| /* Copyright (c) 2008-2011 Octasic Inc. |
| 2012-2017 Jean-Marc Valin */ |
| /* |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| |
| - Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| - Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR |
| CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #include <math.h> |
| #include "opus_types.h" |
| #include "opus_defines.h" |
| #include "arch.h" |
| #include "tansig_table.h" |
| #include "mlp.h" |
| |
| static OPUS_INLINE float tansig_approx(float x) |
| { |
| int i; |
| float y, dy; |
| float sign=1; |
| /* Tests are reversed to catch NaNs */ |
| if (!(x<8)) |
| return 1; |
| if (!(x>-8)) |
| return -1; |
| #ifndef FIXED_POINT |
| /* Another check in case of -ffast-math */ |
| if (celt_isnan(x)) |
| return 0; |
| #endif |
| if (x<0) |
| { |
| x=-x; |
| sign=-1; |
| } |
| i = (int)floor(.5f+25*x); |
| x -= .04f*i; |
| y = tansig_table[i]; |
| dy = 1-y*y; |
| y = y + x*dy*(1 - y*x); |
| return sign*y; |
| } |
| |
| static OPUS_INLINE float sigmoid_approx(float x) |
| { |
| return .5f + .5f*tansig_approx(.5f*x); |
| } |
| |
| static void gemm_accum(float *out, const opus_int8 *weights, int rows, int cols, int col_stride, const float *x) |
| { |
| int i, j; |
| for (i=0;i<rows;i++) |
| { |
| for (j=0;j<cols;j++) |
| out[i] += weights[j*col_stride + i]*x[j]; |
| } |
| } |
| |
| void compute_dense(const DenseLayer *layer, float *output, const float *input) |
| { |
| int i; |
| int N, M; |
| int stride; |
| M = layer->nb_inputs; |
| N = layer->nb_neurons; |
| stride = N; |
| for (i=0;i<N;i++) |
| output[i] = layer->bias[i]; |
| gemm_accum(output, layer->input_weights, N, M, stride, input); |
| for (i=0;i<N;i++) |
| output[i] *= WEIGHTS_SCALE; |
| if (layer->sigmoid) { |
| for (i=0;i<N;i++) |
| output[i] = sigmoid_approx(output[i]); |
| } else { |
| for (i=0;i<N;i++) |
| output[i] = tansig_approx(output[i]); |
| } |
| } |
| |
| void compute_gru(const GRULayer *gru, float *state, const float *input) |
| { |
| int i; |
| int N, M; |
| int stride; |
| float tmp[MAX_NEURONS]; |
| float z[MAX_NEURONS]; |
| float r[MAX_NEURONS]; |
| float h[MAX_NEURONS]; |
| M = gru->nb_inputs; |
| N = gru->nb_neurons; |
| stride = 3*N; |
| /* Compute update gate. */ |
| for (i=0;i<N;i++) |
| z[i] = gru->bias[i]; |
| gemm_accum(z, gru->input_weights, N, M, stride, input); |
| gemm_accum(z, gru->recurrent_weights, N, N, stride, state); |
| for (i=0;i<N;i++) |
| z[i] = sigmoid_approx(WEIGHTS_SCALE*z[i]); |
| |
| /* Compute reset gate. */ |
| for (i=0;i<N;i++) |
| r[i] = gru->bias[N + i]; |
| gemm_accum(r, &gru->input_weights[N], N, M, stride, input); |
| gemm_accum(r, &gru->recurrent_weights[N], N, N, stride, state); |
| for (i=0;i<N;i++) |
| r[i] = sigmoid_approx(WEIGHTS_SCALE*r[i]); |
| |
| /* Compute output. */ |
| for (i=0;i<N;i++) |
| h[i] = gru->bias[2*N + i]; |
| for (i=0;i<N;i++) |
| tmp[i] = state[i] * r[i]; |
| gemm_accum(h, &gru->input_weights[2*N], N, M, stride, input); |
| gemm_accum(h, &gru->recurrent_weights[2*N], N, N, stride, tmp); |
| for (i=0;i<N;i++) |
| h[i] = z[i]*state[i] + (1-z[i])*tansig_approx(WEIGHTS_SCALE*h[i]); |
| for (i=0;i<N;i++) |
| state[i] = h[i]; |
| } |
| |