| /*********************************************************************** |
| Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
| Redistribution and use in source and binary forms, with or without |
| modification, (subject to the limitations in the disclaimer below) |
| are permitted provided that the following conditions are met: |
| - Redistributions of source code must retain the above copyright notice, |
| this list of conditions and the following disclaimer. |
| - Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| - Neither the name of Skype Limited, nor the names of specific |
| contributors, may be used to endorse or promote products derived from |
| this software without specific prior written permission. |
| NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED |
| BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND |
| CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, |
| BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND |
| FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF |
| USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| ***********************************************************************/ |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #include "silk_main.h" |
| |
| typedef struct { |
| opus_int32 sLPC_Q14[ MAX_FRAME_LENGTH / MAX_NB_SUBFR + NSQ_LPC_BUF_LENGTH ]; |
| opus_int32 RandState[ DECISION_DELAY ]; |
| opus_int32 Q_Q10[ DECISION_DELAY ]; |
| opus_int32 Xq_Q10[ DECISION_DELAY ]; |
| opus_int32 Pred_Q16[ DECISION_DELAY ]; |
| opus_int32 Shape_Q10[ DECISION_DELAY ]; |
| opus_int32 sAR2_Q14[ MAX_SHAPE_LPC_ORDER ]; |
| opus_int32 LF_AR_Q12; |
| opus_int32 Seed; |
| opus_int32 SeedInit; |
| opus_int32 RD_Q10; |
| } NSQ_del_dec_struct; |
| |
| typedef struct { |
| opus_int32 Q_Q10; |
| opus_int32 RD_Q10; |
| opus_int32 xq_Q14; |
| opus_int32 LF_AR_Q12; |
| opus_int32 sLTP_shp_Q10; |
| opus_int32 LPC_exc_Q16; |
| } NSQ_sample_struct; |
| |
| static inline void silk_nsq_del_dec_scale_states( |
| const silk_encoder_state *psEncC, /* I Encoder State */ |
| silk_nsq_state *NSQ, /* I/O NSQ state */ |
| NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */ |
| const opus_int16 x[], /* I Input in Q0 */ |
| opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */ |
| const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */ |
| opus_int32 sLTP_Q16[], /* O LTP state matching scaled input */ |
| opus_int subfr, /* I Subframe number */ |
| opus_int nStatesDelayedDecision, /* I Number of del dec states */ |
| opus_int smpl_buf_idx, /* I Index to newest samples in buffers */ |
| const opus_int LTP_scale_Q14, /* I LTP state scaling */ |
| const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */ |
| const opus_int pitchL[ MAX_NB_SUBFR ] /* I Pitch lag */ |
| ); |
| |
| /******************************************/ |
| /* Noise shape quantizer for one subframe */ |
| /******************************************/ |
| static inline void silk_noise_shape_quantizer_del_dec( |
| silk_nsq_state *NSQ, /* I/O NSQ state */ |
| NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */ |
| opus_int signalType, /* I Signal type */ |
| const opus_int32 x_Q10[], /* I */ |
| opus_int8 pulses[], /* O */ |
| opus_int16 xq[], /* O */ |
| opus_int32 sLTP_Q16[], /* I/O LTP filter state */ |
| opus_int32 delayedGain_Q16[], /* I/O Gain delay buffer */ |
| const opus_int16 a_Q12[], /* I Short term prediction coefs */ |
| const opus_int16 b_Q14[], /* I Long term prediction coefs */ |
| const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */ |
| opus_int lag, /* I Pitch lag */ |
| opus_int32 HarmShapeFIRPacked_Q14, /* I */ |
