| /* Copyright (c) 2007-2008 CSIRO |
| Copyright (c) 2007-2009 Xiph.Org Foundation |
| Copyright (c) 2007-2009 Timothy B. Terriberry |
| Written by Timothy B. Terriberry and Jean-Marc Valin */ |
| /* |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| |
| - Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| - Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| - Neither the name of the Xiph.org Foundation nor the names of its |
| contributors may be used to endorse or promote products derived from |
| this software without specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR |
| CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #include "os_support.h" |
| #include <stdlib.h> |
| #include <string.h> |
| #include "cwrs.h" |
| #include "mathops.h" |
| #include "arch.h" |
| |
| /*Guaranteed to return a conservatively large estimate of the binary logarithm |
| with frac bits of fractional precision. |
| Tested for all possible 32-bit inputs with frac=4, where the maximum |
| overestimation is 0.06254243 bits.*/ |
| int log2_frac(ec_uint32 val, int frac) |
| { |
| int l; |
| l=EC_ILOG(val); |
| if(val&val-1){ |
| /*This is (val>>l-16), but guaranteed to round up, even if adding a bias |
| before the shift would cause overflow (e.g., for 0xFFFFxxxx).*/ |
| if(l>16)val=(val>>l-16)+((val&(1<<l-16)-1)+(1<<l-16)-1>>l-16); |
| else val<<=16-l; |
| l=l-1<<frac; |
| /*Note that we always need one iteration, since the rounding up above means |
| that we might need to adjust the integer part of the logarithm.*/ |
| do{ |
| int b; |
| b=(int)(val>>16); |
| l+=b<<frac; |
| val=val+b>>b; |
| val=val*val+0x7FFF>>15; |
| } |
| while(frac-->0); |
| /*If val is not exactly 0x8000, then we have to round up the remainder.*/ |
| return l+(val>0x8000); |
| } |
| /*Exact powers of two require no rounding.*/ |
| else return l-1<<frac; |
| } |
| |
| #ifndef SMALL_FOOTPRINT |
| |
| |
| #define MASK32 (0xFFFFFFFF) |
| |
| /*INV_TABLE[i] holds the multiplicative inverse of (2*i+1) mod 2**32.*/ |
| static const celt_uint32 INV_TABLE[64]={ |
| 0x00000001,0xAAAAAAAB,0xCCCCCCCD,0xB6DB6DB7, |
| 0x38E38E39,0xBA2E8BA3,0xC4EC4EC5,0xEEEEEEEF, |
| 0xF0F0F0F1,0x286BCA1B,0x3CF3CF3D,0xE9BD37A7, |
| 0xC28F5C29,0x684BDA13,0x4F72C235,0xBDEF7BDF, |
| 0x3E0F83E1,0x8AF8AF8B,0x914C1BAD,0x96F96F97, |
| 0xC18F9C19,0x2FA0BE83,0xA4FA4FA5,0x677D46CF, |
| 0x1A1F58D1,0xFAFAFAFB,0x8C13521D,0x586FB587, |
| 0xB823EE09,0xA08AD8F3,0xC10C9715,0xBEFBEFBF, |
| 0xC0FC0FC1,0x07A44C6B,0xA33F128D,0xE327A977, |
| 0xC7E3F1F9,0x962FC963,0x3F2B3885,0x613716AF, |
| 0x781948B1,0x2B2E43DB,0xFCFCFCFD,0x6FD0EB67, |
| 0xFA3F47E9,0xD2FD2FD3,0x3F4FD3F5,0xD4E25B9F, |
| 0x5F02A3A1,0xBF5A814B,0x7C32B16D,0xD3431B57, |
| 0xD8FD8FD9,0x8D28AC43,0xDA6C0965,0xDB195E8F, |
| 0x0FDBC091,0x61F2A4BB,0xDCFDCFDD,0x46FDD947, |
