level; |
| else |
| metric[i] = -2*best_level; |
| *tf_sum += (isTransient ? LM : 0) - metric[i]/2; |
| /* For bands that can't be split to -1, set the metric to the half-way point to avoid |
| biasing the decision */ |
| if (narrow && (metric[i]==0 || metric[i]==-2*LM)) |
| metric[i]-=1; |
| /*printf("%d ", metric[i]);*/ |
| } |
| /*printf("\n");*/ |
| /* Search for the optimal tf resolution, including tf_select */ |
| tf_select = 0; |
| for (sel=0;sel<2;sel++) |
| { |
| cost0 = 0; |
| cost1 = isTransient ? 0 : lambda; |
| for (i=1;i<len;i++) |
| { |
| int curr0, curr1; |
| curr0 = IMIN(cost0, cost1 + lambda); |
| curr1 = IMIN(cost0 + lambda, cost1); |
| cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+0]); |
| cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+1]); |
| } |
| cost0 = IMIN(cost0, cost1); |
| selcost[sel]=cost0; |
| } |
| /* For now, we're conservative and only allow tf_select=1 for transients. |
| * If tests confirm it's useful for non-transients, we could allow it. */ |
| if (selcost[1]<selcost[0] && isTransient) |
| tf_select=1; |
| cost0 = 0; |
| cost1 = isTransient ? 0 : lambda; |
| /* Viterbi forward pass */ |
| for (i=1;i<len;i++) |
| { |
| int curr0, curr1; |
| int from0, from1; |
| |
| from0 = cost0; |
| from1 = cost1 + lambda; |
| if (from0 < from1) |
| { |
| curr0 = from0; |
| path0[i]= 0; |
| } else { |
| curr0 = from1; |
| path0[i]= 1; |
| } |
| |
| from0 = cost0 + lambda; |
| from1 = cost1; |
| if (from0 < from1) |
| { |
| curr1 = from0; |
| path1[i]= 0; |
| } else { |
| curr1 = from1; |
| path1[i]= 1; |
| } |
| cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]); |
| cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]); |
| } |
| tf_res[len-1] = cost0 < cost1 ? 0 : 1; |
| /* Viterbi backward pass to check the decisions */ |
| for (i=len-2;i>=0;i--) |
| { |
| if (tf_res[i+1] == 1) |
| tf_res[i] = path1[i+1]; |
| else |
| tf_res[i] = path0[i+1]; |
| } |
| /*printf("%d %f\n", *tf_sum, tf_estimate);*/ |
| RESTORE_STACK; |
| #ifdef FUZZING |
| tf_select = rand()&0x1; |
| tf_res[0] = rand()&0x1; |
| for (i=1;i<len;i++) |
| tf_res[i] = tf_res[i-1] ^ ((rand()&0xF) == 0); |
| #endif |
| return tf_select; |
| } |
| |
| static void tf_encode(int start, int end, int isTransient, int *tf_res, int LM, int tf_select, ec_enc *enc) |
| { |
| int curr, i; |
| int tf_select_rsv; |
| int tf_changed; |
| int logp; |
| opus_uint32 budget; |
| opus_uint32 tell; |
| budget = enc->storage*8; |
| tell = ec_tell(enc); |
| logp = isTransient ? 2 : 4; |
| /* Reserve space to code the tf_select decision. */ |
| tf_select_rsv = LM>0 && tell+logp+1 <= budget; |
| budget -= tf_select_rsv; |
| curr = tf_changed = 0; |
| for (i=start;i<end;i++) |
| { |
| if (tell+logp<=budget) |
| { |
| ec_enc_bit_logp(enc, tf_res[i] ^ curr, logp); |
| tell = ec_tell(enc); |
| curr = tf_res[i]; |
| tf_changed |= curr; |
| } |
| else |
| tf_res[i] = curr; |
| logp = isTransient ? 4 : 5; |
| } |
| /* Only code tf_select if it would actually make a difference. */ |
| if (tf_select_rsv && |
| tf_select_table[LM][4*isTransient+0+tf_changed]!= |
| tf_select_table[LM][4*isTransient+2+tf_changed]) |
| ec_enc_bit_logp(enc, tf_select, 1); |
| else |
| tf_select = 0; |
| for (i=start;i<end;i++) |
| tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]]; |
| /*for(i=0;i<end;i++)printf("%d ", isTransient ? tf_res[i] : LM+tf_res[i]);printf("\n");*/ |
| } |
| |
| |
| static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X, |
| const opus_val16 *bandLogE, int end, int LM, int C, int N0, |
| AnalysisInfo *analysis, opus_val16 *stereo_saving, opus_val16 tf_estimate, |
| int intensity) |
| { |
| int i; |
| opus_val32 diff=0; |
| int c; |
| int trim_index = 5; |
| opus_val16 trim = QCONST16(5.f, 8); |
| opus_val16 logXC, logXC2; |
| if (C==2) |
| { |
| opus_val16 sum = 0; /* Q10 */ |
| opus_val16 minXC; /* Q10 */ |
| /* Compute inter-channel correlation for low frequencies */ |
| for (i=0;i<8;i++) |
| { |
| int j; |
| opus_val32 partial = 0; |
| for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) |
| partial = MAC16_16(partial, X[j], X[N0+j]); |
| sum = ADD16(sum, EXTRACT16(SHR32(partial, 18))); |
| } |
| sum = MULT16_16_Q15(QCONST16(1.f/8, 15), sum); |
| sum = MIN16(QCONST16(1.f, 10), ABS16(sum)); |
| minXC = sum; |
| for (i=8;i<intensity;i++) |
| { |
| int j; |
| opus_val32 partial = 0; |
| for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) |
| partial = MAC16_16(partial, X[j], X[N0+j]); |
| minXC = MIN16(minXC, ABS16(EXTRACT16(SHR32(partial, 18)))); |
| } |
| minXC = MIN16(QCONST16(1.f, 10), ABS16(minXC)); |
| /*printf ("%f\n", sum);*/ |
| if (sum > QCONST16(.995f,10)) |
| trim_index-=4; |
| else if (sum > QCONST16(.92f,10)) |
| trim_index-=3; |
| else if (sum > QCONST16(.85f,10)) |
| trim_index-=2; |
| else if (sum > QCONST16(.8f,10)) |
| trim_index-=1; |
| /* mid-side savings estimations based on the LF average*/ |
| logXC = celt_log2(QCONST32(1.001f, 20)-MULT16_16(sum, sum)); |
| /* mid-side savings estimations based on min correlation */ |
| logXC2 = MAX16(HALF16(logXC), celt_log2(QCONST32(1.001f, 20)-MULT16_16(minXC, minXC))); |
| #ifdef FIXED_POINT |
| /* Compensate for Q20 vs Q14 input and convert output to Q8 */ |
| logXC = PSHR32(logXC-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8); |
| logXC2 = PSHR32(logXC2-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8); |
| #endif |
| |
| trim += MAX16(-QCONST16(4.f, 8), MULT16_16_Q15(QCONST16(.75f,15),logXC)); |
| *stereo_saving = MIN16(*stereo_saving + QCONST16(0.25f, 8), -HALF16(logXC2)); |
| } |
| |
| /* Estimate spectral tilt */ |
| c=0; do { |
| for (i=0;i<end-1;i++) |
| { |
| diff += bandLogE[i+c*m->nbEBands]*(opus_int32)(2+2*i-end); |
| } |
| } while (++c<C); |
| diff /= C*(end-1); |
| /*printf("%f\n", diff);*/ |
| if (diff > QCONST16(2.f, DB_SHIFT)) |
| trim_index--; |
| if (diff > QCONST16(8.f, DB_SHIFT)) |
| trim_index--; |
| if (diff < -QCONST16(4.f, DB_SHIFT)) |
