| /*********************************************************************** |
| Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
| Redistribution and use in source and binary forms, with or without |
| modification, (subject to the limitations in the disclaimer below) |
| are permitted provided that the following conditions are met: |
| - Redistributions of source code must retain the above copyright notice, |
| this list of conditions and the following disclaimer. |
| - Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| - Neither the name of Skype Limited, nor the names of specific |
| contributors, may be used to endorse or promote products derived from |
| this software without specific prior written permission. |
| NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED |
| BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND |
| CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, |
| BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND |
| FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF |
| USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| ***********************************************************************/ |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #include "silk_main.h" |
| |
| static inline void silk_nsq_scale_states( |
| const silk_encoder_state *psEncC, /* I Encoder State */ |
| silk_nsq_state *NSQ, /* I/O NSQ state */ |
| const opus_int16 x[], /* I input in Q0 */ |
| opus_int32 x_sc_Q10[], /* O input scaled with 1/Gain */ |
| const opus_int16 sLTP[], /* I re-whitened LTP state in Q0 */ |
| opus_int32 sLTP_Q16[], /* O LTP state matching scaled input */ |
| opus_int subfr, /* I subframe number */ |
| const opus_int LTP_scale_Q14, /* I */ |
| const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */ |
| const opus_int pitchL[ MAX_NB_SUBFR ] /* I */ |
| ); |
| |
| static inline void silk_noise_shape_quantizer( |
| silk_nsq_state *NSQ, /* I/O NSQ state */ |
| opus_int signalType, /* I Signal type */ |
| const opus_int32 x_sc_Q10[], /* I */ |
| opus_int8 pulses[], /* O */ |
| opus_int16 xq[], /* O */ |
| opus_int32 sLTP_Q16[], /* I/O LTP state */ |
| const opus_int16 a_Q12[], /* I Short term prediction coefs */ |
| const opus_int16 b_Q14[], /* I Long term prediction coefs */ |
| const opus_int16 AR_shp_Q13[], /* I Noise shaping AR coefs */ |
| opus_int lag, /* I Pitch lag */ |
| opus_int32 HarmShapeFIRPacked_Q14, /* I */ |
| opus_int Tilt_Q14, /* I Spectral tilt */ |
| opus_int32 LF_shp_Q14, /* I */ |
| opus_int32 Gain_Q16, /* I */ |
| opus_int Lambda_Q10, /* I */ |
| opus_int offset_Q10, /* I */ |
| opus_int length, /* I Input length */ |
| opus_int shapingLPCOrder, /* I Noise shaping AR filter order */ |
| opus_int predictLPCOrder /* I Prediction filter order */ |
| ); |
| |
| void silk_NSQ( |
| const silk_encoder_state *psEncC, /* I/O Encoder State */ |
| silk_nsq_state *NSQ, /* I/O NSQ state */ |
| SideInfoIndices *psIndices, /* I/O Quantization Indices */ |
| const opus_int16 x[], /* I prefiltered input signal */ |