| 0x56BE69C9,0xEB2FDEB3,0x26E978D5,0xEFDFBF7F, |
| /* |
| 0x0FE03F81,0xC9484E2B,0xE133F84D,0xE1A8C537, |
| 0x077975B9,0x70586723,0xCD29C245,0xFAA11E6F, |
| 0x0FE3C071,0x08B51D9B,0x8CE2CABD,0xBF937F27, |
| 0xA8FE53A9,0x592FE593,0x2C0685B5,0x2EB11B5F, |
| 0xFCD1E361,0x451AB30B,0x72CFE72D,0xDB35A717, |
| 0xFB74A399,0xE80BFA03,0x0D516325,0x1BCB564F, |
| 0xE02E4851,0xD962AE7B,0x10F8ED9D,0x95AEDD07, |
| 0xE9DC0589,0xA18A4473,0xEA53FA95,0xEE936F3F, |
| 0x90948F41,0xEAFEAFEB,0x3D137E0D,0xEF46C0F7, |
| 0x028C1979,0x791064E3,0xC04FEC05,0xE115062F, |
| 0x32385831,0x6E68575B,0xA10D387D,0x6FECF2E7, |
| 0x3FB47F69,0xED4BFB53,0x74FED775,0xDB43BB1F, |
| 0x87654321,0x9BA144CB,0x478BBCED,0xBFB912D7, |
| 0x1FDCD759,0x14B2A7C3,0xCB125CE5,0x437B2E0F, |
| 0x10FEF011,0xD2B3183B,0x386CAB5D,0xEF6AC0C7, |
| 0x0E64C149,0x9A020A33,0xE6B41C55,0xFEFEFEFF*/ |
| }; |
| |
| /*Computes (_a*_b-_c)/(2*_d+1) when the quotient is known to be exact. |
| _a, _b, _c, and _d may be arbitrary so long as the arbitrary precision result |
| fits in 32 bits, but currently the table for multiplicative inverses is only |
| valid for _d<128.*/ |
| static inline celt_uint32 imusdiv32odd(celt_uint32 _a,celt_uint32 _b, |
| celt_uint32 _c,int _d){ |
| return (_a*_b-_c)*INV_TABLE[_d]&MASK32; |
| } |
| |
| /*Computes (_a*_b-_c)/_d when the quotient is known to be exact. |
| _d does not actually have to be even, but imusdiv32odd will be faster when |
| it's odd, so you should use that instead. |
| _a and _d are assumed to be small (e.g., _a*_d fits in 32 bits; currently the |
| table for multiplicative inverses is only valid for _d<=256). |
| _b and _c may be arbitrary so long as the arbitrary precision reuslt fits in |
| 32 bits.*/ |
| static inline celt_uint32 imusdiv32even(celt_uint32 _a,celt_uint32 _b, |
| celt_uint32 _c,int _d){ |
| celt_uint32 inv; |
| int mask; |
| int shift; |
| int one; |
| celt_assert(_d>0); |
| shift=EC_ILOG(_d^_d-1); |
| celt_assert(_d<=256); |
| inv=INV_TABLE[_d-1>>shift]; |
| shift--; |
| one=1<<shift; |
| mask=one-1; |
| return (_a*(_b>>shift)-(_c>>shift)+ |
| (_a*(_b&mask)+one-(_c&mask)>>shift)-1)*inv&MASK32; |
| } |
| |
| #endif /* SMALL_FOOTPRINT */ |
| |
| /*Although derived separately, the pulse vector coding scheme is equivalent to |
| a Pyramid Vector Quantizer \cite{Fis86}. |
| Some additional notes about an early version appear at |
| http://people.xiph.org/~tterribe/notes/cwrs.html, but the codebook ordering |
| and the definitions of some terms have evolved since that was written. |
| |
| The conversion from a pulse vector to an integer index (encoding) and back |
| (decoding) is governed by two related functions, V(N,K) and U(N,K). |
| |
| V(N,K) = the number of combinations, with replacement, of N items, taken K |
| at a time, when a sign bit is added to each item taken at least once (i.e., |
