| /* Copyright (c) 2007-2008 CSIRO |
| Copyright (c) 2007-2009 Xiph.Org Foundation |
| Written by Jean-Marc Valin */ |
| /* |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| |
| - Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| - Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| - Neither the name of the Xiph.org Foundation nor the names of its |
| contributors may be used to endorse or promote products derived from |
| this software without specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR |
| CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #include "mathops.h" |
| #include "cwrs.h" |
| #include "vq.h" |
| #include "arch.h" |
| #include "os_support.h" |
| #include "rate.h" |
| |
| #ifndef M_PI |
| #define M_PI 3.141592653 |
| #endif |
| |
| static celt_uint32 lcg_rand(celt_uint32 seed) |
| { |
| return 1664525 * seed + 1013904223; |
| } |
| |
| static void exp_rotation1(celt_norm *X, int len, int stride, celt_word16 c, celt_word16 s) |
| { |
| int i; |
| celt_norm *Xptr; |
| Xptr = X; |
| for (i=0;i<len-stride;i++) |
| { |
| celt_norm x1, x2; |
| x1 = Xptr[0]; |
| x2 = Xptr[stride]; |
| Xptr[stride] = EXTRACT16(SHR32(MULT16_16(c,x2) + MULT16_16(s,x1), 15)); |
| *Xptr++ = EXTRACT16(SHR32(MULT16_16(c,x1) - MULT16_16(s,x2), 15)); |
| } |
| Xptr = &X[len-2*stride-1]; |
| for (i=len-2*stride-1;i>=0;i--) |
| { |
| celt_norm x1, x2; |
| x1 = Xptr[0]; |
| x2 = Xptr[stride]; |
| Xptr[stride] = EXTRACT16(SHR32(MULT16_16(c,x2) + MULT16_16(s,x1), 15)); |
| *Xptr-- = EXTRACT16(SHR32(MULT16_16(c,x1) - MULT16_16(s,x2), 15)); |
| } |
| } |
| |
| static void exp_rotation(celt_norm *X, int len, int dir, int stride, int K, int spread) |
| { |
| int i; |
| celt_word16 c, s; |
| celt_word16 gain, theta; |
| int stride2=0; |
| int factor; |
| /*int i; |
| if (len>=30) |
| { |
| for (i=0;i<len;i++) |
| X[i] = 0; |
| X[14] = 1; |
| K=5; |
| }*/ |
| if (2*K>=len || spread==0) |
| return; |
| if (spread==1) |
| factor=10; |
| else if (spread==2) |
| factor=5; |
| else |
| factor=15; |
| |
| gain = celt_div((celt_word32)MULT16_16(Q15_ONE,len),(celt_word32)(len+factor*K)); |
| /* FIXME: Make that HALF16 instead of HALF32 */ |
| theta = HALF32(MULT16_16_Q15(gain,gain)); |
| |
| c = celt_cos_norm(EXTEND32(theta)); |
| s = celt_cos_norm(EXTEND32(SUB16(Q15ONE,theta))); /* sin(theta) */ |
| |
| if (len>=8*stride) |
| { |
| stride2 = 1; |
| /* This is just a simple way of computing sqrt(len/stride) with rounding. |
| It's basically incrementing long as (stride2+0.5)^2 < len/stride. |
| I _think_ it is bit-exact */ |
| while ((stride2*stride2+stride2)*stride + (stride>>2) < len) |
| stride2++; |
| } |
| len /= stride; |
| for (i=0;i<stride;i++) |
| { |
| if (dir < 0) |
| { |
| if (stride2) |
| exp_rotation1(X+i*len, len, stride2, s, c); |
| exp_rotation1(X+i*len, len, 1, c, s); |
| } else { |
| exp_rotation1(X+i*len, len, 1, c, -s); |
| if (stride2) |
| exp_rotation1(X+i*len, len, stride2, s, -c); |
| } |
| } |
| /*if (len>=30) |
| { |
| for (i=0;i<len;i++) |
| printf ("%f ", X[i]); |
| printf ("\n"); |
| exit(0); |
| }*/ |
| } |
| |
| /** Takes the pitch vector and the decoded residual vector, computes the gain |
| that will give ||p+g*y||=1 and mixes the residual with the pitch. */ |
| static void normalise_residual(int * restrict iy, celt_norm * restrict X, |
| int N, int K, celt_word32 Ryy, celt_word16 gain) |
| { |
| int i; |
| #ifdef FIXED_POINT |
| int k; |
| #endif |
| celt_word32 t; |
| celt_word16 g; |
| |
| #ifdef FIXED_POINT |
| k = celt_ilog2(Ryy)>>1; |
| #endif |
| t = VSHR32(Ryy, (k-7)<<1); |