| opus_int8 pulses[], /* O quantized qulse signal */ |
| const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefficients */ |
| const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefficients */ |
| const opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I */ |
| const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I */ |
| const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */ |
| const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I */ |
| const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */ |
| const opus_int pitchL[ MAX_NB_SUBFR ], /* I */ |
| const opus_int Lambda_Q10, /* I */ |
| const opus_int LTP_scale_Q14 /* I LTP state scaling */ |
| ) |
| { |
| opus_int k, lag, start_idx, LSF_interpolation_flag; |
| const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13; |
| opus_int16 *pxq; |
| opus_int32 sLTP_Q16[ 2 * MAX_FRAME_LENGTH ]; |
| opus_int16 sLTP[ 2 * MAX_FRAME_LENGTH ]; |
| opus_int32 HarmShapeFIRPacked_Q14; |
| opus_int offset_Q10; |
| opus_int32 x_sc_Q10[ MAX_FRAME_LENGTH / MAX_NB_SUBFR ]; |
| |
| NSQ->rand_seed = psIndices->Seed; |
| |
| /* Set unvoiced lag to the previous one, overwrite later for voiced */ |
| lag = NSQ->lagPrev; |
| |
| SKP_assert( NSQ->prev_inv_gain_Q16 != 0 ); |
| |
| offset_Q10 = silk_Quantization_Offsets_Q10[ psIndices->signalType >> 1 ][ psIndices->quantOffsetType ]; |
| |
| if( psIndices->NLSFInterpCoef_Q2 == 4 ) { |
| LSF_interpolation_flag = 0; |
| } else { |
| LSF_interpolation_flag = 1; |
| } |
| |
| /* Setup pointers to start of sub frame */ |
| NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length; |
| NSQ->sLTP_buf_idx = psEncC->ltp_mem_length; |
| pxq = &NSQ->xq[ psEncC->ltp_mem_length ]; |
| for( k = 0; k < psEncC->nb_subfr; k++ ) { |
| A_Q12 = &PredCoef_Q12[ (( k >> 1 ) | ( 1 - LSF_interpolation_flag )) * MAX_LPC_ORDER ]; |
| B_Q14 = <PCoef_Q14[ k * LTP_ORDER ]; |
| AR_shp_Q13 = &AR2_Q13[ k * MAX_SHAPE_LPC_ORDER ]; |
| |
| /* Noise shape parameters */ |
| SKP_assert( HarmShapeGain_Q14[ k ] >= 0 ); |
| HarmShapeFIRPacked_Q14 = SKP_RSHIFT( HarmShapeGain_Q14[ k ], 2 ); |
| HarmShapeFIRPacked_Q14 |= SKP_LSHIFT( ( opus_int32 )SKP_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 ); |
| |
| NSQ->rewhite_flag = 0; |
| if( psIndices->signalType == TYPE_VOICED ) { |
| /* Voiced */ |
| lag = pitchL[ k ]; |
| |
| /* Re-whitening */ |
| if( ( k & ( 3 - SKP_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) { |
| /* Rewhiten with new A coefs */ |
| start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2; |
| SKP_assert( start_idx > 0 ); |
| |
| silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ], |
| A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder ); |
| |
| NSQ->rewhite_flag = 1; |
| NSQ->sLTP_buf_idx = psEncC->ltp_mem_length; |
| } |
| } |
| |
| silk_nsq_scale_states( psEncC, NSQ, x, x_sc_Q10, sLTP, sLTP_Q16, k, LTP_scale_Q14, Gains_Q16, pitchL ); |
| |
| silk_noise_shape_quantizer( NSQ, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q16, A_Q12, B_Q14, |
| AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ], Gains_Q16[ k ], Lambda_Q10, |
| offset_Q10, psEncC->subfr_length, psEncC->shapingLPCOrder, psEncC->predictLPCOrder ); |
| |
| x += psEncC->subfr_length; |
| pulses += psEncC->subfr_length; |
| pxq += psEncC->subfr_length; |
| } |
| |
| /* Update lagPrev for next frame */ |
| NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ]; |
| |
| /* Save quantized speech and noise shaping signals */ |
| SKP_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) ); |
| SKP_memmove( NSQ->sLTP_shp_Q10, &NSQ->sLTP_shp_Q10[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) ); |
| |
| #ifdef SAVE_ALL_INTERNAL_DATA |
| DEBUG_STORE_DATA( xq.dat, &pxq[ -psEncC->frame_length ], psEncC->frame_length * sizeof( opus_int16 ) ); |
| DEBUG_STORE_DATA( q.dat, &pulses[ -psEncC->frame_length ], psEncC->frame_length * sizeof( opus_int8 ) ); |
| DEBUG_STORE_DATA( sLTP_Q16.dat, &sLTP_Q16[ psEncC->ltp_mem_length ], psEncC->frame_length * sizeof( opus_int32 ) ); |
| #endif |
| } |
| |
| /***********************************/ |
| /* silk_noise_shape_quantizer */ |
| /***********************************/ |
| static inline void silk_noise_shape_quantizer( |
| silk_nsq_state *NSQ, /* I/O NSQ state */ |
| opus_int signalType, /* I Signal type */ |
| const opus_int32 x_sc_Q10[], /* I */ |
| opus_int8 pulses[], /* O */ |
| opus_int16 xq[], /* O */ |
| opus_int32 sLTP_Q16[], /* I/O LTP state */ |
| const opus_int16 a_Q12[], /* I Short term prediction coefs */ |
| const opus_int16 b_Q14[], /* I Long term prediction coefs */ |
| const opus_int16 AR_shp_Q13[], /* I Noise shaping AR coefs */ |
| opus_int lag, /* I Pitch lag */ |
| opus_int32 HarmShapeFIRPacked_Q14, /* I */ |
| opus_int Tilt_Q14, /* I Spectral tilt */ |
| opus_int32 LF_shp_Q14, /* I */ |
| opus_int32 Gain_Q16, /* I */ |
| opus_int Lambda_Q10, /* I */ |
| opus_int offset_Q10, /* I */ |
| opus_int length, /* I Input length */ |
| opus_int shapingLPCOrder, /* I Noise shaping AR filter order */ |
| opus_int predictLPCOrder /* I Prediction filter order */ |
| ) |
| { |
| opus_int i, j; |
| opus_int32 LTP_pred_Q14, LPC_pred_Q10, n_AR_Q10, n_LTP_Q14; |
| opus_int32 n_LF_Q10, r_Q10, rr_Q10, q1_Q10, q2_Q10, rd1_Q10, rd2_Q10; |
| opus_int32 dither, exc_Q10, LPC_exc_Q10, xq_Q10; |
| opus_int32 tmp1, tmp2, sLF_AR_shp_Q10; |
| opus_int32 *psLPC_Q14, *shp_lag_ptr, *pred_lag_ptr; |
| |
| shp_lag_ptr = &NSQ->sLTP_shp_Q10[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ]; |
| pred_lag_ptr = &sLTP_Q16[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ]; |
| |
| /* Setup short term AR state */ |
| psLPC_Q14 = &NSQ->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 ]; |
| |
| for( i = 0; i < length; i++ ) { |
| /* Generate dither */ |
| NSQ->rand_seed = SKP_RAND( NSQ->rand_seed ); |
| |
| /* dither = rand_seed < 0 ? 0xFFFFFFFF : 0; */ |
| dither = SKP_RSHIFT( NSQ->rand_seed, 31 ); |
| |
| /* Short-term prediction */ |
| SKP_assert( ( predictLPCOrder & 1 ) == 0 ); /* check that order is even */ |