| trim_index++; |
| if (diff < -QCONST16(10.f, DB_SHIFT)) |
| trim_index++; |
| trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), SHR16(diff+QCONST16(1.f, DB_SHIFT),DB_SHIFT-8)/6 )); |
| trim -= 2*SHR16(tf_estimate, 14-8); |
| #ifndef FIXED_POINT |
| if (analysis->valid) |
| { |
| trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), 2*(analysis->tonality_slope+.05f))); |
| } |
| #endif |
| |
| #ifdef FIXED_POINT |
| trim_index = PSHR32(trim, 8); |
| #else |
| trim_index = (int)floor(.5f+trim); |
| #endif |
| if (trim_index<0) |
| trim_index = 0; |
| if (trim_index>10) |
| trim_index = 10; |
| /*printf("%d\n", trim_index);*/ |
| #ifdef FUZZING |
| trim_index = rand()%11; |
| #endif |
| return trim_index; |
| } |
| |
| static int stereo_analysis(const CELTMode *m, const celt_norm *X, |
| int LM, int N0) |
| { |
| int i; |
| int thetas; |
| opus_val32 sumLR = EPSILON, sumMS = EPSILON; |
| |
| /* Use the L1 norm to model the entropy of the L/R signal vs the M/S signal */ |
| for (i=0;i<13;i++) |
| { |
| int j; |
| for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) |
| { |
| opus_val32 L, R, M, S; |
| /* We cast to 32-bit first because of the -32768 case */ |
| L = EXTEND32(X[j]); |
| R = EXTEND32(X[N0+j]); |
| M = ADD32(L, R); |
| S = SUB32(L, R); |
| sumLR = ADD32(sumLR, ADD32(ABS32(L), ABS32(R))); |
| sumMS = ADD32(sumMS, ADD32(ABS32(M), ABS32(S))); |
| } |
| } |
| sumMS = MULT16_32_Q15(QCONST16(0.707107f, 15), sumMS); |
| thetas = 13; |
| /* We don't need thetas for lower bands with LM<=1 */ |
| if (LM<=1) |
| thetas -= 8; |
| return MULT16_32_Q15((m->eBands[13]<<(LM+1))+thetas, sumMS) |
| > MULT16_32_Q15(m->eBands[13]<<(LM+1), sumLR); |
| } |
| |
| static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16 *bandLogE2, |
| int nbEBands, int start, int end, int C, int *offsets, int lsb_depth, const opus_int16 *logN, |
| int isTransient, int vbr, int constrained_vbr, const opus_int16 *eBands, int LM, |
| int effectiveBytes, opus_int32 *tot_boost_) |
| { |
| int i, c; |
| opus_int32 tot_boost=0; |
| opus_val16 maxDepth; |
| VARDECL(opus_val16, follower); |
| VARDECL(opus_val16, noise_floor); |
| SAVE_STACK; |
| ALLOC(follower, C*nbEBands, opus_val16); |
| ALLOC(noise_floor, C*nbEBands, opus_val16); |
| for (i=0;i<nbEBands;i++) |
| offsets[i] = 0; |
| /* Dynamic allocation code */ |
| maxDepth=-QCONST16(32.f, DB_SHIFT); |
| for (i=0;i<end;i++) |
| { |
| /* Noise floor must take into account eMeans, the depth, the width of the bands |
| and the preemphasis filter (approx. square of bark band ID) */ |
| noise_floor[i] = MULT16_16(QCONST16(0.0625f, DB_SHIFT),logN[i]) |
| +QCONST16(.5f,DB_SHIFT)+SHL16(9-lsb_depth,DB_SHIFT)-SHL16(eMeans[i],6) |
| +MULT16_16(QCONST16(.0062,DB_SHIFT),(i+5)*(i+5)); |
| } |
| c=0;do |
| { |
| for (i=0;i<end;i++) |
| maxDepth = MAX16(maxDepth, bandLogE[c*nbEBands+i]-noise_floor[i]); |
| } while (++c<C); |
| /* Make sure that dynamic allocation can't make us bust the budget */ |
| if (effectiveBytes > 50 && LM>=1) |
| { |
| int last=0; |
| c=0;do |
| { |
| follower[c*nbEBands] = bandLogE2[c*nbEBands]; |
| for (i=1;i<end;i++) |
| { |
| /* The last band to be at least 3 dB higher than the previous one |
| is the last we'll consider. Otherwise, we run into problems on |
| bandlimited signals. */ |
| if (bandLogE2[c*nbEBands+i] > bandLogE2[c*nbEBands+i-1]+QCONST16(.5f,DB_SHIFT)) |
| last=i; |
| follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i-1]+QCONST16(1.5f,DB_SHIFT), bandLogE2[c*nbEBands+i]); |
| } |
| for (i=last-1;i>=0;i--) |
| follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i], MIN16(follower[c*nbEBands+i+1]+QCONST16(2.f,DB_SHIFT), bandLogE2[c*nbEBands+i])); |
| for (i=0;i<end;i++) |
| follower[c*nbEBands+i] = MAX16(follower[c*nbEBands+i], noise_floor[i]); |
| } while (++c<C); |
| if (C==2) |
| { |
| for (i=start;i<end;i++) |
| { |
| /* Consider 24 dB "cross-talk" */ |
| follower[nbEBands+i] = MAX16(follower[nbEBands+i], follower[ i]-QCONST16(4.f,DB_SHIFT)); |
| follower[ i] = MAX16(follower[ i], follower[nbEBands+i]-QCONST16(4.f,DB_SHIFT)); |
| follower[i] = HALF16(MAX16(0, bandLogE[i]-follower[i]) + MAX16(0, bandLogE[nbEBands+i]-follower[nbEBands+i])); |
| } |
| } else { |
| for (i=start;i<end;i++) |
| { |
| follower[i] = MAX16(0, bandLogE[i]-follower[i]); |
| } |
| } |
| /* For non-transient CBR/CVBR frames, halve the dynalloc contribution */ |
| if ((!vbr || constrained_vbr)&&!isTransient) |
| { |
| for (i=start;i<end;i++) |
| follower[i] = HALF16(follower[i]); |
| } |
| for (i=start;i<end;i++) |
| { |
| int width; |
| int boost; |
| int boost_bits; |
| |
| if (i<8) |
| follower[i] *= 2; |
| if (i>=12) |
| follower[i] = HALF16(follower[i]); |
| follower[i] = MIN16(follower[i], QCONST16(4, DB_SHIFT)); |
| |
| width = C*(eBands[i+1]-eBands[i])<<LM; |
| if (width<6) |
| { |
| boost = (int)SHR32(EXTEND32(follower[i]),DB_SHIFT); |
| boost_bits = boost*width<<BITRES; |
| } else if (width > 48) { |
| boost = (int)SHR32(EXTEND32(follower[i])*8,DB_SHIFT); |
| boost_bits = (boost*width<<BITRES)/8; |
| } else { |
| boost = (int)SHR32(EXTEND32(follower[i])*width/6,DB_SHIFT); |
| boost_bits = boost*6<<BITRES; |
| } |
| /* For CBR and non-transient CVBR frames, limit dynalloc to 1/4 of the bits */ |
| if ((!vbr || (constrained_vbr&&!isTransient)) |
| && (tot_boost+boost_bits)>>BITRES>>3 > effectiveBytes/4) |
| { |
| offsets[i] = 0; |
| break; |
| } else { |
| offsets[i] = boost; |
| tot_boost += boost_bits; |
| } |
| } |
| } |
| *tot_boost_ = tot_boost; |
| RESTORE_STACK; |
| return maxDepth; |
| } |
| |
| |
| static int run_prefilter(CELTEncoder *st, celt_sig *in, celt_sig *prefilter_mem, int CC, int N, |
| int prefilter_tapset, int *pitch, opus_val16 *gain, int *qgain, int enabled, int nbAvailableBytes) |
| { |
| int c; |
| VARDECL(celt_sig, _pre); |
| celt_sig *pre[2]; |
| const CELTMode *mode; |
| int pitch_index; |
| opus_val16 gain1; |
| opus_val16 pf_threshold; |