| g = MULT16_16_P15(celt_rsqrt_norm(t),gain); |
| |
| i=0; |
| do |
| X[i] = EXTRACT16(PSHR32(MULT16_16(g, iy[i]), k+1)); |
| while (++i < N); |
| } |
| |
| void alg_quant(celt_norm *X, int N, int K, int spread, int B, celt_norm *lowband, |
| int resynth, ec_enc *enc, celt_int32 *seed, celt_word16 gain) |
| { |
| VARDECL(celt_norm, y); |
| VARDECL(int, iy); |
| VARDECL(celt_word16, signx); |
| int j; |
| celt_word16 s; |
| int pulsesLeft; |
| celt_word32 sum; |
| celt_word32 xy, yy; |
| int N_1; /* Inverse of N, in Q14 format (even for float) */ |
| #ifdef FIXED_POINT |
| int yshift; |
| #endif |
| SAVE_STACK; |
| |
| /* When there's no pulse, fill with noise or folded spectrum */ |
| if (K==0) |
| { |
| if (lowband != NULL && resynth) |
| { |
| if (spread==2 && B<=1) |
| { |
| for (j=0;j<N;j++) |
| { |
| *seed = lcg_rand(*seed); |
| X[j] = (int)(*seed)>>20; |
| } |
| } else { |
| for (j=0;j<N;j++) |
| X[j] = lowband[j]; |
| } |
| renormalise_vector(X, N, gain); |
| } else { |
| /* This is important for encoding the side in stereo mode */ |
| for (j=0;j<N;j++) |
| X[j] = 0; |
| } |
| return; |
| } |
| K = get_pulses(K); |
| #ifdef FIXED_POINT |
| yshift = 13-celt_ilog2(K); |
| #endif |
| |
| ALLOC(y, N, celt_norm); |
| ALLOC(iy, N, int); |
| ALLOC(signx, N, celt_word16); |
| N_1 = 512/N; |
| |
| exp_rotation(X, N, 1, B, K, spread); |
| |
| /* Get rid of the sign */ |
| sum = 0; |
| j=0; do { |
| if (X[j]>0) |
| signx[j]=1; |
| else { |
| signx[j]=-1; |
| X[j]=-X[j]; |
| } |
| iy[j] = 0; |
| y[j] = 0; |
| } while (++j<N); |
| |
| xy = yy = 0; |
| |
| pulsesLeft = K; |
| |
| /* Do a pre-search by projecting on the pyramid */ |
| if (K > (N>>1)) |
| { |
| celt_word16 rcp; |
| j=0; do { |
| sum += X[j]; |
| } while (++j<N); |
| |
| /* If X is too small, just replace it with a pulse at 0 */ |
| #ifdef FIXED_POINT |
| if (sum <= K) |
| #else |
| if (sum <= EPSILON) |
| #endif |
| { |
| X[0] = QCONST16(1.f,14); |
| j=1; do |
| X[j]=0; |
| while (++j<N); |
| sum = QCONST16(1.f,14); |
| } |
| /* Do we have sufficient accuracy here? */ |
| rcp = EXTRACT16(MULT16_32_Q16(K-1, celt_rcp(sum))); |
| j=0; do { |
| #ifdef FIXED_POINT |
| /* It's really important to round *towards zero* here */ |
| iy[j] = MULT16_16_Q15(X[j],rcp); |
| #else |
| iy[j] = (int)floor(rcp*X[j]); |
| #endif |
| y[j] = SHL16(iy[j],yshift); |
| yy = MAC16_16(yy, y[j],y[j]); |
| xy = MAC16_16(xy, X[j],y[j]); |
| y[j] *= 2; |
| pulsesLeft -= iy[j]; |
| } while (++j<N); |
| } |
| celt_assert2(pulsesLeft>=1, "Allocated too many pulses in the quick pass"); |
| |
| /* This should never happen, but just in case it does (e.g. on silence) |
| we fill the first bin with pulses. */ |
| #ifdef FIXED_POINT_DEBUG |
| celt_assert2(pulsesLeft<=N+3, "Not enough pulses in the quick pass"); |
| #endif |
| if (pulsesLeft > N+3) |
| { |
| celt_word16 tmp = SHL16(pulsesLeft, yshift); |
| yy = MAC16_16(yy, tmp, tmp); |
| yy = MAC16_16(yy, tmp, y[0]); |
| iy[0] += pulsesLeft; |
| pulsesLeft=0; |
| } |
| |
| while (pulsesLeft > 0) |
| { |
| int best_id; |
| celt_word16 magnitude; |
| celt_word32 best_num = -VERY_LARGE16; |
| celt_word16 best_den = 0; |
| #ifdef FIXED_POINT |
| int rshift; |
| #endif |
| #ifdef FIXED_POINT |
| rshift = yshift+1+celt_ilog2(K-pulsesLeft+1); |
| #endif |
| magnitude = SHL16(1, yshift); |
| |
| best_id = 0; |
| /* The squared magnitude term gets added anyway, so we might as well |
| add it outside the loop */ |
| yy = MAC16_16(yy, magnitude,magnitude); |
| /* Choose between fast and accurate strategy depending on where we are in the search */ |