| opus_int Tilt_Q14, /* I Spectral tilt */ |
| opus_int32 LF_shp_Q14, /* I */ |
| opus_int32 Gain_Q16, /* I */ |
| opus_int Lambda_Q10, /* I */ |
| opus_int offset_Q10, /* I */ |
| opus_int length, /* I Input length */ |
| opus_int subfr, /* I Subframe number */ |
| opus_int shapingLPCOrder, /* I Shaping LPC filter order */ |
| opus_int predictLPCOrder, /* I Prediction filter order */ |
| opus_int warping_Q16, /* I */ |
| opus_int nStatesDelayedDecision, /* I Number of states in decision tree */ |
| opus_int *smpl_buf_idx, /* I Index to newest samples in buffers */ |
| opus_int decisionDelay /* I */ |
| ); |
| |
| void silk_NSQ_del_dec( |
| const silk_encoder_state *psEncC, /* I/O Encoder State */ |
| silk_nsq_state *NSQ, /* I/O NSQ state */ |
| SideInfoIndices *psIndices, /* I/O Quantization Indices */ |
| const opus_int16 x[], /* I Prefiltered input signal */ |
| opus_int8 pulses[], /* O Quantized pulse signal */ |
| const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Prediction coefs */ |
| const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I LT prediction coefs */ |
| const opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I */ |
| const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I */ |
| const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */ |
| const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I */ |
| const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */ |
| const opus_int pitchL[ MAX_NB_SUBFR ], /* I */ |
| const opus_int Lambda_Q10, /* I */ |
| const opus_int LTP_scale_Q14 /* I LTP state scaling */ |
| ) |
| { |
| opus_int i, k, lag, start_idx, LSF_interpolation_flag, Winner_ind, subfr; |
| opus_int last_smple_idx, smpl_buf_idx, decisionDelay; |
| const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13; |
| opus_int16 *pxq; |
| opus_int32 sLTP_Q16[ 2 * MAX_FRAME_LENGTH ]; |
| opus_int16 sLTP[ 2 * MAX_FRAME_LENGTH ]; |
| opus_int32 HarmShapeFIRPacked_Q14; |
| opus_int offset_Q10; |
| opus_int32 RDmin_Q10; |
| opus_int32 x_sc_Q10[ MAX_SUB_FRAME_LENGTH ]; |
| opus_int32 delayedGain_Q16[ DECISION_DELAY ]; |
| NSQ_del_dec_struct psDelDec[ MAX_DEL_DEC_STATES ]; |
| NSQ_del_dec_struct *psDD; |
| |
| /* Set unvoiced lag to the previous one, overwrite later for voiced */ |
| lag = NSQ->lagPrev; |
| |
| SKP_assert( NSQ->prev_inv_gain_Q16 != 0 ); |
| |
| /* Initialize delayed decision states */ |
| SKP_memset( psDelDec, 0, psEncC->nStatesDelayedDecision * sizeof( NSQ_del_dec_struct ) ); |
| for( k = 0; k < psEncC->nStatesDelayedDecision; k++ ) { |
| psDD = &psDelDec[ k ]; |
| psDD->Seed = ( k + psIndices->Seed ) & 3; |
| psDD->SeedInit = psDD->Seed; |
| psDD->RD_Q10 = 0; |
| psDD->LF_AR_Q12 = NSQ->sLF_AR_shp_Q12; |
| psDD->Shape_Q10[ 0 ] = NSQ->sLTP_shp_Q10[ psEncC->ltp_mem_length - 1 ]; |
| SKP_memcpy( psDD->sLPC_Q14, NSQ->sLPC_Q14, NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) ); |
| SKP_memcpy( psDD->sAR2_Q14, NSQ->sAR2_Q14, sizeof( NSQ->sAR2_Q14 ) ); |
| } |
| |
| offset_Q10 = silk_Quantization_Offsets_Q10[ psIndices->signalType >> 1 ][ psIndices->quantOffsetType ]; |
| smpl_buf_idx = 0; /* index of oldest samples */ |
| |
| decisionDelay = SKP_min_int( DECISION_DELAY, psEncC->subfr_length ); |
| |
| /* For voiced frames limit the decision delay to lower than the pitch lag */ |
| if( psIndices->signalType == TYPE_VOICED ) { |
| for( k = 0; k < psEncC->nb_subfr; k++ ) { |
| decisionDelay = SKP_min_int( decisionDelay, pitchL[ k ] - LTP_ORDER / 2 - 1 ); |
| } |
| } else { |
| if( lag > 0 ) { |
| decisionDelay = SKP_min_int( decisionDelay, lag - LTP_ORDER / 2 - 1 ); |
| } |
| } |
| |