| int pf_on; |
| int qg; |
| SAVE_STACK; |
| |
| mode = st->mode; |
| ALLOC(_pre, CC*(N+COMBFILTER_MAXPERIOD), celt_sig); |
| |
| pre[0] = _pre; |
| pre[1] = _pre + (N+COMBFILTER_MAXPERIOD); |
| |
| |
| c=0; do { |
| OPUS_COPY(pre[c], prefilter_mem+c*COMBFILTER_MAXPERIOD, COMBFILTER_MAXPERIOD); |
| OPUS_COPY(pre[c]+COMBFILTER_MAXPERIOD, in+c*(N+st->overlap)+st->overlap, N); |
| } while (++c<CC); |
| |
| if (enabled) |
| { |
| VARDECL(opus_val16, pitch_buf); |
| ALLOC(pitch_buf, (COMBFILTER_MAXPERIOD+N)>>1, opus_val16); |
| |
| pitch_downsample(pre, pitch_buf, COMBFILTER_MAXPERIOD+N, CC); |
| /* Don't search for the fir last 1.5 octave of the range because |
| there's too many false-positives due to short-term correlation */ |
| pitch_search(pitch_buf+(COMBFILTER_MAXPERIOD>>1), pitch_buf, N, |
| COMBFILTER_MAXPERIOD-3*COMBFILTER_MINPERIOD, &pitch_index); |
| pitch_index = COMBFILTER_MAXPERIOD-pitch_index; |
| |
| gain1 = remove_doubling(pitch_buf, COMBFILTER_MAXPERIOD, COMBFILTER_MINPERIOD, |
| N, &pitch_index, st->prefilter_period, st->prefilter_gain); |
| if (pitch_index > COMBFILTER_MAXPERIOD-2) |
| pitch_index = COMBFILTER_MAXPERIOD-2; |
| gain1 = MULT16_16_Q15(QCONST16(.7f,15),gain1); |
| /*printf("%d %d %f %f\n", pitch_change, pitch_index, gain1, st->analysis.tonality);*/ |
| if (st->loss_rate>2) |
| gain1 = HALF32(gain1); |
| if (st->loss_rate>4) |
| gain1 = HALF32(gain1); |
| if (st->loss_rate>8) |
| gain1 = 0; |
| } else { |
| gain1 = 0; |
| pitch_index = COMBFILTER_MINPERIOD; |
| } |
| |
| /* Gain threshold for enabling the prefilter/postfilter */ |
| pf_threshold = QCONST16(.2f,15); |
| |
| /* Adjusting the threshold based on rate and continuity */ |
| if (abs(pitch_index-st->prefilter_period)*10>pitch_index) |
| pf_threshold += QCONST16(.2f,15); |
| if (nbAvailableBytes<25) |
| pf_threshold += QCONST16(.1f,15); |
| if (nbAvailableBytes<35) |
| pf_threshold += QCONST16(.1f,15); |
| if (st->prefilter_gain > QCONST16(.4f,15)) |
| pf_threshold -= QCONST16(.1f,15); |
| if (st->prefilter_gain > QCONST16(.55f,15)) |
| pf_threshold -= QCONST16(.1f,15); |
| |
| /* Hard threshold at 0.2 */ |
| pf_threshold = MAX16(pf_threshold, QCONST16(.2f,15)); |
| if (gain1<pf_threshold) |
| { |
| gain1 = 0; |
| pf_on = 0; |
| qg = 0; |
| } else { |
| /*This block is not gated by a total bits check only because |
| of the nbAvailableBytes check above.*/ |
| if (ABS16(gain1-st->prefilter_gain)<QCONST16(.1f,15)) |
| gain1=st->prefilter_gain; |
| |
| #ifdef FIXED_POINT |
| qg = ((gain1+1536)>>10)/3-1; |
| #else |
| qg = (int)floor(.5f+gain1*32/3)-1; |
| #endif |
| qg = IMAX(0, IMIN(7, qg)); |
| gain1 = QCONST16(0.09375f,15)*(qg+1); |
| pf_on = 1; |
| } |
| /*printf("%d %f\n", pitch_index, gain1);*/ |
| |
| c=0; do { |
| int offset = mode->shortMdctSize-st->overlap; |
| st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD); |
| OPUS_COPY(in+c*(N+st->overlap), st->in_mem+c*(st->overlap), st->overlap); |
| if (offset) |
| comb_filter(in+c*(N+st->overlap)+st->overlap, pre[c]+COMBFILTER_MAXPERIOD, |
| st->prefilter_period, st->prefilter_period, offset, -st->prefilter_gain, -st->prefilter_gain, |
| st->prefilter_tapset, st->prefilter_tapset, NULL, 0); |
| |
| comb_filter(in+c*(N+st->overlap)+st->overlap+offset, pre[c]+COMBFILTER_MAXPERIOD+offset, |
| st->prefilter_period, pitch_index, N-offset, -st->prefilter_gain, -gain1, |
| st->prefilter_tapset, prefilter_tapset, mode->window, st->overlap); |
| OPUS_COPY(st->in_mem+c*(st->overlap), in+c*(N+st->overlap)+N, st->overlap); |
| |
| if (N>COMBFILTER_MAXPERIOD) |
| { |
| OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, pre[c]+N, COMBFILTER_MAXPERIOD); |
| } else { |
| OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, prefilter_mem+c*COMBFILTER_MAXPERIOD+N, COMBFILTER_MAXPERIOD-N); |
| OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD+COMBFILTER_MAXPERIOD-N, pre[c]+COMBFILTER_MAXPERIOD, N); |
| } |
| } while (++c<CC); |
| |
| RESTORE_STACK; |
| *gain = gain1; |
| *pitch = pitch_index; |
| *qgain = qg; |
| return pf_on; |
| } |
| |
| int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes, ec_enc *enc) |
| { |
| int i, c, N; |
| opus_int32 bits; |
| ec_enc _enc; |
| VARDECL(celt_sig, in); |
| VARDECL(celt_sig, freq); |
| VARDECL(celt_norm, X); |
| VARDECL(celt_ener, bandE); |
| VARDECL(opus_val16, bandLogE); |
| VARDECL(opus_val16, bandLogE2); |
| VARDECL(int, fine_quant); |
| VARDECL(opus_val16, error); |
| VARDECL(int, pulses); |
| VARDECL(int, cap); |
| VARDECL(int, offsets); |
| VARDECL(int, fine_priority); |
| VARDECL(int, tf_res); |
| VARDECL(unsigned char, collapse_masks); |
| celt_sig *prefilter_mem; |
| opus_val16 *oldBandE, *oldLogE, *oldLogE2; |
| int shortBlocks=0; |
| int isTransient=0; |
| const int CC = st->channels; |
| const int C = st->stream_channels; |
| int LM, M; |
| int tf_select; |
| int nbFilledBytes, nbAvailableBytes; |
| int effEnd; |
| int codedBands; |
| int tf_sum; |
| int alloc_trim; |
| int pitch_index=COMBFILTER_MINPERIOD; |
| opus_val16 gain1 = 0; |
| int dual_stereo=0; |
| int effectiveBytes; |
| int dynalloc_logp; |
| opus_int32 vbr_rate; |
| opus_int32 total_bits; |
| opus_int32 total_boost; |
| opus_int32 balance; |
| opus_int32 tell; |
| int prefilter_tapset=0; |
| int pf_on; |
| int anti_collapse_rsv; |
| int anti_collapse_on=0; |
| int silence=0; |
| int tf_chan = 0; |
| opus_val16 tf_estimate; |
| int pitch_change=0; |
| opus_int32 tot_boost; |
| opus_val16 sample_max; |
| opus_val16 maxDepth; |
| const OpusCustomMode *mode; |
| int nbEBands; |
| int overlap; |
| const opus_int16 *eBands; |
| int secondMdct; |
| int signalBandwidth; |
| int transient_got_disabled; |
| ALLOC_STACK; |
| |
| mode = st->mode; |
| nbEBands = mode->nbEBands; |
| overlap = mode->overlap; |
| eBands = mode->eBands; |
| tf_estimate = 0; |
| if (nbCompressedBytes<2 || pcm==NULL) |
| return OPUS_BAD_ARG; |
| |
| frame_size *= st->upsample; |
| for (LM=0;LM<=mode->maxLM;LM++) |