| the number of N-dimensional unit pulse vectors with K pulses). |
| One way to compute this is via |
| V(N,K) = K>0 ? sum(k=1...K,2**k*choose(N,k)*choose(K-1,k-1)) : 1, |
| where choose() is the binomial function. |
| A table of values for N<10 and K<10 looks like: |
| V[10][10] = { |
| {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
| {1, 2, 2, 2, 2, 2, 2, 2, 2, 2}, |
| {1, 4, 8, 12, 16, 20, 24, 28, 32, 36}, |
| {1, 6, 18, 38, 66, 102, 146, 198, 258, 326}, |
| {1, 8, 32, 88, 192, 360, 608, 952, 1408, 1992}, |
| {1, 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290}, |
| {1, 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436}, |
| {1, 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598}, |
| {1, 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688}, |
| {1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 864146} |
| }; |
| |
| U(N,K) = the number of such combinations wherein N-1 objects are taken at |
| most K-1 at a time. |
| This is given by |
| U(N,K) = sum(k=0...K-1,V(N-1,k)) |
| = K>0 ? (V(N-1,K-1) + V(N,K-1))/2 : 0. |
| The latter expression also makes clear that U(N,K) is half the number of such |
| combinations wherein the first object is taken at least once. |
| Although it may not be clear from either of these definitions, U(N,K) is the |
| natural function to work with when enumerating the pulse vector codebooks, |
| not V(N,K). |
| U(N,K) is not well-defined for N=0, but with the extension |
| U(0,K) = K>0 ? 0 : 1, |
| the function becomes symmetric: U(N,K) = U(K,N), with a similar table: |
| U[10][10] = { |
| {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
| {0, 1, 1, 1, 1, 1, 1, 1, 1, 1}, |
| {0, 1, 3, 5, 7, 9, 11, 13, 15, 17}, |
| {0, 1, 5, 13, 25, 41, 61, 85, 113, 145}, |
| {0, 1, 7, 25, 63, 129, 231, 377, 575, 833}, |
| {0, 1, 9, 41, 129, 321, 681, 1289, 2241, 3649}, |
| {0, 1, 11, 61, 231, 681, 1683, 3653, 7183, 13073}, |
| {0, 1, 13, 85, 377, 1289, 3653, 8989, 19825, 40081}, |
| {0, 1, 15, 113, 575, 2241, 7183, 19825, 48639, 108545}, |
| {0, 1, 17, 145, 833, 3649, 13073, 40081, 108545, 265729} |
| }; |
| |
| With this extension, V(N,K) may be written in terms of U(N,K): |
| V(N,K) = U(N,K) + U(N,K+1) |
| for all N>=0, K>=0. |
| Thus U(N,K+1) represents the number of combinations where the first element |
| is positive or zero, and U(N,K) represents the number of combinations where |
| it is negative. |
| With a large enough table of U(N,K) values, we could write O(N) encoding |
| and O(min(N*log(K),N+K)) decoding routines, but such a table would be |
| prohibitively large for small embedded devices (K may be as large as 32767 |
| for small N, and N may be as large as 200). |
| |
| Both functions obey the same recurrence relation: |
| V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1), |