| SKP_assert( ( (opus_int64)a_Q12 & 3 ) == 0 ); /* check that array starts at 4-byte aligned address */ |
| SKP_assert( predictLPCOrder >= 10 ); /* check that unrolling works */ |
| |
| /* Partially unrolled */ |
| LPC_pred_Q10 = SKP_SMULWB( psLPC_Q14[ 0 ], a_Q12[ 0 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -1 ], a_Q12[ 1 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -2 ], a_Q12[ 2 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -3 ], a_Q12[ 3 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -4 ], a_Q12[ 4 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -5 ], a_Q12[ 5 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -6 ], a_Q12[ 6 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -7 ], a_Q12[ 7 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -8 ], a_Q12[ 8 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -9 ], a_Q12[ 9 ] ); |
| for( j = 10; j < predictLPCOrder; j ++ ) { |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -j ], a_Q12[ j ] ); |
| } |
| |
| /* Long-term prediction */ |
| if( signalType == TYPE_VOICED ) { |
| /* Unrolled loop */ |
| LTP_pred_Q14 = SKP_SMULWB( pred_lag_ptr[ 0 ], b_Q14[ 0 ] ); |
| LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -1 ], b_Q14[ 1 ] ); |
| LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -2 ], b_Q14[ 2 ] ); |
| LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -3 ], b_Q14[ 3 ] ); |
| LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -4 ], b_Q14[ 4 ] ); |
| pred_lag_ptr++; |
| } else { |
| LTP_pred_Q14 = 0; |
| } |
| |
| /* Noise shape feedback */ |
| SKP_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */ |
| tmp2 = psLPC_Q14[ 0 ]; |
| tmp1 = NSQ->sAR2_Q14[ 0 ]; |
| NSQ->sAR2_Q14[ 0 ] = tmp2; |
| n_AR_Q10 = SKP_SMULWB( tmp2, AR_shp_Q13[ 0 ] ); |
| for( j = 2; j < shapingLPCOrder; j += 2 ) { |
| tmp2 = NSQ->sAR2_Q14[ j - 1 ]; |
| NSQ->sAR2_Q14[ j - 1 ] = tmp1; |
| n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, tmp1, AR_shp_Q13[ j - 1 ] ); |
| tmp1 = NSQ->sAR2_Q14[ j + 0 ]; |
| NSQ->sAR2_Q14[ j + 0 ] = tmp2; |
| n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, tmp2, AR_shp_Q13[ j ] ); |
| } |
| NSQ->sAR2_Q14[ shapingLPCOrder - 1 ] = tmp1; |
| n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, tmp1, AR_shp_Q13[ shapingLPCOrder - 1 ] ); |
| |
| n_AR_Q10 = SKP_RSHIFT( n_AR_Q10, 1 ); /* Q11 -> Q10 */ |
| n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, NSQ->sLF_AR_shp_Q12, Tilt_Q14 ); |
| |
| n_LF_Q10 = SKP_LSHIFT( SKP_SMULWB( NSQ->sLTP_shp_Q10[ NSQ->sLTP_shp_buf_idx - 1 ], LF_shp_Q14 ), 2 ); |
| n_LF_Q10 = SKP_SMLAWT( n_LF_Q10, NSQ->sLF_AR_shp_Q12, LF_shp_Q14 ); |
| |
| SKP_assert( lag > 0 || signalType != TYPE_VOICED ); |
| |
| /* Long-term shaping */ |
| if( lag > 0 ) { |
| /* Symmetric, packed FIR coefficients */ |
| n_LTP_Q14 = SKP_SMULWB( SKP_ADD32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 ); |
| n_LTP_Q14 = SKP_SMLAWT( n_LTP_Q14, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 ); |