| if( psIndices->NLSFInterpCoef_Q2 == 4 ) { |
| LSF_interpolation_flag = 0; |
| } else { |
| LSF_interpolation_flag = 1; |
| } |
| |
| /* Setup pointers to start of sub frame */ |
| pxq = &NSQ->xq[ psEncC->ltp_mem_length ]; |
| NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length; |
| NSQ->sLTP_buf_idx = psEncC->ltp_mem_length; |
| subfr = 0; |
| for( k = 0; k < psEncC->nb_subfr; k++ ) { |
| A_Q12 = &PredCoef_Q12[ ( ( k >> 1 ) | ( 1 - LSF_interpolation_flag ) ) * MAX_LPC_ORDER ]; |
| B_Q14 = <PCoef_Q14[ k * LTP_ORDER ]; |
| AR_shp_Q13 = &AR2_Q13[ k * MAX_SHAPE_LPC_ORDER ]; |
| |
| /* Noise shape parameters */ |
| SKP_assert( HarmShapeGain_Q14[ k ] >= 0 ); |
| HarmShapeFIRPacked_Q14 = SKP_RSHIFT( HarmShapeGain_Q14[ k ], 2 ); |
| HarmShapeFIRPacked_Q14 |= SKP_LSHIFT( ( opus_int32 )SKP_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 ); |
| |
| NSQ->rewhite_flag = 0; |
| if( psIndices->signalType == TYPE_VOICED ) { |
| /* Voiced */ |
| lag = pitchL[ k ]; |
| |
| /* Re-whitening */ |
| if( ( k & ( 3 - SKP_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) { |
| if( k == 2 ) { |
| /* RESET DELAYED DECISIONS */ |
| /* Find winner */ |
| RDmin_Q10 = psDelDec[ 0 ].RD_Q10; |
| Winner_ind = 0; |
| for( i = 1; i < psEncC->nStatesDelayedDecision; i++ ) { |
| if( psDelDec[ i ].RD_Q10 < RDmin_Q10 ) { |
| RDmin_Q10 = psDelDec[ i ].RD_Q10; |
| Winner_ind = i; |
| } |
| } |
| for( i = 0; i < psEncC->nStatesDelayedDecision; i++ ) { |
| if( i != Winner_ind ) { |
| psDelDec[ i ].RD_Q10 += ( SKP_int32_MAX >> 4 ); |
| SKP_assert( psDelDec[ i ].RD_Q10 >= 0 ); |
| } |
| } |
| |
| /* Copy final part of signals from winner state to output and long-term filter states */ |
| psDD = &psDelDec[ Winner_ind ]; |
| last_smple_idx = smpl_buf_idx + decisionDelay; |
| for( i = 0; i < decisionDelay; i++ ) { |
| last_smple_idx = ( last_smple_idx - 1 ) & DECISION_DELAY_MASK; |
| pulses[ i - decisionDelay ] = ( opus_int8 )SKP_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 ); |
| pxq[ i - decisionDelay ] = ( opus_int16 )SKP_SAT16( SKP_RSHIFT_ROUND( |
| SKP_SMULWW( psDD->Xq_Q10[ last_smple_idx ], Gains_Q16[ 1 ] ), 10 ) ); |
| NSQ->sLTP_shp_Q10[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDD->Shape_Q10[ last_smple_idx ]; |
| } |
| |
| subfr = 0; |
| } |
| |
| /* Rewhiten with new A coefs */ |
| start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2; |
| SKP_assert( start_idx > 0 ); |
| |
| silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ], |
| A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder ); |
| |
| NSQ->sLTP_buf_idx = psEncC->ltp_mem_length; |
| NSQ->rewhite_flag = 1; |
| } |
| } |
| |
| silk_nsq_del_dec_scale_states( psEncC, NSQ, psDelDec, x, x_sc_Q10, sLTP, sLTP_Q16, k, |
| psEncC->nStatesDelayedDecision, smpl_buf_idx, LTP_scale_Q14, Gains_Q16, pitchL ); |
| |
| silk_noise_shape_quantizer_del_dec( NSQ, psDelDec, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q16, |
| delayedGain_Q16, A_Q12, B_Q14, AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ], |
| Gains_Q16[ k ], Lambda_Q10, offset_Q10, psEncC->subfr_length, subfr++, psEncC->shapingLPCOrder, |
| psEncC->predictLPCOrder, psEncC->warping_Q16, psEncC->nStatesDelayedDecision, &smpl_buf_idx, decisionDelay ); |
| |
| x += psEncC->subfr_length; |
| pulses += psEncC->subfr_length; |
| pxq += psEncC->subfr_length; |
| } |
| |
| /* Find winner */ |
| RDmin_Q10 = psDelDec[ 0 ].RD_Q10; |
| Winner_ind = 0; |
| for( k = 1; k < psEncC->nStatesDelayedDecision; k++ ) { |
| if( psDelDec[ k ].RD_Q10 < RDmin_Q10 ) { |
| RDmin_Q10 = psDelDec[ k ].RD_Q10; |
| Winner_ind = k; |
| } |
| } |
| |