| if (mode->shortMdctSize<<LM==frame_size) |
| break; |
| if (LM>mode->maxLM) |
| return OPUS_BAD_ARG; |
| M=1<<LM; |
| N = M*mode->shortMdctSize; |
| |
| prefilter_mem = st->in_mem+CC*(st->overlap); |
| oldBandE = (opus_val16*)(st->in_mem+CC*(st->overlap+COMBFILTER_MAXPERIOD)); |
| oldLogE = oldBandE + CC*nbEBands; |
| oldLogE2 = oldLogE + CC*nbEBands; |
| |
| if (enc==NULL) |
| { |
| tell=1; |
| nbFilledBytes=0; |
| } else { |
| tell=ec_tell(enc); |
| nbFilledBytes=(tell+4)>>3; |
| } |
| |
| #ifdef CUSTOM_MODES |
| if (st->signalling && enc==NULL) |
| { |
| int tmp = (mode->effEBands-st->end)>>1; |
| st->end = IMAX(1, mode->effEBands-tmp); |
| compressed[0] = tmp<<5; |
| compressed[0] |= LM<<3; |
| compressed[0] |= (C==2)<<2; |
| /* Convert "standard mode" to Opus header */ |
| if (mode->Fs==48000 && mode->shortMdctSize==120) |
| { |
| int c0 = toOpus(compressed[0]); |
| if (c0<0) |
| return OPUS_BAD_ARG; |
| compressed[0] = c0; |
| } |
| compressed++; |
| nbCompressedBytes--; |
| } |
| #else |
| celt_assert(st->signalling==0); |
| #endif |
| |
| /* Can't produce more than 1275 output bytes */ |
| nbCompressedBytes = IMIN(nbCompressedBytes,1275); |
| nbAvailableBytes = nbCompressedBytes - nbFilledBytes; |
| |
| if (st->vbr && st->bitrate!=OPUS_BITRATE_MAX) |
| { |
| opus_int32 den=mode->Fs>>BITRES; |
| vbr_rate=(st->bitrate*frame_size+(den>>1))/den; |
| #ifdef CUSTOM_MODES |
| if (st->signalling) |
| vbr_rate -= 8<<BITRES; |
| #endif |
| effectiveBytes = vbr_rate>>(3+BITRES); |
| } else { |
| opus_int32 tmp; |
| vbr_rate = 0; |
| tmp = st->bitrate*frame_size; |
| if (tell>1) |
| tmp += tell; |
| if (st->bitrate!=OPUS_BITRATE_MAX) |
| nbCompressedBytes = IMAX(2, IMIN(nbCompressedBytes, |
| (tmp+4*mode->Fs)/(8*mode->Fs)-!!st->signalling)); |
| effectiveBytes = nbCompressedBytes; |
| } |
| |
| if (enc==NULL) |
| { |
| ec_enc_init(&_enc, compressed, nbCompressedBytes); |
| enc = &_enc; |
| } |
| |
| if (vbr_rate>0) |
| { |
| /* Computes the max bit-rate allowed in VBR mode to avoid violating the |
| target rate and buffering. |
| We must do this up front so that bust-prevention logic triggers |
| correctly if we don't have enough bits. */ |
| if (st->constrained_vbr) |
| { |
| opus_int32 vbr_bound; |
| opus_int32 max_allowed; |
| /* We could use any multiple of vbr_rate as bound (depending on the |
| delay). |
| This is clamped to ensure we use at least two bytes if the encoder |
| was entirely empty, but to allow 0 in hybrid mode. */ |
| vbr_bound = vbr_rate; |
| max_allowed = IMIN(IMAX(tell==1?2:0, |
| (vbr_rate+vbr_bound-st->vbr_reservoir)>>(BITRES+3)), |
| nbAvailableBytes); |
| if(max_allowed < nbAvailableBytes) |
| { |
| nbCompressedBytes = nbFilledBytes+max_allowed; |
| nbAvailableBytes = max_allowed; |
| ec_enc_shrink(enc, nbCompressedBytes); |
| } |
| } |
| } |
| total_bits = nbCompressedBytes*8; |
| |
| effEnd = st->end; |
| if (effEnd > mode->effEBands) |
| effEnd = mode->effEBands; |
| |
| ALLOC(in, CC*(N+st->overlap), celt_sig); |
| |
| sample_max=MAX16(st->overlap_max, celt_maxabs16(pcm, C*(N-overlap)/st->upsample)); |
| st->overlap_max=celt_maxabs16(pcm+C*(N-overlap)/st->upsample, C*overlap/st->upsample); |
| sample_max=MAX16(sample_max, st->overlap_max); |
| #ifdef FIXED_POINT |
| silence = (sample_max==0); |
| #else |
| silence = (sample_max <= (opus_val16)1/(1<<st->lsb_depth)); |
| #endif |
| #ifdef FUZZING |
| if ((rand()&0x3F)==0) |
| silence = 1; |
| #endif |
| if (tell==1) |
| ec_enc_bit_logp(enc, silence, 15); |
| else |
| silence=0; |
| if (silence) |
| { |
| /*In VBR mode there is no need to send more than the minimum. */ |
| if (vbr_rate>0) |
| { |
| effectiveBytes=nbCompressedBytes=IMIN(nbCompressedBytes, nbFilledBytes+2); |
| total_bits=nbCompressedBytes*8; |
| nbAvailableBytes=2; |
| ec_enc_shrink(enc, nbCompressedBytes); |
| } |
| /* Pretend we've filled all the remaining bits with zeros |
| (that's what the initialiser did anyway) */ |
| tell = nbCompressedBytes*8; |
| enc->nbits_total+=tell-ec_tell(enc); |
| } |
| c=0; do { |
| preemphasis(pcm+c, in+c*(N+st->overlap)+st->overlap, N, CC, st->upsample, |
| mode->preemph, st->preemph_memE+c, st->clip); |
| } while (++c<CC); |
| |
| |
| |
| /* Find pitch period and gain */ |
| { |
| int enabled; |
| int qg; |
| enabled = nbAvailableBytes>12*C && st->start==0 && !silence && !st->disable_pf |
| && st->complexity >= 5 && !(st->consec_transient && LM!=3 && st->variable_duration); |
| |
| prefilter_tapset = st->tapset_decision; |
| pf_on = run_prefilter(st, in, prefilter_mem, CC, N, prefilter_tapset, &pitch_index, &gain1, &qg, enabled, nbAvailableBytes); |
| if ((gain1 > QCONST16(.4f,15) || st->prefilter_gain > QCONST16(.4f,15)) && (!st->analysis.valid || st->analysis.tonality > .3) |
| && (pitch_index > 1.26*st->prefilter_period || pitch_index < .79*st->prefilter_period)) |
| pitch_change = 1; |
| if (pf_on==0) |
| { |
| if(st->start==0 && tell+16<=total_bits) |
| ec_enc_bit_logp(enc, 0, 1); |
| } else { |
| /*This block is not gated by a total bits check only because |
| of the nbAvailableBytes check above.*/ |
| int octave; |
| ec_enc_bit_logp(enc, 1, 1); |
| pitch_index += 1; |
| octave = EC_ILOG(pitch_index)-5; |
| ec_enc_uint(enc, octave, 6); |
| ec_enc_bits(enc, pitch_index-(16<<octave), 4+octave); |
| pitch_index -= 1; |
| ec_enc_bits(enc, qg, 3); |
| ec_enc_icdf(enc, prefilter_tapset, tapset_icdf, 2); |
| } |
| } |
| |
| isTransient = 0; |
| shortBlocks = 0; |
| if (st->complexity >= 1) |
| { |
| isTransient = transient_analysis(in, N+st->overlap, CC, |
| &tf_estimate, &tf_chan); |
| } |
| if (LM>0 && ec_tell(enc)+3<=total_bits) |
| { |
| if (isTransient) |
| shortBlocks = M; |
| } else { |
| isTransient = 0; |
| transient_got_disabled=1; |
| } |
| |
| ALLOC(freq, CC*N, celt_sig); /**< Interleaved signal MDCTs */ |
| ALLOC(bandE,nbEBands*CC, celt_ener); |
| ALLOC(bandLogE,nbEBands*CC, opus_val16); |
| |
| secondMdct = shortBlocks && st->complexity>=8; |