| U(N,K) = U(N-1,K) + U(N,K-1) + U(N-1,K-1), |
| for all N>0, K>0, with different initial conditions at N=0 or K=0. |
| This allows us to construct a row of one of the tables above given the |
| previous row or the next row. |
| Thus we can derive O(NK) encoding and decoding routines with O(K) memory |
| using only addition and subtraction. |
| |
| When encoding, we build up from the U(2,K) row and work our way forwards. |
| When decoding, we need to start at the U(N,K) row and work our way backwards, |
| which requires a means of computing U(N,K). |
| U(N,K) may be computed from two previous values with the same N: |
| U(N,K) = ((2*N-1)*U(N,K-1) - U(N,K-2))/(K-1) + U(N,K-2) |
| for all N>1, and since U(N,K) is symmetric, a similar relation holds for two |
| previous values with the same K: |
| U(N,K>1) = ((2*K-1)*U(N-1,K) - U(N-2,K))/(N-1) + U(N-2,K) |
| for all K>1. |
| This allows us to construct an arbitrary row of the U(N,K) table by starting |
| with the first two values, which are constants. |
| This saves roughly 2/3 the work in our O(NK) decoding routine, but costs O(K) |
| multiplications. |
| Similar relations can be derived for V(N,K), but are not used here. |
| |
| For N>0 and K>0, U(N,K) and V(N,K) take on the form of an (N-1)-degree |
| polynomial for fixed N. |
| The first few are |
| U(1,K) = 1, |
| U(2,K) = 2*K-1, |
| U(3,K) = (2*K-2)*K+1, |
| U(4,K) = (((4*K-6)*K+8)*K-3)/3, |
| U(5,K) = ((((2*K-4)*K+10)*K-8)*K+3)/3, |
| and |
| V(1,K) = 2, |
| V(2,K) = 4*K, |
| V(3,K) = 4*K*K+2, |
| V(4,K) = 8*(K*K+2)*K/3, |
| V(5,K) = ((4*K*K+20)*K*K+6)/3, |
| for all K>0. |
| This allows us to derive O(N) encoding and O(N*log(K)) decoding routines for |
| small N (and indeed decoding is also O(N) for N<3). |
| |
| @ARTICLE{Fis86, |
| author="Thomas R. Fischer", |
| title="A Pyramid Vector Quantizer", |
| journal="IEEE Transactions on Information Theory", |
| volume="IT-32", |
| number=4, |
| pages="568--583", |
| month=Jul, |
| year=1986 |
| }*/ |
| |
| #ifndef SMALL_FOOTPRINT |
| |
| /*Compute U(1,_k).*/ |
| static inline unsigned ucwrs1(int _k){ |
| return _k?1:0; |
| } |
| |
| /*Compute V(1,_k).*/ |
| static inline unsigned ncwrs1(int _k){ |
| return _k?2:1; |
| } |
| |
| /*Compute U(2,_k). |
| Note that this may be called with _k=32768 (maxK[2]+1).*/ |
| static inline unsigned ucwrs2(unsigned _k){ |
| return _k?_k+(_k-1):0; |
| } |
| |
| /*Compute V(2,_k).*/ |
| static inline celt_uint32 ncwrs2(int _k){ |
| return _k?4*(celt_uint32)_k:1; |
| } |
| |
| /*Compute U(3,_k). |
| Note that this may be called with _k=32768 (maxK[3]+1).*/ |
| static inline celt_uint32 ucwrs3(unsigned _k){ |
| return _k?(2*(celt_uint32)_k-2)*_k+1:0; |
| } |
| |
| /*Compute V(3,_k).*/ |
| static inline celt_uint32 ncwrs3(int _k){ |
| return _k?2*(2*(unsigned)_k*(celt_uint32)_k+1):1; |