| /* This should ensure that anything we can process will have a better score */ |
| j=0; |
| do { |
| celt_word16 Rxy, Ryy; |
| /* Select sign based on X[j] alone */ |
| s = magnitude; |
| /* Temporary sums of the new pulse(s) */ |
| Rxy = EXTRACT16(SHR32(MAC16_16(xy, s,X[j]),rshift)); |
| /* We're multiplying y[j] by two so we don't have to do it here */ |
| Ryy = EXTRACT16(SHR32(MAC16_16(yy, s,y[j]),rshift)); |
| |
| /* Approximate score: we maximise Rxy/sqrt(Ryy) (we're guaranteed that |
| Rxy is positive because the sign is pre-computed) */ |
| Rxy = MULT16_16_Q15(Rxy,Rxy); |
| /* The idea is to check for num/den >= best_num/best_den, but that way |
| we can do it without any division */ |
| /* OPT: Make sure to use conditional moves here */ |
| if (MULT16_16(best_den, Rxy) > MULT16_16(Ryy, best_num)) |
| { |
| best_den = Ryy; |
| best_num = Rxy; |
| best_id = j; |
| } |
| } while (++j<N); |
| |
| j = best_id; |
| s = SHL16(1, yshift); |
| |
| /* Updating the sums of the new pulse(s) */ |
| xy = xy + MULT16_16(s,X[j]); |
| /* We're multiplying y[j] by two so we don't have to do it here */ |
| yy = yy + MULT16_16(s,y[j]); |
| |
| /* Only now that we've made the final choice, update y/iy */ |
| /* Multiplying y[j] by 2 so we don't have to do it everywhere else */ |
| y[j] += 2*s; |
| iy[j]++; |
| pulsesLeft--; |
| } |
| |
| /* Put the original sign back */ |
| j=0; |
| do { |
| X[j] = MULT16_16(signx[j],X[j]); |
| if (signx[j] < 0) |
| iy[j] = -iy[j]; |
| } while (++j<N); |
| encode_pulses(iy, N, K, enc); |
| |
| if (resynth) |
| { |
| normalise_residual(iy, X, N, K, EXTRACT16(SHR32(yy,2*yshift)), gain); |
| exp_rotation(X, N, -1, B, K, spread); |
| } |
| RESTORE_STACK; |
| } |
| |
| |
| /** Decode pulse vector and combine the result with the pitch vector to produce |
| the final normalised signal in the current band. */ |
| void alg_unquant(celt_norm *X, int N, int K, int spread, int B, |
| celt_norm *lowband, ec_dec *dec, celt_int32 *seed, celt_word16 gain) |
| { |
| int i; |
| celt_word32 Ryy; |
| VARDECL(int, iy); |
| SAVE_STACK; |
| |
| if (K==0) |
| { |
| if (lowband != NULL) |
| { |
| if (spread==2 && B<=1) |
| { |
| for (i=0;i<N;i++) |
| { |
| *seed = lcg_rand(*seed); |
| X[i] = (int)(*seed)>>20; |
| } |
| } else { |
| for (i=0;i<N;i++) |
| X[i] = lowband[i]; |
| } |
| renormalise_vector(X, N, gain); |
| } else { |
| /* This is important for encoding the side in stereo mode */ |
| for (i=0;i<N;i++) |
| X[i] = 0; |
| } |
| return; |
| } |
| K = get_pulses(K); |
| ALLOC(iy, N, int); |
| decode_pulses(iy, N, K, dec); |
| Ryy = 0; |
| i=0; |
| do { |
| Ryy = MAC16_16(Ryy, iy[i], iy[i]); |
| } while (++i < N); |
| normalise_residual(iy, X, N, K, Ryy, gain); |
| exp_rotation(X, N, -1, B, K, spread); |
| RESTORE_STACK; |
| } |
| |
| celt_word16 vector_norm(const celt_norm *X, int N) |
| { |
| int i; |
| celt_word32 E = EPSILON; |
| const celt_norm *xptr = X; |
| for (i=0;i<N;i++) |
| { |
| E = MAC16_16(E, *xptr, *xptr); |
| xptr++; |
| } |
| return celt_sqrt(E); |
| } |
| |
| void renormalise_vector(celt_norm *X, int N, celt_word16 gain) |
| { |
| int i; |
| #ifdef FIXED_POINT |
| int k; |
| #endif |
| celt_word32 E = EPSILON; |
| celt_word16 g; |
| celt_word32 t; |
| celt_norm *xptr = X; |
| for (i=0;i<N;i++) |
| { |
| E = MAC16_16(E, *xptr, *xptr); |
| xptr++; |
| } |
| #ifdef FIXED_POINT |
| k = celt_ilog2(E)>>1; |
| #endif |
| t = VSHR32(E, (k-7)<<1); |
| g = MULT16_16_P15(celt_rsqrt_norm(t),gain); |
| |
| xptr = X; |
| for (i=0;i<N;i++) |
| { |
| *xptr = EXTRACT16(PSHR32(MULT16_16(g, *xptr), k+1)); |
| xptr++; |
| } |
| /*return celt_sqrt(E);*/ |
| } |
| |