| ALLOC(bandLogE2, C*nbEBands, opus_val16); |
| if (secondMdct) |
| { |
| compute_mdcts(mode, 0, in, freq, C, CC, LM, st->upsample); |
| compute_band_energies(mode, freq, bandE, effEnd, C, M); |
| amp2Log2(mode, effEnd, st->end, bandE, bandLogE2, C); |
| for (i=0;i<C*nbEBands;i++) |
| bandLogE2[i] += HALF16(SHL16(LM, DB_SHIFT)); |
| } |
| |
| compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample); |
| if (CC==2&&C==1) |
| tf_chan = 0; |
| compute_band_energies(mode, freq, bandE, effEnd, C, M); |
| |
| amp2Log2(mode, effEnd, st->end, bandE, bandLogE, C); |
| /*for (i=0;i<21;i++) |
| printf("%f ", bandLogE[i]); |
| printf("\n");*/ |
| |
| if (!secondMdct) |
| { |
| for (i=0;i<C*nbEBands;i++) |
| bandLogE2[i] = bandLogE[i]; |
| } |
| |
| /* Last chance to catch any transient we might have missed in the |
| time-domain analysis */ |
| if (LM>0 && ec_tell(enc)+3<=total_bits && !isTransient && st->complexity>=5) |
| { |
| if (patch_transient_decision(bandLogE, oldBandE, nbEBands, st->end, C)) |
| { |
| isTransient = 1; |
| shortBlocks = M; |
| compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample); |
| compute_band_energies(mode, freq, bandE, effEnd, C, M); |
| amp2Log2(mode, effEnd, st->end, bandE, bandLogE, C); |
| /* Compensate for the scaling of short vs long mdcts */ |
| for (i=0;i<C*nbEBands;i++) |
| bandLogE2[i] += HALF16(SHL16(LM, DB_SHIFT)); |
| tf_estimate = QCONST16(.2,14); |
| } |
| } |
| |
| if (LM>0 && ec_tell(enc)+3<=total_bits) |
| ec_enc_bit_logp(enc, isTransient, 3); |
| |
| ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */ |
| |
| /* Band normalisation */ |
| normalise_bands(mode, freq, X, bandE, effEnd, C, M); |
| |
| ALLOC(tf_res, nbEBands, int); |
| /* Disable variable tf resolution for hybrid and at very low bitrate */ |
| if (effectiveBytes>=15*C && st->start==0 && st->complexity>=2) |
| { |
| int lambda; |
| if (effectiveBytes<40) |
| lambda = 12; |
| else if (effectiveBytes<60) |
| lambda = 6; |
| else if (effectiveBytes<100) |
| lambda = 4; |
| else |
| lambda = 3; |
| lambda*=2; |
| tf_select = tf_analysis(mode, effEnd, isTransient, tf_res, lambda, X, N, LM, &tf_sum, tf_estimate, tf_chan); |
| for (i=effEnd;i<st->end;i++) |
| tf_res[i] = tf_res[effEnd-1]; |
| } else { |
| tf_sum = 0; |
| for (i=0;i<st->end;i++) |
| tf_res[i] = isTransient; |
| tf_select=0; |
| } |
| |
| ALLOC(error, C*nbEBands, opus_val16); |
| quant_coarse_energy(mode, st->start, st->end, effEnd, bandLogE, |
| oldBandE, total_bits, error, enc, |
| C, LM, nbAvailableBytes, st->force_intra, |
| &st->delayedIntra, st->complexity >= 4, st->loss_rate); |
| |
| tf_encode(st->start, st->end, isTransient, tf_res, LM, tf_select, enc); |
| |
| if (ec_tell(enc)+4<=total_bits) |
| { |
| if (shortBlocks || st->complexity < 3 || nbAvailableBytes < 10*C || st->start != 0) |
| { |
| if (st->complexity == 0) |
| st->spread_decision = SPREAD_NONE; |
| else |
| st->spread_decision = SPREAD_NORMAL; |
| } else { |
| /* Disable new spreading+tapset estimator until we can show it works |
| better than the old one. So far it seems like spreading_decision() |
| works best. */ |
| if (0&&st->analysis.valid) |
| { |
| static const opus_val16 spread_thresholds[3] = {-QCONST16(.6f, 15), -QCONST16(.2f, 15), -QCONST16(.07f, 15)}; |
| static const opus_val16 spread_histeresis[3] = {QCONST16(.15f, 15), QCONST16(.07f, 15), QCONST16(.02f, 15)}; |
| static const opus_val16 tapset_thresholds[2] = {QCONST16(.0f, 15), QCONST16(.15f, 15)}; |
| static const opus_val16 tapset_histeresis[2] = {QCONST16(.1f, 15), QCONST16(.05f, 15)}; |
| st->spread_decision = hysteresis_decision(-st->analysis.tonality, spread_thresholds, spread_histeresis, 3, st->spread_decision); |
| st->tapset_decision = hysteresis_decision(st->analysis.tonality_slope, tapset_thresholds, tapset_histeresis, 2, st->tapset_decision); |
| } else { |
| st->spread_decision = spreading_decision(mode, X, |
| &st->tonal_average, st->spread_decision, &st->hf_average, |
| &st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M); |
| } |
| /*printf("%d %d\n", st->tapset_decision, st->spread_decision);*/ |
| /*printf("%f %d %f %d\n\n", st->analysis.tonality, st->spread_decision, st->analysis.tonality_slope, st->tapset_decision);*/ |
| } |
| ec_enc_icdf(enc, st->spread_decision, spread_icdf, 5); |
| } |
| |
| ALLOC(offsets, nbEBands, int); |
| |
| maxDepth = dynalloc_analysis(bandLogE, bandLogE2, nbEBands, st->start, st->end, C, offsets, |
| st->lsb_depth, mode->logN, isTransient, st->vbr, st->constrained_vbr, |
| eBands, LM, effectiveBytes, &tot_boost); |
| ALLOC(cap, nbEBands, int); |
| init_caps(mode,cap,LM,C); |
| |
| dynalloc_logp = 6; |
| total_bits<<=BITRES; |
| total_boost = 0; |
| tell = ec_tell_frac(enc); |
| for (i=st->start;i<st->end;i++) |
| { |
| int width, quanta; |
| int dynalloc_loop_logp; |
| int boost; |
| int j; |
| width = C*(eBands[i+1]-eBands[i])<<LM; |
| /* quanta is 6 bits, but no more than 1 bit/sample |
| and no less than 1/8 bit/sample */ |
| quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width)); |
| dynalloc_loop_logp = dynalloc_logp; |
| boost = 0; |
| for (j = 0; tell+(dynalloc_loop_logp<<BITRES) < total_bits-total_boost |
| && boost < cap[i]; j++) |
| { |
| int flag; |
| flag = j<offsets[i]; |
| ec_enc_bit_logp(enc, flag, dynalloc_loop_logp); |
| tell = ec_tell_frac(enc); |
| if (!flag) |
| break; |
| boost += quanta; |
| total_boost += quanta; |
| dynalloc_loop_logp = 1; |
| } |
| /* Making dynalloc more likely */ |
| if (j) |
| dynalloc_logp = IMAX(2, dynalloc_logp-1); |
| offsets[i] = boost; |
| } |
| |
| if (C==2) |
| { |
| int effectiveRate; |
| |
| static const opus_val16 intensity_thresholds[21]= |
| /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 off*/ |
| { 16,21,23,25,27,29,31,33,35,38,42,46,50,54,58,63,68,75,84,102,130}; |
| static const opus_val16 intensity_histeresis[21]= |
| { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 6, 8, 12}; |