| } |
| |
| /*Compute U(4,_k).*/ |
| static inline celt_uint32 ucwrs4(int _k){ |
| return _k?imusdiv32odd(2*_k,(2*_k-3)*(celt_uint32)_k+4,3,1):0; |
| } |
| |
| /*Compute V(4,_k).*/ |
| static inline celt_uint32 ncwrs4(int _k){ |
| return _k?((_k*(celt_uint32)_k+2)*_k)/3<<3:1; |
| } |
| |
| /*Compute U(5,_k).*/ |
| static inline celt_uint32 ucwrs5(int _k){ |
| return _k?(((((_k-2)*(unsigned)_k+5)*(celt_uint32)_k-4)*_k)/3<<1)+1:0; |
| } |
| |
| /*Compute V(5,_k).*/ |
| static inline celt_uint32 ncwrs5(int _k){ |
| return _k?(((_k*(unsigned)_k+5)*(celt_uint32)_k*_k)/3<<2)+2:1; |
| } |
| |
| #endif /* SMALL_FOOTPRINT */ |
| |
| /*Computes the next row/column of any recurrence that obeys the relation |
| u[i][j]=u[i-1][j]+u[i][j-1]+u[i-1][j-1]. |
| _ui0 is the base case for the new row/column.*/ |
| static inline void unext(celt_uint32 *_ui,unsigned _len,celt_uint32 _ui0){ |
| celt_uint32 ui1; |
| unsigned j; |
| /*This do-while will overrun the array if we don't have storage for at least |
| 2 values.*/ |
| j=1; do { |
| ui1=UADD32(UADD32(_ui[j],_ui[j-1]),_ui0); |
| _ui[j-1]=_ui0; |
| _ui0=ui1; |
| } while (++j<_len); |
| _ui[j-1]=_ui0; |
| } |
| |
| /*Computes the previous row/column of any recurrence that obeys the relation |
| u[i-1][j]=u[i][j]-u[i][j-1]-u[i-1][j-1]. |
| _ui0 is the base case for the new row/column.*/ |
| static inline void uprev(celt_uint32 *_ui,unsigned _n,celt_uint32 _ui0){ |
| celt_uint32 ui1; |
| unsigned j; |
| /*This do-while will overrun the array if we don't have storage for at least |
| 2 values.*/ |
| j=1; do { |
| ui1=USUB32(USUB32(_ui[j],_ui[j-1]),_ui0); |
| _ui[j-1]=_ui0; |
| _ui0=ui1; |
| } while (++j<_n); |
| _ui[j-1]=_ui0; |
| } |
| |
| /*Compute V(_n,_k), as well as U(_n,0..._k+1). |
| _u: On exit, _u[i] contains U(_n,i) for i in [0..._k+1].*/ |
| static celt_uint32 ncwrs_urow(unsigned _n,unsigned _k,celt_uint32 *_u){ |
| celt_uint32 um2; |
| unsigned len; |
| unsigned k; |
| len=_k+2; |
| /*We require storage at least 3 values (e.g., _k>0).*/ |
| celt_assert(len>=3); |
| _u[0]=0; |
| _u[1]=um2=1; |
| #ifndef SMALL_FOOTPRINT |
| if(_n<=6 || _k>255) |
| #endif |
| { |
| /*If _n==0, _u[0] should be 1 and the rest should be 0.*/ |
| /*If _n==1, _u[i] should be 1 for i>1.*/ |
| celt_assert(_n>=2); |
| /*If _k==0, the following do-while loop will overflow the buffer.*/ |
| celt_assert(_k>0); |
| k=2; |
| do _u[k]=(k<<1)-1; |
| while(++k<len); |
| for(k=2;k<_n;k++)unext(_u+1,_k+1,1); |
| } |
| #ifndef SMALL_FOOTPRINT |
| else{ |
| celt_uint32 um1; |
| celt_uint32 n2m1; |
| _u[2]=n2m1=um1=(_n<<1)-1; |
| for(k=3;k<len;k++){ |
| /*U(N,K) = ((2*N-1)*U(N,K-1)-U(N,K-2))/(K-1) + U(N,K-2)*/ |
| _u[k]=um2=imusdiv32even(n2m1,um1,um2,k-1)+um2; |
| if(++k>=len)break; |
| _u[k]=um1=imusdiv32odd(n2m1,um2,um1,k-1>>1)+um1; |