| /* Copy final part of signals from winner state to output and long-term filter states */ |
| psDD = &psDelDec[ Winner_ind ]; |
| psIndices->Seed = psDD->SeedInit; |
| last_smple_idx = smpl_buf_idx + decisionDelay; |
| for( i = 0; i < decisionDelay; i++ ) { |
| last_smple_idx = ( last_smple_idx - 1 ) & DECISION_DELAY_MASK; |
| pulses[ i - decisionDelay ] = ( opus_int8 )SKP_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 ); |
| pxq[ i - decisionDelay ] = ( opus_int16 )SKP_SAT16( SKP_RSHIFT_ROUND( |
| SKP_SMULWW( psDD->Xq_Q10[ last_smple_idx ], Gains_Q16[ psEncC->nb_subfr - 1 ] ), 10 ) ); |
| NSQ->sLTP_shp_Q10[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDD->Shape_Q10[ last_smple_idx ]; |
| sLTP_Q16[ NSQ->sLTP_buf_idx - decisionDelay + i ] = psDD->Pred_Q16[ last_smple_idx ]; |
| } |
| SKP_memcpy( NSQ->sLPC_Q14, &psDD->sLPC_Q14[ psEncC->subfr_length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) ); |
| SKP_memcpy( NSQ->sAR2_Q14, psDD->sAR2_Q14, sizeof( psDD->sAR2_Q14 ) ); |
| |
| /* Update states */ |
| NSQ->sLF_AR_shp_Q12 = psDD->LF_AR_Q12; |
| NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ]; |
| |
| /* Save quantized speech and noise shaping signals */ |
| SKP_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) ); |
| SKP_memmove( NSQ->sLTP_shp_Q10, &NSQ->sLTP_shp_Q10[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) ); |
| |
| #ifdef SAVE_ALL_INTERNAL_DATA |
| DEBUG_STORE_DATA( xq.dat, &pxq[ -psEncC->frame_length ], psEncC->frame_length * sizeof( opus_int16 ) ); |
| DEBUG_STORE_DATA( q.dat, &pulses[ -psEncC->frame_length ], psEncC->frame_length * sizeof( opus_int8 ) ); |
| DEBUG_STORE_DATA( sLTP_Q16.dat, &sLTP_Q16[ psEncC->ltp_mem_length ], psEncC->frame_length * sizeof( opus_int32 ) ); |
| #endif |
| } |
| |
| /******************************************/ |
| /* Noise shape quantizer for one subframe */ |
| /******************************************/ |
| static inline void silk_noise_shape_quantizer_del_dec( |
| silk_nsq_state *NSQ, /* I/O NSQ state */ |
| NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */ |
| opus_int signalType, /* I Signal type */ |
| const opus_int32 x_Q10[], /* I */ |
| opus_int8 pulses[], /* O */ |
| opus_int16 xq[], /* O */ |
| opus_int32 sLTP_Q16[], /* I/O LTP filter state */ |
| opus_int32 delayedGain_Q16[], /* I/O Gain delay buffer */ |
| const opus_int16 a_Q12[], /* I Short term prediction coefs */ |
| const opus_int16 b_Q14[], /* I Long term prediction coefs */ |
| const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */ |
| opus_int lag, /* I Pitch lag */ |
| opus_int32 HarmShapeFIRPacked_Q14, /* I */ |
| opus_int Tilt_Q14, /* I Spectral tilt */ |
| opus_int32 LF_shp_Q14, /* I */ |
| opus_int32 Gain_Q16, /* I */ |
| opus_int Lambda_Q10, /* I */ |
| opus_int offset_Q10, /* I */ |
| opus_int length, /* I Input length */ |
| opus_int subfr, /* I Subframe number */ |
| opus_int shapingLPCOrder, /* I Shaping LPC filter order */ |
| opus_int predictLPCOrder, /* I Prediction filter order */ |
| opus_int warping_Q16, /* I */ |
| opus_int nStatesDelayedDecision, /* I Number of states in decision tree */ |
| opus_int *smpl_buf_idx, /* I Index to newest samples in buffers */ |
| opus_int decisionDelay /* I */ |
| ) |
| { |
| opus_int i, j, k, Winner_ind, RDmin_ind, RDmax_ind, last_smple_idx; |
| opus_int32 Winner_rand_state; |
| opus_int32 LTP_pred_Q14, LPC_pred_Q10, n_AR_Q10, n_LTP_Q14, LTP_Q10; |
| opus_int32 n_LF_Q10, r_Q10, rr_Q10, rd1_Q10, rd2_Q10, RDmin_Q10, RDmax_Q10; |
| opus_int32 q1_Q10, q2_Q10, dither, exc_Q10, LPC_exc_Q10, xq_Q10; |
| opus_int32 tmp1, tmp2, sLF_AR_shp_Q10; |
| opus_int32 *pred_lag_ptr, *shp_lag_ptr, *psLPC_Q14; |