| |
| /* Always use MS for 2.5 ms frames until we can do a better analysis */ |
| if (LM!=0) |
| dual_stereo = stereo_analysis(mode, X, LM, N); |
| |
| /* Account for coarse energy */ |
| effectiveRate = (8*effectiveBytes - 80)>>LM; |
| |
| /* effectiveRate in kb/s */ |
| effectiveRate = 2*effectiveRate/5; |
| |
| st->intensity = hysteresis_decision((opus_val16)effectiveRate, intensity_thresholds, intensity_histeresis, 21, st->intensity); |
| st->intensity = IMIN(st->end,IMAX(st->start, st->intensity)); |
| } |
| |
| alloc_trim = 5; |
| if (tell+(6<<BITRES) <= total_bits - total_boost) |
| { |
| alloc_trim = alloc_trim_analysis(mode, X, bandLogE, |
| st->end, LM, C, N, &st->analysis, &st->stereo_saving, tf_estimate, st->intensity); |
| ec_enc_icdf(enc, alloc_trim, trim_icdf, 7); |
| tell = ec_tell_frac(enc); |
| } |
| |
| /* Variable bitrate */ |
| if (vbr_rate>0) |
| { |
| opus_val16 alpha; |
| opus_int32 delta; |
| /* The target rate in 8th bits per frame */ |
| opus_int32 target, base_target; |
| opus_int32 min_allowed; |
| int coded_bins; |
| int coded_bands; |
| int lm_diff = mode->maxLM - LM; |
| coded_bands = st->lastCodedBands ? st->lastCodedBands : nbEBands; |
| coded_bins = eBands[coded_bands]<<LM; |
| if (C==2) |
| coded_bins += eBands[IMIN(st->intensity, coded_bands)]<<LM; |
| |
| /* Don't attempt to use more than 510 kb/s, even for frames smaller than 20 ms. |
| The CELT allocator will just not be able to use more than that anyway. */ |
| nbCompressedBytes = IMIN(nbCompressedBytes,1275>>(3-LM)); |
| target = vbr_rate - ((40*C+20)<<BITRES); |
| base_target = target; |
| |
| if (st->constrained_vbr) |
| target += (st->vbr_offset>>lm_diff); |
| |
| /*printf("%f %f %f %f %d %d ", st->analysis.activity, st->analysis.tonality, tf_estimate, st->stereo_saving, tot_boost, coded_bands);*/ |
| #ifndef FIXED_POINT |
| if (st->analysis.valid && st->analysis.activity<.4) |
| target -= (opus_int32)((coded_bins<<BITRES)*(.4f-st->analysis.activity)); |
| #endif |
| /* Stereo savings */ |
| if (C==2) |
| { |
| int coded_stereo_bands; |
| int coded_stereo_dof; |
| opus_val16 max_frac; |
| coded_stereo_bands = IMIN(st->intensity, coded_bands); |
| coded_stereo_dof = (eBands[coded_stereo_bands]<<LM)-coded_stereo_bands; |
| /* Maximum fraction of the bits we can save if the signal is mono. */ |
| max_frac = DIV32_16(MULT16_16(QCONST16(0.8f, 15), coded_stereo_dof), coded_bins); |
| /*printf("%d %d %d ", coded_stereo_dof, coded_bins, tot_boost);*/ |
| target -= (opus_int32)MIN32(MULT16_32_Q15(max_frac,target), |
| SHR16(MULT16_16(st->stereo_saving-QCONST16(0.1f,8),(coded_stereo_dof<<BITRES)),8)); |
| } |
| /* Boost the rate according to dynalloc (minus the dynalloc average for calibration). */ |
| target += tot_boost-(16<<LM); |
| /* Apply transient boost, compensating for average boost. */ |
| target += (opus_int32)SHL32(MULT16_32_Q15(tf_estimate-QCONST16(0.04f,14), target),1); |
| |
| #ifndef FIXED_POINT |
| /* Apply tonality boost */ |
| if (st->analysis.valid) { |
| opus_int32 tonal_target; |
| float tonal; |
| |
| /* Tonality boost (compensating for the average). */ |
| tonal = MAX16(0.f,st->analysis.tonality-.15f)-0.09f; |
| tonal_target = target + (opus_int32)((coded_bins<<BITRES)*1.2f*tonal); |
| if (pitch_change) |
| tonal_target += (opus_int32)((coded_bins<<BITRES)*.8f); |
| /*printf("%f %f ", st->analysis.tonality, tonal);*/ |
| target = tonal_target; |
| } |
| #endif |
| |
| { |
| opus_int32 floor_depth; |
| int bins; |
| bins = eBands[nbEBands-2]<<LM; |
| /*floor_depth = SHR32(MULT16_16((C*bins<<BITRES),celt_log2(SHL32(MAX16(1,sample_max),13))), DB_SHIFT);*/ |
| floor_depth = (opus_int32)SHR32(MULT16_16((C*bins<<BITRES),maxDepth), DB_SHIFT); |
| floor_depth = IMAX(floor_depth, target>>2); |
| target = IMIN(target, floor_depth); |
| /*printf("%f %d\n", maxDepth, floor_depth);*/ |
| } |
| |
| if (st->constrained_vbr || st->bitrate<64000) |
| { |
| opus_val16 rate_factor; |
| #ifdef FIXED_POINT |
| rate_factor = MAX16(0,(st->bitrate-32000)); |
| #else |
| rate_factor = MAX16(0,(1.f/32768)*(st->bitrate-32000)); |
| #endif |
| if (st->constrained_vbr) |
| rate_factor = MIN16(rate_factor, QCONST16(0.67f, 15)); |
| target = base_target + (opus_int32)MULT16_32_Q15(rate_factor, target-base_target); |
| |
| } |
| /* Don't allow more than doubling the rate */ |
| target = IMIN(2*base_target, target); |
| |
| /* The current offset is removed from the target and the space used |
| so far is added*/ |
| target=target+tell; |
| /* In VBR mode the frame size must not be reduced so much that it would |
| result in the encoder running out of bits. |
| The margin of 2 bytes ensures that none of the bust-prevention logic |
| in the decoder will have triggered so far. */ |
| min_allowed = ((tell+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)) + 2 - nbFilledBytes; |
| |
| nbAvailableBytes = (target+(1<<(BITRES+2)))>>(BITRES+3); |
| nbAvailableBytes = IMAX(min_allowed,nbAvailableBytes); |
| nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes) - nbFilledBytes; |
| |
| /* By how much did we "miss" the target on that frame */ |
| delta = target - vbr_rate; |
| |
| target=nbAvailableBytes<<(BITRES+3); |
| |
| /*If the frame is silent we don't adjust our drift, otherwise |
| the encoder will shoot to very high rates after hitting a |
| span of silence, but we do allow the bitres to refill. |
| This means that we'll undershoot our target in CVBR/VBR modes |
| on files with lots of silence. */ |
| if(silence) |
| { |
| nbAvailableBytes = 2; |
| target = 2*8<<BITRES; |
| delta = 0; |
| } |
| |
| if (st->vbr_count < 970) |
| { |
| st->vbr_count++; |
| alpha = celt_rcp(SHL32(EXTEND32(st->vbr_count+20),16)); |
| } else |
| alpha = QCONST16(.001f,15); |
| /* How many bits have we used in excess of what we're allowed */ |
| if (st->constrained_vbr) |
| st->vbr_reservoir += target - vbr_rate; |
| /*printf ("%d\n", st->vbr_reservoir);*/ |