| } |
| } |
| #endif /* SMALL_FOOTPRINT */ |
| return _u[_k]+_u[_k+1]; |
| } |
| |
| /*Returns the _i'th combination of _k elements (at most 32767) chosen from a |
| set of size 1 with associated sign bits. |
| _y: Returns the vector of pulses.*/ |
| static inline void cwrsi1(int _k,celt_uint32 _i,int *_y){ |
| int s; |
| s=-(int)_i; |
| _y[0]=_k+s^s; |
| } |
| |
| #ifndef SMALL_FOOTPRINT |
| |
| /*Returns the _i'th combination of _k elements (at most 32767) chosen from a |
| set of size 2 with associated sign bits. |
| _y: Returns the vector of pulses.*/ |
| static inline void cwrsi2(int _k,celt_uint32 _i,int *_y){ |
| celt_uint32 p; |
| int s; |
| int yj; |
| p=ucwrs2(_k+1U); |
| s=-(_i>=p); |
| _i-=p&s; |
| yj=_k; |
| _k=_i+1>>1; |
| p=ucwrs2(_k); |
| _i-=p; |
| yj-=_k; |
| _y[0]=yj+s^s; |
| cwrsi1(_k,_i,_y+1); |
| } |
| |
| /*Returns the _i'th combination of _k elements (at most 32767) chosen from a |
| set of size 3 with associated sign bits. |
| _y: Returns the vector of pulses.*/ |
| static void cwrsi3(int _k,celt_uint32 _i,int *_y){ |
| celt_uint32 p; |
| int s; |
| int yj; |
| p=ucwrs3(_k+1U); |
| s=-(_i>=p); |
| _i-=p&s; |
| yj=_k; |
| /*Finds the maximum _k such that ucwrs3(_k)<=_i (tested for all |
| _i<2147418113=U(3,32768)).*/ |
| _k=_i>0?isqrt32(2*_i-1)+1>>1:0; |
| p=ucwrs3(_k); |
| _i-=p; |
| yj-=_k; |
| _y[0]=yj+s^s; |
| cwrsi2(_k,_i,_y+1); |
| } |
| |
| /*Returns the _i'th combination of _k elements (at most 1172) chosen from a set |
| of size 4 with associated sign bits. |
| _y: Returns the vector of pulses.*/ |
| static void cwrsi4(int _k,celt_uint32 _i,int *_y){ |
| celt_uint32 p; |
| int s; |
| int yj; |
| int kl; |
| int kr; |
| p=ucwrs4(_k+1); |
| s=-(_i>=p); |
| _i-=p&s; |
| yj=_k; |
| /*We could solve a cubic for k here, but the form of the direct solution does |
| not lend itself well to exact integer arithmetic. |
| Instead we do a binary search on U(4,K).*/ |
| kl=0; |
| kr=_k; |
| for(;;){ |
| _k=kl+kr>>1; |
| p=ucwrs4(_k); |
| if(p<_i){ |
| if(_k>=kr)break; |
| kl=_k+1; |
| } |
| else if(p>_i)kr=_k-1; |
| else break; |
| } |
| _i-=p; |
| yj-=_k; |
| _y[0]=yj+s^s; |
| cwrsi3(_k,_i,_y+1); |
| } |
| |
| /*Returns the _i'th combination of _k elements (at most 238) chosen from a set |
| of size 5 with associated sign bits. |
| _y: Returns the vector of pulses.*/ |
| static void cwrsi5(int _k,celt_uint32 _i,int *_y){ |
| celt_uint32 p; |
| int s; |
| int yj; |
| p=ucwrs5(_k+1); |
| s=-(_i>=p); |
| _i-=p&s; |
| yj=_k; |
| /* A binary search on U(5,K) avoids the need for 64-bit arithmetic */ |
| { |
| int kl=0; |
| int kr=_k; |
| for(;;){ |
| _k=kl+kr>>1; |
| p=ucwrs5(_k); |
| if(p<_i){ |
| if(_k>=kr)break; |
| kl=_k+1; |
| } |
| else if(p>_i)kr=_k-1; |
| else break; |
| } |
| } |
| _i-=p; |
| yj-=_k; |
| _y[0]=yj+s^s; |
| cwrsi4(_k,_i,_y+1); |