| NSQ_sample_struct psSampleState[ MAX_DEL_DEC_STATES ][ 2 ]; |
| NSQ_del_dec_struct *psDD; |
| NSQ_sample_struct *psSS; |
| |
| shp_lag_ptr = &NSQ->sLTP_shp_Q10[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ]; |
| pred_lag_ptr = &sLTP_Q16[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ]; |
| |
| for( i = 0; i < length; i++ ) { |
| /* Perform common calculations used in all states */ |
| |
| /* Long-term prediction */ |
| if( signalType == TYPE_VOICED ) { |
| /* Unrolled loop */ |
| LTP_pred_Q14 = SKP_SMULWB( pred_lag_ptr[ 0 ], b_Q14[ 0 ] ); |
| LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -1 ], b_Q14[ 1 ] ); |
| LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -2 ], b_Q14[ 2 ] ); |
| LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -3 ], b_Q14[ 3 ] ); |
| LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -4 ], b_Q14[ 4 ] ); |
| pred_lag_ptr++; |
| } else { |
| LTP_pred_Q14 = 0; |
| } |
| |
| /* Long-term shaping */ |
| if( lag > 0 ) { |
| /* Symmetric, packed FIR coefficients */ |
| n_LTP_Q14 = SKP_SMULWB( SKP_ADD32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 ); |
| n_LTP_Q14 = SKP_SMLAWT( n_LTP_Q14, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 ); |
| n_LTP_Q14 = SKP_LSHIFT( n_LTP_Q14, 6 ); |
| shp_lag_ptr++; |
| |
| LTP_Q10 = SKP_RSHIFT( SKP_SUB32( LTP_pred_Q14, n_LTP_Q14 ), 4 ); |
| } else { |
| LTP_Q10 = 0; |
| } |
| |
| for( k = 0; k < nStatesDelayedDecision; k++ ) { |
| /* Delayed decision state */ |
| psDD = &psDelDec[ k ]; |
| |
| /* Sample state */ |
| psSS = psSampleState[ k ]; |
| |
| /* Generate dither */ |
| psDD->Seed = SKP_RAND( psDD->Seed ); |
| |
| /* dither = rand_seed < 0 ? 0xFFFFFFFF : 0; */ |
| dither = SKP_RSHIFT( psDD->Seed, 31 ); |
| |
| /* Pointer used in short term prediction and shaping */ |
| psLPC_Q14 = &psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 + i ]; |
| /* Short-term prediction */ |
| SKP_assert( predictLPCOrder >= 10 ); /* check that unrolling works */ |
| SKP_assert( ( predictLPCOrder & 1 ) == 0 ); /* check that order is even */ |
| SKP_assert( ( (opus_int64)a_Q12 & 3 ) == 0 ); /* check that array starts at 4-byte aligned address */ |
| /* Partially unrolled */ |
| LPC_pred_Q10 = SKP_SMULWB( psLPC_Q14[ 0 ], a_Q12[ 0 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -1 ], a_Q12[ 1 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -2 ], a_Q12[ 2 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -3 ], a_Q12[ 3 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -4 ], a_Q12[ 4 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -5 ], a_Q12[ 5 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -6 ], a_Q12[ 6 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -7 ], a_Q12[ 7 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -8 ], a_Q12[ 8 ] ); |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -9 ], a_Q12[ 9 ] ); |
| for( j = 10; j < predictLPCOrder; j ++ ) { |
| LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -j ], a_Q12[ j ] ); |
| } |
| |
| /* Noise shape feedback */ |
| SKP_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */ |
| /* Output of lowpass section */ |
| tmp2 = SKP_SMLAWB( psLPC_Q14[ 0 ], psDD->sAR2_Q14[ 0 ], warping_Q16 ); |
| /* Output of allpass section */ |
| tmp1 = SKP_SMLAWB( psDD->sAR2_Q14[ 0 ], psDD->sAR2_Q14[ 1 ] - tmp2, warping_Q16 ); |
| psDD->sAR2_Q14[ 0 ] = tmp2; |
| n_AR_Q10 = SKP_SMULWB( tmp2, AR_shp_Q13[ 0 ] ); |
| /* Loop over allpass sections */ |
| for( j = 2; j < shapingLPCOrder; j += 2 ) { |
| /* Output of allpass section */ |
| tmp2 = SKP_SMLAWB( psDD->sAR2_Q14[ j - 1 ], psDD->sAR2_Q14[ j + 0 ] - tmp1, warping_Q16 ); |