| |
| /* Compute the offset we need to apply in order to reach the target */ |
| if (st->constrained_vbr) |
| { |
| st->vbr_drift += (opus_int32)MULT16_32_Q15(alpha,(delta*(1<<lm_diff))-st->vbr_offset-st->vbr_drift); |
| st->vbr_offset = -st->vbr_drift; |
| } |
| /*printf ("%d\n", st->vbr_drift);*/ |
| |
| if (st->constrained_vbr && st->vbr_reservoir < 0) |
| { |
| /* We're under the min value -- increase rate */ |
| int adjust = (-st->vbr_reservoir)/(8<<BITRES); |
| /* Unless we're just coding silence */ |
| nbAvailableBytes += silence?0:adjust; |
| st->vbr_reservoir = 0; |
| /*printf ("+%d\n", adjust);*/ |
| } |
| nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes); |
| /*printf("%d\n", nbCompressedBytes*50*8);*/ |
| /* This moves the raw bits to take into account the new compressed size */ |
| ec_enc_shrink(enc, nbCompressedBytes); |
| } |
| |
| /* Bit allocation */ |
| ALLOC(fine_quant, nbEBands, int); |
| ALLOC(pulses, nbEBands, int); |
| ALLOC(fine_priority, nbEBands, int); |
| |
| /* bits = packet size - where we are - safety*/ |
| bits = (((opus_int32)nbCompressedBytes*8)<<BITRES) - ec_tell_frac(enc) - 1; |
| anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0; |
| bits -= anti_collapse_rsv; |
| signalBandwidth = st->end-1; |
| #ifndef FIXED_POINT |
| if (st->analysis.valid) |
| signalBandwidth = st->analysis.bandwidth; |
| #endif |
| codedBands = compute_allocation(mode, st->start, st->end, offsets, cap, |
| alloc_trim, &st->intensity, &dual_stereo, bits, &balance, pulses, |
| fine_quant, fine_priority, C, LM, enc, 1, st->lastCodedBands, signalBandwidth); |
| st->lastCodedBands = codedBands; |
| |
| quant_fine_energy(mode, st->start, st->end, oldBandE, error, fine_quant, enc, C); |
| |
| #ifdef MEASURE_NORM_MSE |
| float X0[3000]; |
| float bandE0[60]; |
| c=0; do |
| for (i=0;i<N;i++) |
| X0[i+c*N] = X[i+c*N]; |
| while (++c<C); |
| for (i=0;i<C*nbEBands;i++) |
| bandE0[i] = bandE[i]; |
| #endif |
| |
| /* Residual quantisation */ |
| ALLOC(collapse_masks, C*nbEBands, unsigned char); |
| quant_all_bands(1, mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks, |
| bandE, pulses, shortBlocks, st->spread_decision, dual_stereo, st->intensity, tf_res, |
| nbCompressedBytes*(8<<BITRES)-anti_collapse_rsv, balance, enc, LM, codedBands, &st->rng); |
| |
| if (anti_collapse_rsv > 0) |
| { |
| anti_collapse_on = st->consec_transient<2; |
| #ifdef FUZZING |
| anti_collapse_on = rand()&0x1; |
| #endif |
| ec_enc_bits(enc, anti_collapse_on, 1); |
| } |
| quant_energy_finalise(mode, st->start, st->end, oldBandE, error, fine_quant, fine_priority, nbCompressedBytes*8-ec_tell(enc), enc, C); |
| |
| if (silence) |
| { |
| for (i=0;i<C*nbEBands;i++) |
| oldBandE[i] = -QCONST16(28.f,DB_SHIFT); |
| } |
| |
| #ifdef RESYNTH |
| /* Re-synthesis of the coded audio if required */ |
| { |
| celt_sig *out_mem[2]; |
| |
| log2Amp(mode, st->start, st->end, bandE, oldBandE, C); |
| if (silence) |
| { |
| for (i=0;i<C*nbEBands;i++) |
| bandE[i] = 0; |
| } |
| |
| #ifdef MEASURE_NORM_MSE |
| measure_norm_mse(mode, X, X0, bandE, bandE0, M, N, C); |
| #endif |
| if (anti_collapse_on) |
| { |
| anti_collapse(mode, X, collapse_masks, LM, C, N, |
| st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng); |
| } |
| |
| /* Synthesis */ |
| denormalise_bands(mode, X, freq, bandE, st->start, effEnd, C, M); |
| |
| c=0; do { |
| OPUS_MOVE(st->syn_mem[c], st->syn_mem[c]+N, 2*MAX_PERIOD-N+overlap/2); |
| } while (++c<CC); |
| |
| if (CC==2&&C==1) |
| { |
| for (i=0;i<N;i++) |
| freq[N+i] = freq[i]; |
| } |
| |
| c=0; do { |
| out_mem[c] = st->syn_mem[c]+2*MAX_PERIOD-N; |
| } while (++c<CC); |
| |
| compute_inv_mdcts(mode, shortBlocks, freq, out_mem, CC, LM); |
| |
| c=0; do { |
| st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD); |
| st->prefilter_period_old=IMAX(st->prefilter_period_old, COMBFILTER_MINPERIOD); |
| comb_filter(out_mem[c], out_mem[c], st->prefilter_period_old, st->prefilter_period, mode->shortMdctSize, |
| st->prefilter_gain_old, st->prefilter_gain, st->prefilter_tapset_old, st->prefilter_tapset, |
| mode->window, st->overlap); |
| if (LM!=0) |
| comb_filter(out_mem[c]+mode->shortMdctSize, out_mem[c]+mode->shortMdctSize, st->prefilter_period, pitch_index, N-mode->shortMdctSize, |
| st->prefilter_gain, gain1, st->prefilter_tapset, prefilter_tapset, |
| mode->window, overlap); |
| } while (++c<CC); |
| |
| /* We reuse freq[] as scratch space for the de-emphasis */ |
| deemphasis(out_mem, (opus_val16*)pcm, N, CC, st->upsample, mode->preemph, st->preemph_memD, freq); |
| st->prefilter_period_old = st->prefilter_period; |
| st->prefilter_gain_old = st->prefilter_gain; |
| st->prefilter_tapset_old = st->prefilter_tapset; |
| } |
| #endif |
| |
| st->prefilter_period = pitch_index; |
| st->prefilter_gain = gain1; |
| st->prefilter_tapset = prefilter_tapset; |
| #ifdef RESYNTH |
| if (LM!=0) |
| { |
| st->prefilter_period_old = st->prefilter_period; |
| st->prefilter_gain_old = st->prefilter_gain; |
| st->prefilter_tapset_old = st->prefilter_tapset; |
| } |
| #endif |
| |
| if (CC==2&&C==1) { |
| for (i=0;i<nbEBands;i++) |
| oldBandE[nbEBands+i]=oldBandE[i]; |
| } |
| |
| if (!isTransient) |
| { |
| for (i=0;i<CC*nbEBands;i++) |
| oldLogE2[i] = oldLogE[i]; |
| for (i=0;i<CC*nbEBands;i++) |
| oldLogE[i] = oldBandE[i]; |
| } else { |
| for (i=0;i<CC*nbEBands;i++) |
| oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]); |
| } |
| /* In case start or end were to change */ |
| c=0; do |
| { |
| for (i=0;i<st->start;i++) |
| { |
| oldBandE[c*nbEBands+i]=0; |
| oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); |
| } |
| for (i=st->end;i<nbEBands;i++) |
| { |
| oldBandE[c*nbEBands+i]=0; |
| oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); |
| } |
| } while (++c<CC); |
| |
| if (isTransient || transient_got_disabled) |
| st->consec_transient++; |
| else |
| st->consec_transient=0; |
| st->rng = enc->rng; |
| |