| n_LTP_Q14 = SKP_LSHIFT( n_LTP_Q14, 6 ); |
| shp_lag_ptr++; |
| |
| tmp1 = SKP_SUB32( LTP_pred_Q14, n_LTP_Q14 ); /* Add Q14 stuff */ |
| tmp1 = SKP_RSHIFT( tmp1, 4 ); /* convert to Q10 */ |
| tmp1 = SKP_ADD32( tmp1, LPC_pred_Q10 ); /* add Q10 stuff */ |
| tmp1 = SKP_SUB32( tmp1, n_AR_Q10 ); /* subtract Q10 stuff */ |
| } else { |
| tmp1 = SKP_SUB32( LPC_pred_Q10, n_AR_Q10 ); /* subtract Q10 stuff */ |
| } |
| |
| /* Input minus prediction plus noise feedback */ |
| /*r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP;*/ |
| tmp1 = SKP_SUB32( tmp1, n_LF_Q10 ); /* subtract Q10 stuff */ |
| r_Q10 = SKP_SUB32( x_sc_Q10[ i ], tmp1 ); |
| |
| /* Flip sign depending on dither */ |
| r_Q10 = r_Q10 ^ dither; |
| r_Q10 = SKP_LIMIT_32( r_Q10, -31 << 10, 30 << 10 ); |
| |
| /* Find two quantization level candidates and measure their rate-distortion */ |
| q1_Q10 = SKP_SUB32( r_Q10, offset_Q10 ); |
| q1_Q10 = SKP_RSHIFT( q1_Q10, 10 ); |
| if( q1_Q10 > 0 ) { |
| q1_Q10 = SKP_SUB32( SKP_LSHIFT( q1_Q10, 10 ), QUANT_LEVEL_ADJUST_Q10 ); |
| q1_Q10 = SKP_ADD32( q1_Q10, offset_Q10 ); |
| q2_Q10 = SKP_ADD32( q1_Q10, 1024 ); |
| rd1_Q10 = SKP_SMULBB( q1_Q10, Lambda_Q10 ); |
| rd2_Q10 = SKP_SMULBB( q2_Q10, Lambda_Q10 ); |
| } else if( q1_Q10 == 0 ) { |
| q1_Q10 = offset_Q10; |
| q2_Q10 = SKP_ADD32( q1_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 ); |
| rd1_Q10 = SKP_SMULBB( q1_Q10, Lambda_Q10 ); |
| rd2_Q10 = SKP_SMULBB( q2_Q10, Lambda_Q10 ); |
| } else if( q1_Q10 == -1 ) { |
| q2_Q10 = offset_Q10; |
| q1_Q10 = SKP_SUB32( q2_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 ); |
| rd1_Q10 = SKP_SMULBB( -q1_Q10, Lambda_Q10 ); |
| rd2_Q10 = SKP_SMULBB( q2_Q10, Lambda_Q10 ); |
| } else { /* Q1_Q10 < -1 */ |
| q1_Q10 = SKP_ADD32( SKP_LSHIFT( q1_Q10, 10 ), QUANT_LEVEL_ADJUST_Q10 ); |
| q1_Q10 = SKP_ADD32( q1_Q10, offset_Q10 ); |
| q2_Q10 = SKP_ADD32( q1_Q10, 1024 ); |
| rd1_Q10 = SKP_SMULBB( -q1_Q10, Lambda_Q10 ); |
| rd2_Q10 = SKP_SMULBB( -q2_Q10, Lambda_Q10 ); |
| } |
| rr_Q10 = SKP_SUB32( r_Q10, q1_Q10 ); |
| rd1_Q10 = SKP_RSHIFT( SKP_SMLABB( rd1_Q10, rr_Q10, rr_Q10 ), 10 ); |
| rr_Q10 = SKP_SUB32( r_Q10, q2_Q10 ); |
| rd2_Q10 = SKP_RSHIFT( SKP_SMLABB( rd2_Q10, rr_Q10, rr_Q10 ), 10 ); |
| |
| if( rd2_Q10 < rd1_Q10 ) { |
| q1_Q10 = q2_Q10; |
| } |
| |
| pulses[ i ] = ( opus_int8 )SKP_RSHIFT_ROUND( q1_Q10, 10 ); |
| |
| /* Excitation */ |
| exc_Q10 = q1_Q10 ^ dither; |
| |
| /* Add predictions */ |
| LPC_exc_Q10 = SKP_ADD32( exc_Q10, SKP_RSHIFT_ROUND( LTP_pred_Q14, 4 ) ); |
| xq_Q10 = SKP_ADD32( LPC_exc_Q10, LPC_pred_Q10 ); |
| |
| /* Scale XQ back to normal level before saving */ |
| xq[ i ] = ( opus_int16 )SKP_SAT16( SKP_RSHIFT_ROUND( SKP_SMULWW( xq_Q10, Gain_Q16 ), 10 ) ); |
| |
| /* Update states */ |
| psLPC_Q14++; |
| *psLPC_Q14 = SKP_LSHIFT( xq_Q10, 4 ); |
| sLF_AR_shp_Q10 = SKP_SUB32( xq_Q10, n_AR_Q10 ); |
| NSQ->sLF_AR_shp_Q12 = SKP_LSHIFT( sLF_AR_shp_Q10, 2 ); |
| |
| NSQ->sLTP_shp_Q10[ NSQ->sLTP_shp_buf_idx ] = SKP_SUB32( sLF_AR_shp_Q10, n_LF_Q10 ); |