| psDD->sAR2_Q14[ j - 1 ] = tmp1; |
| n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, tmp1, AR_shp_Q13[ j - 1 ] ); |
| /* Output of allpass section */ |
| tmp1 = SKP_SMLAWB( psDD->sAR2_Q14[ j + 0 ], psDD->sAR2_Q14[ j + 1 ] - tmp2, warping_Q16 ); |
| psDD->sAR2_Q14[ j + 0 ] = tmp2; |
| n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, tmp2, AR_shp_Q13[ j ] ); |
| } |
| psDD->sAR2_Q14[ shapingLPCOrder - 1 ] = tmp1; |
| n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, tmp1, AR_shp_Q13[ shapingLPCOrder - 1 ] ); |
| |
| n_AR_Q10 = SKP_RSHIFT( n_AR_Q10, 1 ); /* Q11 -> Q10 */ |
| n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, psDD->LF_AR_Q12, Tilt_Q14 ); |
| |
| n_LF_Q10 = SKP_LSHIFT( SKP_SMULWB( psDD->Shape_Q10[ *smpl_buf_idx ], LF_shp_Q14 ), 2 ); |
| n_LF_Q10 = SKP_SMLAWT( n_LF_Q10, psDD->LF_AR_Q12, LF_shp_Q14 ); |
| |
| /* Input minus prediction plus noise feedback */ |
| /* r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP */ |
| tmp1 = SKP_ADD32( LTP_Q10, LPC_pred_Q10 ); /* add Q10 stuff */ |
| tmp1 = SKP_SUB32( tmp1, n_AR_Q10 ); /* subtract Q10 stuff */ |
| tmp1 = SKP_SUB32( tmp1, n_LF_Q10 ); /* subtract Q10 stuff */ |
| r_Q10 = SKP_SUB32( x_Q10[ i ], tmp1 ); /* residual error Q10 */ |
| |
| /* Flip sign depending on dither */ |
| r_Q10 = r_Q10 ^ dither; |
| r_Q10 = SKP_LIMIT_32( r_Q10, -31 << 10, 30 << 10 ); |
| |
| /* Find two quantization level candidates and measure their rate-distortion */ |
| q1_Q10 = SKP_SUB32( r_Q10, offset_Q10 ); |
| q1_Q10 = SKP_RSHIFT( q1_Q10, 10 ); |
| if( q1_Q10 > 0 ) { |
| q1_Q10 = SKP_SUB32( SKP_LSHIFT( q1_Q10, 10 ), QUANT_LEVEL_ADJUST_Q10 ); |
| q1_Q10 = SKP_ADD32( q1_Q10, offset_Q10 ); |
| q2_Q10 = SKP_ADD32( q1_Q10, 1024 ); |
| rd1_Q10 = SKP_SMULBB( q1_Q10, Lambda_Q10 ); |
| rd2_Q10 = SKP_SMULBB( q2_Q10, Lambda_Q10 ); |
| } else if( q1_Q10 == 0 ) { |
| q1_Q10 = offset_Q10; |
| q2_Q10 = SKP_ADD32( q1_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 ); |
| rd1_Q10 = SKP_SMULBB( q1_Q10, Lambda_Q10 ); |
| rd2_Q10 = SKP_SMULBB( q2_Q10, Lambda_Q10 ); |
| } else if( q1_Q10 == -1 ) { |
| q2_Q10 = offset_Q10; |
| q1_Q10 = SKP_SUB32( q2_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 ); |
| rd1_Q10 = SKP_SMULBB( -q1_Q10, Lambda_Q10 ); |
| rd2_Q10 = SKP_SMULBB( q2_Q10, Lambda_Q10 ); |
| } else { /* Q1_Q10 < -1 */ |
| q1_Q10 = SKP_ADD32( SKP_LSHIFT( q1_Q10, 10 ), QUANT_LEVEL_ADJUST_Q10 ); |
| q1_Q10 = SKP_ADD32( q1_Q10, offset_Q10 ); |
| q2_Q10 = SKP_ADD32( q1_Q10, 1024 ); |
| rd1_Q10 = SKP_SMULBB( -q1_Q10, Lambda_Q10 ); |
| rd2_Q10 = SKP_SMULBB( -q2_Q10, Lambda_Q10 ); |
| } |
| rr_Q10 = SKP_SUB32( r_Q10, q1_Q10 ); |
| rd1_Q10 = SKP_RSHIFT( SKP_SMLABB( rd1_Q10, rr_Q10, rr_Q10 ), 10 ); |
| rr_Q10 = SKP_SUB32( r_Q10, q2_Q10 ); |
| rd2_Q10 = SKP_RSHIFT( SKP_SMLABB( rd2_Q10, rr_Q10, rr_Q10 ), 10 ); |
| |
| if( rd1_Q10 < rd2_Q10 ) { |
| psSS[ 0 ].RD_Q10 = SKP_ADD32( psDD->RD_Q10, rd1_Q10 ); |
| psSS[ 1 ].RD_Q10 = SKP_ADD32( psDD->RD_Q10, rd2_Q10 ); |
| psSS[ 0 ].Q_Q10 = q1_Q10; |
| psSS[ 1 ].Q_Q10 = q2_Q10; |
| } else { |
| psSS[ 0 ].RD_Q10 = SKP_ADD32( psDD->RD_Q10, rd2_Q10 ); |
| psSS[ 1 ].RD_Q10 = SKP_ADD32( psDD->RD_Q10, rd1_Q10 ); |
| psSS[ 0 ].Q_Q10 = q2_Q10; |
| psSS[ 1 ].Q_Q10 = q1_Q10; |
| } |
| |
| /* Update states for best quantization */ |
| |
| /* Quantized excitation */ |
| exc_Q10 = psSS[ 0 ].Q_Q10 ^ dither; |
| |
| /* Add predictions */ |
| LPC_exc_Q10 = exc_Q10 + SKP_RSHIFT_ROUND( LTP_pred_Q14, 4 ); |
| xq_Q10 = SKP_ADD32( LPC_exc_Q10, LPC_pred_Q10 ); |
| |
| /* Update states */ |
| sLF_AR_shp_Q10 = SKP_SUB32( xq_Q10, n_AR_Q10 ); |