| /* If there's any room left (can only happen for very high rates), |
| it's already filled with zeros */ |
| ec_enc_done(enc); |
| |
| #ifdef CUSTOM_MODES |
| if (st->signalling) |
| nbCompressedBytes++; |
| #endif |
| |
| RESTORE_STACK; |
| if (ec_get_error(enc)) |
| return OPUS_INTERNAL_ERROR; |
| else |
| return nbCompressedBytes; |
| } |
| |
| |
| #ifdef CUSTOM_MODES |
| |
| #ifdef FIXED_POINT |
| int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) |
| { |
| return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL); |
| } |
| |
| #ifndef DISABLE_FLOAT_API |
| int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) |
| { |
| int j, ret, C, N; |
| VARDECL(opus_int16, in); |
| ALLOC_STACK; |
| |
| if (pcm==NULL) |
| return OPUS_BAD_ARG; |
| |
| C = st->channels; |
| N = frame_size; |
| ALLOC(in, C*N, opus_int16); |
| |
| for (j=0;j<C*N;j++) |
| in[j] = FLOAT2INT16(pcm[j]); |
| |
| ret=celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL); |
| #ifdef RESYNTH |
| for (j=0;j<C*N;j++) |
| ((float*)pcm)[j]=in[j]*(1.f/32768.f); |
| #endif |
| RESTORE_STACK; |
| return ret; |
| } |
| #endif /* DISABLE_FLOAT_API */ |
| #else |
| |
| int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) |
| { |
| int j, ret, C, N; |
| VARDECL(celt_sig, in); |
| ALLOC_STACK; |
| |
| if (pcm==NULL) |
| return OPUS_BAD_ARG; |
| |
| C=st->channels; |
| N=frame_size; |
| ALLOC(in, C*N, celt_sig); |
| for (j=0;j<C*N;j++) { |
| in[j] = SCALEOUT(pcm[j]); |
| } |
| |
| ret = celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL); |
| #ifdef RESYNTH |
| for (j=0;j<C*N;j++) |
| ((opus_int16*)pcm)[j] = FLOAT2INT16(in[j]); |
| #endif |
| RESTORE_STACK; |
| return ret; |
| } |
| |
| int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) |
| { |
| return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL); |
| } |
| |
| #endif |
| |
| #endif /* CUSTOM_MODES */ |
| |
| int opus_custom_encoder_ctl(CELTEncoder * OPUS_RESTRICT st, int request, ...) |
| { |
| va_list ap; |
| |
| va_start(ap, request); |
| switch (request) |
| { |
| case OPUS_SET_COMPLEXITY_REQUEST: |
| { |
| int value = va_arg(ap, opus_int32); |
| if (value<0 || value>10) |
| goto bad_arg; |
| st->complexity = value; |
| } |
| break; |
| case CELT_SET_START_BAND_REQUEST: |
| { |
| opus_int32 value = va_arg(ap, opus_int32); |
| if (value<0 || value>=st->mode->nbEBands) |
| goto bad_arg; |
| st->start = value; |
| } |
| break; |
| case CELT_SET_END_BAND_REQUEST: |
| { |
| opus_int32 value = va_arg(ap, opus_int32); |
| if (value<1 || value>st->mode->nbEBands) |
| goto bad_arg; |
| st->end = value; |
| } |
| break; |
| case CELT_SET_PREDICTION_REQUEST: |
| { |
| int value = va_arg(ap, opus_int32); |
| if (value<0 || value>2) |
| goto bad_arg; |
| st->disable_pf = value<=1; |
| st->force_intra = value==0; |
| } |
| break; |
| case OPUS_SET_PACKET_LOSS_PERC_REQUEST: |
| { |
| int value = va_arg(ap, opus_int32); |
| if (value<0 || value>100) |
| goto bad_arg; |
| st->loss_rate = value; |
| } |
| break; |
| case OPUS_SET_VBR_CONSTRAINT_REQUEST: |
| { |
| opus_int32 value = va_arg(ap, opus_int32); |
| st->constrained_vbr = value; |
| } |
| break; |
| case OPUS_SET_VBR_REQUEST: |
| { |
| opus_int32 value = va_arg(ap, opus_int32); |
| st->vbr = value; |
| } |
| break; |
| case OPUS_SET_BITRATE_REQUEST: |
| { |
| opus_int32 value = va_arg(ap, opus_int32); |
| if (value<=500 && value!=OPUS_BITRATE_MAX) |
| goto bad_arg; |
| value = IMIN(value, 260000*st->channels); |
| st->bitrate = value; |
| } |
| break; |
| case CELT_SET_CHANNELS_REQUEST: |
| { |
| opus_int32 value = va_arg(ap, opus_int32); |
| if (value<1 || value>2) |
| goto bad_arg; |
| st->stream_channels = value; |
| } |
| break; |
| case OPUS_SET_LSB_DEPTH_REQUEST: |
| { |
| opus_int32 value = va_arg(ap, opus_int32); |
| if (value<8 || value>24) |
| goto bad_arg; |
| st->lsb_depth=value; |
| } |
| break; |
| case OPUS_GET_LSB_DEPTH_REQUEST: |
| { |
| opus_int32 *value = va_arg(ap, opus_int32*); |
| *value=st->lsb_depth; |
| } |
| break; |
| case OPUS_SET_EXPERT_FRAME_DURATION_REQUEST: |
| { |
| opus_int32 value = va_arg(ap, opus_int32); |
| st->variable_duration = value; |
| } |
| break; |
| case OPUS_RESET_STATE: |
| { |
| int i; |
| opus_val16 *oldBandE, *oldLogE, *oldLogE2; |
| oldBandE = (opus_val16*)(st->in_mem+st->channels*(st->overlap+COMBFILTER_MAXPERIOD)); |
| oldLogE = oldBandE + st->channels*st->mode->nbEBands; |
| oldLogE2 = oldLogE + st->channels*st->mode->nbEBands; |
| OPUS_CLEAR((char*)&st->ENCODER_RESET_START, |
| opus_custom_encoder_get_size(st->mode, st->channels)- |
| ((char*)&st->ENCODER_RESET_START - (char*)st)); |
| for (i=0;i<st->channels*st->mode->nbEBands;i++) |
| oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT); |
| st->vbr_offset = 0; |
| st->delayedIntra = 1; |
| st->spread_decision = SPREAD_NORMAL; |
| st->tonal_average = 256; |
| st->hf_average = 0; |
| st->tapset_decision = 0; |
| } |
| break; |
| #ifdef CUSTOM_MODES |
| case CELT_SET_INPUT_CLIPPING_REQUEST: |
| { |
| opus_int32 value = va_arg(ap, opus_int32); |
| st->clip = value; |
| } |
| break; |
| #endif |
| case CELT_SET_SIGNALLING_REQUEST: |
| { |
| opus_int32 value = va_arg(ap, opus_int32); |
| st->signalling = value; |
| } |
| break; |
| case CELT_SET_ANALYSIS_REQUEST: |
| { |
| AnalysisInfo *info = va_arg(ap, AnalysisInfo *); |
| if (info) |
| OPUS_COPY(&st->analysis, info, 1); |
| } |
| break; |
| case CELT_GET_MODE_REQUEST: |
| { |
| const CELTMode ** value = va_arg(ap, const CELTMode**); |
| if (value==0) |
| goto bad_arg; |
| *value=st->mode; |
| } |
| break; |
| case OPUS_GET_FINAL_RANGE_REQUEST: |
| { |
| opus_uint32 * value = va_arg(ap, opus_uint32 *); |
| if (value==0) |
| goto bad_arg; |
| *value=st->rng; |
| } |
| break; |
| default: |
| goto bad_request; |
| } |
| va_end(ap); |
| return OPUS_OK; |
| bad_arg: |
| va_end(ap); |
| return OPUS_BAD_ARG; |
| bad_request: |
| va_end(ap); |
| return OPUS_UNIMPLEMENTED; |
| } |