| } |
| #endif /* SMALL_FOOTPRINT */ |
| |
| /*Returns the _i'th combination of _k elements chosen from a set of size _n |
| with associated sign bits. |
| _y: Returns the vector of pulses. |
| _u: Must contain entries [0..._k+1] of row _n of U() on input. |
| Its contents will be destructively modified.*/ |
| static void cwrsi(int _n,int _k,celt_uint32 _i,int *_y,celt_uint32 *_u){ |
| int j; |
| celt_assert(_n>0); |
| j=0; |
| do{ |
| celt_uint32 p; |
| int s; |
| int yj; |
| p=_u[_k+1]; |
| s=-(_i>=p); |
| _i-=p&s; |
| yj=_k; |
| p=_u[_k]; |
| while(p>_i)p=_u[--_k]; |
| _i-=p; |
| yj-=_k; |
| _y[j]=yj+s^s; |
| uprev(_u,_k+2,0); |
| } |
| while(++j<_n); |
| } |
| |
| |
| /*Returns the index of the given combination of K elements chosen from a set |
| of size 1 with associated sign bits. |
| _y: The vector of pulses, whose sum of absolute values is K. |
| _k: Returns K.*/ |
| static inline celt_uint32 icwrs1(const int *_y,int *_k){ |
| *_k=abs(_y[0]); |
| return _y[0]<0; |
| } |
| |
| #ifndef SMALL_FOOTPRINT |
| |
| /*Returns the index of the given combination of K elements chosen from a set |
| of size 2 with associated sign bits. |
| _y: The vector of pulses, whose sum of absolute values is K. |
| _k: Returns K.*/ |
| static inline celt_uint32 icwrs2(const int *_y,int *_k){ |
| celt_uint32 i; |
| int k; |
| i=icwrs1(_y+1,&k); |
| i+=ucwrs2(k); |
| k+=abs(_y[0]); |
| if(_y[0]<0)i+=ucwrs2(k+1U); |
| *_k=k; |
| return i; |
| } |
| |
| /*Returns the index of the given combination of K elements chosen from a set |
| of size 3 with associated sign bits. |
| _y: The vector of pulses, whose sum of absolute values is K. |
| _k: Returns K.*/ |
| static inline celt_uint32 icwrs3(const int *_y,int *_k){ |
| celt_uint32 i; |
| int k; |
| i=icwrs2(_y+1,&k); |
| i+=ucwrs3(k); |
| k+=abs(_y[0]); |
| if(_y[0]<0)i+=ucwrs3(k+1U); |
| *_k=k; |
| return i; |
| } |
| |
| /*Returns the index of the given combination of K elements chosen from a set |
| of size 4 with associated sign bits. |
| _y: The vector of pulses, whose sum of absolute values is K. |
| _k: Returns K.*/ |
| static inline celt_uint32 icwrs4(const int *_y,int *_k){ |
| celt_uint32 i; |
| int k; |
| i=icwrs3(_y+1,&k); |
| i+=ucwrs4(k); |
| k+=abs(_y[0]); |
| if(_y[0]<0)i+=ucwrs4(k+1); |
| *_k=k; |
| return i; |
| } |
| |
| /*Returns the index of the given combination of K elements chosen from a set |
| of size 5 with associated sign bits. |
| _y: The vector of pulses, whose sum of absolute values is K. |
| _k: Returns K.*/ |
| static inline celt_uint32 icwrs5(const int *_y,int *_k){ |
| celt_uint32 i; |
| int k; |
| i=icwrs4(_y+1,&k); |
| i+=ucwrs5(k); |
| k+=abs(_y[0]); |
| if(_y[0]<0)i+=ucwrs5(k+1); |
| *_k=k; |
| return i; |
| } |
| #endif /* SMALL_FOOTPRINT */ |
| |