| sLTP_Q16[ NSQ->sLTP_buf_idx ] = SKP_LSHIFT( LPC_exc_Q10, 6 ); |
| NSQ->sLTP_shp_buf_idx++; |
| NSQ->sLTP_buf_idx++; |
| |
| /* Make dither dependent on quantized signal */ |
| NSQ->rand_seed = SKP_ADD32_ovflw(NSQ->rand_seed, pulses[ i ]); |
| } |
| |
| /* Update LPC synth buffer */ |
| SKP_memcpy( NSQ->sLPC_Q14, &NSQ->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) ); |
| } |
| |
| static inline void silk_nsq_scale_states( |
| const silk_encoder_state *psEncC, /* I Encoder State */ |
| silk_nsq_state *NSQ, /* I/O NSQ state */ |
| const opus_int16 x[], /* I input in Q0 */ |
| opus_int32 x_sc_Q10[], /* O input scaled with 1/Gain */ |
| const opus_int16 sLTP[], /* I re-whitened LTP state in Q0 */ |
| opus_int32 sLTP_Q16[], /* O LTP state matching scaled input */ |
| opus_int subfr, /* I subframe number */ |
| const opus_int LTP_scale_Q14, /* I */ |
| const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */ |
| const opus_int pitchL[ MAX_NB_SUBFR ] /* I */ |
| ) |
| { |
| opus_int i, lag; |
| opus_int32 inv_gain_Q16, gain_adj_Q16, inv_gain_Q32; |
| |
| inv_gain_Q16 = silk_INVERSE32_varQ( SKP_max( Gains_Q16[ subfr ], 1 ), 32 ); |
| inv_gain_Q16 = SKP_min( inv_gain_Q16, SKP_int16_MAX ); |
| lag = pitchL[ subfr ]; |
| |
| /* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */ |
| if( NSQ->rewhite_flag ) { |
| inv_gain_Q32 = SKP_LSHIFT( inv_gain_Q16, 16 ); |
| if( subfr == 0 ) { |
| /* Do LTP downscaling */ |
| inv_gain_Q32 = SKP_LSHIFT( SKP_SMULWB( inv_gain_Q32, LTP_scale_Q14 ), 2 ); |
| } |
| for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) { |
| SKP_assert( i < MAX_FRAME_LENGTH ); |
| sLTP_Q16[ i ] = SKP_SMULWB( inv_gain_Q32, sLTP[ i ] ); |
| } |
| } |
| |
| /* Adjust for changing gain */ |
| if( inv_gain_Q16 != NSQ->prev_inv_gain_Q16 ) { |
| gain_adj_Q16 = silk_DIV32_varQ( inv_gain_Q16, NSQ->prev_inv_gain_Q16, 16 ); |
| |
| /* Scale long-term shaping state */ |
| for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i++ ) { |
| NSQ->sLTP_shp_Q10[ i ] = SKP_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q10[ i ] ); |
| } |
| |
| /* Scale long-term prediction state */ |
| if( NSQ->rewhite_flag == 0 ) { |
| for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) { |
| sLTP_Q16[ i ] = SKP_SMULWW( gain_adj_Q16, sLTP_Q16[ i ] ); |
| } |
| } |
| |
| NSQ->sLF_AR_shp_Q12 = SKP_SMULWW( gain_adj_Q16, NSQ->sLF_AR_shp_Q12 ); |
| |
| /* Scale short-term prediction and shaping states */ |
| for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) { |
| NSQ->sLPC_Q14[ i ] = SKP_SMULWW( gain_adj_Q16, NSQ->sLPC_Q14[ i ] ); |
| } |
| for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) { |
| NSQ->sAR2_Q14[ i ] = SKP_SMULWW( gain_adj_Q16, NSQ->sAR2_Q14[ i ] ); |
| } |
| } |
| |
| /* Scale input */ |
| for( i = 0; i < psEncC->subfr_length; i++ ) { |
| x_sc_Q10[ i ] = SKP_RSHIFT( SKP_SMULBB( x[ i ], ( opus_int16 )inv_gain_Q16 ), 6 ); |
| } |
| |
| /* save inv_gain */ |
| SKP_assert( inv_gain_Q16 != 0 ); |
| NSQ->prev_inv_gain_Q16 = inv_gain_Q16; |
| } |