| psSS[ 0 ].sLTP_shp_Q10 = SKP_SUB32( sLF_AR_shp_Q10, n_LF_Q10 ); |
| psSS[ 0 ].LF_AR_Q12 = SKP_LSHIFT( sLF_AR_shp_Q10, 2 ); |
| psSS[ 0 ].xq_Q14 = SKP_LSHIFT( xq_Q10, 4 ); |
| psSS[ 0 ].LPC_exc_Q16 = SKP_LSHIFT( LPC_exc_Q10, 6 ); |
| |
| /* Update states for second best quantization */ |
| |
| /* Quantized excitation */ |
| exc_Q10 = psSS[ 1 ].Q_Q10 ^ dither; |
| |
| /* Add predictions */ |
| LPC_exc_Q10 = exc_Q10 + SKP_RSHIFT_ROUND( LTP_pred_Q14, 4 ); |
| xq_Q10 = SKP_ADD32( LPC_exc_Q10, LPC_pred_Q10 ); |
| |
| /* Update states */ |
| sLF_AR_shp_Q10 = SKP_SUB32( xq_Q10, n_AR_Q10 ); |
| psSS[ 1 ].sLTP_shp_Q10 = SKP_SUB32( sLF_AR_shp_Q10, n_LF_Q10 ); |
| psSS[ 1 ].LF_AR_Q12 = SKP_LSHIFT( sLF_AR_shp_Q10, 2 ); |
| psSS[ 1 ].xq_Q14 = SKP_LSHIFT( xq_Q10, 4 ); |
| psSS[ 1 ].LPC_exc_Q16 = SKP_LSHIFT( LPC_exc_Q10, 6 ); |
| } |
| |
| *smpl_buf_idx = ( *smpl_buf_idx - 1 ) & DECISION_DELAY_MASK; /* Index to newest samples */ |
| last_smple_idx = ( *smpl_buf_idx + decisionDelay ) & DECISION_DELAY_MASK; /* Index to decisionDelay old samples */ |
| |
| /* Find winner */ |
| RDmin_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10; |
| Winner_ind = 0; |
| for( k = 1; k < nStatesDelayedDecision; k++ ) { |
| if( psSampleState[ k ][ 0 ].RD_Q10 < RDmin_Q10 ) { |
| RDmin_Q10 = psSampleState[ k ][ 0 ].RD_Q10; |
| Winner_ind = k; |
| } |
| } |
| |
| /* Increase RD values of expired states */ |
| Winner_rand_state = psDelDec[ Winner_ind ].RandState[ last_smple_idx ]; |
| for( k = 0; k < nStatesDelayedDecision; k++ ) { |
| if( psDelDec[ k ].RandState[ last_smple_idx ] != Winner_rand_state ) { |
| psSampleState[ k ][ 0 ].RD_Q10 = SKP_ADD32( psSampleState[ k ][ 0 ].RD_Q10, ( SKP_int32_MAX >> 4 ) ); |
| psSampleState[ k ][ 1 ].RD_Q10 = SKP_ADD32( psSampleState[ k ][ 1 ].RD_Q10, ( SKP_int32_MAX >> 4 ) ); |
| SKP_assert( psSampleState[ k ][ 0 ].RD_Q10 >= 0 ); |
| } |
| } |
| |
| /* Find worst in first set and best in second set */ |
| RDmax_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10; |
| RDmin_Q10 = psSampleState[ 0 ][ 1 ].RD_Q10; |
| RDmax_ind = 0; |
| RDmin_ind = 0; |
| for( k = 1; k < nStatesDelayedDecision; k++ ) { |
| /* find worst in first set */ |
| if( psSampleState[ k ][ 0 ].RD_Q10 > RDmax_Q10 ) { |
| RDmax_Q10 = psSampleState[ k ][ 0 ].RD_Q10; |
| RDmax_ind = k; |
| } |
| /* find best in second set */ |
| if( psSampleState[ k ][ 1 ].RD_Q10 < RDmin_Q10 ) { |
| RDmin_Q10 = psSampleState[ k ][ 1 ].RD_Q10; |
| RDmin_ind = k; |
| } |
| } |
| |
| /* Replace a state if best from second set outperforms worst in first set */ |
| if( RDmin_Q10 < RDmax_Q10 ) { |
| SKP_memcpy( ((opus_int32 *)&psDelDec[ RDmax_ind ]) + i, |
| ((opus_int32 *)&psDelDec[ RDmin_ind ]) + i, sizeof( NSQ_del_dec_struct ) - i * sizeof( opus_int32) ); |
| SKP_memcpy( &psSampleState[ RDmax_ind ][ 0 ], &psSampleState[ RDmin_ind ][ 1 ], sizeof( NSQ_sample_struct ) ); |
| } |
| |
| /* Write samples from winner to output and long-term filter states */ |
| psDD = &psDelDec[ Winner_ind ]; |
| if( subfr > 0 || i >= decisionDelay ) { |
| pulses[ i - decisionDelay ] = ( opus_int8 )SKP_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 ); |
| xq[ i - decisionDelay ] = ( opus_int16 )SKP_SAT16( SKP_RSHIFT_ROUND( |
| SKP_SMULWW( psDD->Xq_Q10[ last_smple_idx ], delayedGain_Q16[ last_smple_idx ] ), 10 ) ); |
| NSQ->sLTP_shp_Q10[ NSQ->sLTP_shp_buf_idx - decisionDelay ] = psDD->Shape_Q10[ last_smple_idx ]; |
| sLTP_Q16[ NSQ->sLTP_buf_idx - decisionDelay ] = psDD->Pred_Q16[ last_smple_idx ]; |
| } |
| NSQ->sLTP_shp_buf_idx++; |
| NSQ->sLTP_buf_idx++; |
| |
| /* Update states */ |
| for( k = 0; k < nStatesDelayedDecision; k++ ) { |