| /*Returns the index of the given combination of K elements chosen from a set |
| of size _n with associated sign bits. |
| _y: The vector of pulses, whose sum of absolute values must be _k. |
| _nc: Returns V(_n,_k).*/ |
| celt_uint32 icwrs(int _n,int _k,celt_uint32 *_nc,const int *_y, |
| celt_uint32 *_u){ |
| celt_uint32 i; |
| int j; |
| int k; |
| /*We can't unroll the first two iterations of the loop unless _n>=2.*/ |
| celt_assert(_n>=2); |
| _u[0]=0; |
| for(k=1;k<=_k+1;k++)_u[k]=(k<<1)-1; |
| i=icwrs1(_y+_n-1,&k); |
| j=_n-2; |
| i+=_u[k]; |
| k+=abs(_y[j]); |
| if(_y[j]<0)i+=_u[k+1]; |
| while(j-->0){ |
| unext(_u,_k+2,0); |
| i+=_u[k]; |
| k+=abs(_y[j]); |
| if(_y[j]<0)i+=_u[k+1]; |
| } |
| *_nc=_u[k]+_u[k+1]; |
| return i; |
| } |
| |
| #ifndef STATIC_MODES |
| void get_required_bits(celt_int16 *_bits,int _n,int _maxk,int _frac){ |
| int k; |
| /*_maxk==0 => there's nothing to do.*/ |
| celt_assert(_maxk>0); |
| _bits[0]=0; |
| if (_n==1) |
| { |
| for (k=1;k<=_maxk;k++) |
| _bits[k] = 1<<_frac; |
| } |
| else { |
| VARDECL(celt_uint32,u); |
| SAVE_STACK; |
| ALLOC(u,_maxk+2U,celt_uint32); |
| ncwrs_urow(_n,_maxk,u); |
| for(k=1;k<=_maxk;k++) |
| _bits[k]=log2_frac(u[k]+u[k+1],_frac); |
| RESTORE_STACK; |
| } |
| } |
| #endif /* STATIC_MODES */ |
| |
| void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){ |
| celt_uint32 i; |
| if (_k==0) |
| return; |
| switch(_n){ |
| case 1:{ |
| i=icwrs1(_y,&_k); |
| celt_assert(ncwrs1(_k)==2); |
| ec_enc_bits(_enc,i,1); |
| }break; |
| #ifndef SMALL_FOOTPRINT |
| case 2:{ |
| i=icwrs2(_y,&_k); |
| ec_enc_uint(_enc,i,ncwrs2(_k)); |
| }break; |
| case 3:{ |
| i=icwrs3(_y,&_k); |
| ec_enc_uint(_enc,i,ncwrs3(_k)); |
| }break; |
| case 4:{ |
| i=icwrs4(_y,&_k); |
| ec_enc_uint(_enc,i,ncwrs4(_k)); |
| }break; |
| case 5:{ |
| i=icwrs5(_y,&_k); |
| ec_enc_uint(_enc,i,ncwrs5(_k)); |
| }break; |
| #endif |
| default: |
| { |
| VARDECL(celt_uint32,u); |
| celt_uint32 nc; |
| SAVE_STACK; |
| ALLOC(u,_k+2U,celt_uint32); |
| i=icwrs(_n,_k,&nc,_y,u); |
| ec_enc_uint(_enc,i,nc); |
| RESTORE_STACK; |
| }; |
| } |
| } |
| |
| void decode_pulses(int *_y,int _n,int _k,ec_dec *_dec) |
| { |
| if (_k==0) { |
| int i; |
| for (i=0;i<_n;i++) |
| _y[i] = 0; |
| return; |
| } |
| switch(_n){ |
| case 1:{ |
| celt_assert(ncwrs1(_k)==2); |
| cwrsi1(_k,ec_dec_bits(_dec,1),_y); |
| }break; |
| #ifndef SMALL_FOOTPRINT |
| case 2:cwrsi2(_k,ec_dec_uint(_dec,ncwrs2(_k)),_y);break; |
| case 3:cwrsi3(_k,ec_dec_uint(_dec,ncwrs3(_k)),_y);break; |
| case 4:cwrsi4(_k,ec_dec_uint(_dec,ncwrs4(_k)),_y);break; |
| case 5:cwrsi5(_k,ec_dec_uint(_dec,ncwrs5(_k)),_y);break; |
| #endif |
| default: |
| { |
| VARDECL(celt_uint32,u); |
| SAVE_STACK; |
| ALLOC(u,_k+2U,celt_uint32); |
| cwrsi(_n,_k,ec_dec_uint(_dec,ncwrs_urow(_n,_k,u)),_y,u); |
| RESTORE_STACK; |
| } |
| } |
| } |
| |