| psDD = &psDelDec[ k ]; |
| psSS = &psSampleState[ k ][ 0 ]; |
| psDD->LF_AR_Q12 = psSS->LF_AR_Q12; |
| psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH + i ] = psSS->xq_Q14; |
| psDD->Xq_Q10[ *smpl_buf_idx ] = SKP_RSHIFT( psSS->xq_Q14, 4 ); |
| psDD->Q_Q10[ *smpl_buf_idx ] = psSS->Q_Q10; |
| psDD->Pred_Q16[ *smpl_buf_idx ] = psSS->LPC_exc_Q16; |
| psDD->Shape_Q10[ *smpl_buf_idx ] = psSS->sLTP_shp_Q10; |
| psDD->Seed = SKP_ADD32( psDD->Seed, SKP_RSHIFT_ROUND( psSS->Q_Q10, 10 ) ); |
| psDD->RandState[ *smpl_buf_idx ] = psDD->Seed; |
| psDD->RD_Q10 = psSS->RD_Q10; |
| } |
| delayedGain_Q16[ *smpl_buf_idx ] = Gain_Q16; |
| } |
| /* Update LPC states */ |
| for( k = 0; k < nStatesDelayedDecision; k++ ) { |
| psDD = &psDelDec[ k ]; |
| SKP_memcpy( psDD->sLPC_Q14, &psDD->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) ); |
| } |
| } |
| |
| static inline void silk_nsq_del_dec_scale_states( |
| const silk_encoder_state *psEncC, /* I Encoder State */ |
| silk_nsq_state *NSQ, /* I/O NSQ state */ |
| NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */ |
| const opus_int16 x[], /* I Input in Q0 */ |
| opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */ |
| const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */ |
| opus_int32 sLTP_Q16[], /* O LTP state matching scaled input */ |
| opus_int subfr, /* I Subframe number */ |
| opus_int nStatesDelayedDecision, /* I Number of del dec states */ |
| opus_int smpl_buf_idx, /* I Index to newest samples in buffers */ |
| const opus_int LTP_scale_Q14, /* I LTP state scaling */ |
| const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */ |
| const opus_int pitchL[ MAX_NB_SUBFR ] /* I Pitch lag */ |
| ) |
| { |
| opus_int i, k, lag; |
| opus_int32 inv_gain_Q16, gain_adj_Q16, inv_gain_Q32; |
| NSQ_del_dec_struct *psDD; |
| |
| inv_gain_Q16 = silk_INVERSE32_varQ( SKP_max( Gains_Q16[ subfr ], 1 ), 32 ); |
| inv_gain_Q16 = SKP_min( inv_gain_Q16, SKP_int16_MAX ); |
| lag = pitchL[ subfr ]; |
| |
| /* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */ |
| if( NSQ->rewhite_flag ) { |
| inv_gain_Q32 = SKP_LSHIFT( inv_gain_Q16, 16 ); |
| if( subfr == 0 ) { |
| /* Do LTP downscaling */ |
| inv_gain_Q32 = SKP_LSHIFT( SKP_SMULWB( inv_gain_Q32, LTP_scale_Q14 ), 2 ); |
| } |
| for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) { |
| SKP_assert( i < MAX_FRAME_LENGTH ); |
| sLTP_Q16[ i ] = SKP_SMULWB( inv_gain_Q32, sLTP[ i ] ); |
| } |
| } |
| |
| /* Adjust for changing gain */ |
| if( inv_gain_Q16 != NSQ->prev_inv_gain_Q16 ) { |
| gain_adj_Q16 = silk_DIV32_varQ( inv_gain_Q16, NSQ->prev_inv_gain_Q16, 16 ); |
| |
| /* Scale long-term shaping state */ |
| for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i++ ) { |
| NSQ->sLTP_shp_Q10[ i ] = SKP_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q10[ i ] ); |
| } |
| |
| /* Scale long-term prediction state */ |
| if( NSQ->rewhite_flag == 0 ) { |
| for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) { |
| sLTP_Q16[ i ] = SKP_SMULWW( gain_adj_Q16, sLTP_Q16[ i ] ); |
| } |
| } |
| |
| for( k = 0; k < nStatesDelayedDecision; k++ ) { |
| psDD = &psDelDec[ k ]; |
| |
| /* Scale scalar states */ |
| psDD->LF_AR_Q12 = SKP_SMULWW( gain_adj_Q16, psDD->LF_AR_Q12 ); |
| |
| /* Scale short-term prediction and shaping states */ |
| for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) { |
| psDD->sLPC_Q14[ i ] = SKP_SMULWW( gain_adj_Q16, psDD->sLPC_Q14[ i ] ); |
| } |
| for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) { |
| psDD->sAR2_Q14[ i ] = SKP_SMULWW( gain_adj_Q16, psDD->sAR2_Q14[ i ] ); |
| } |
| for( i = 0; i < DECISION_DELAY; i++ ) { |
| psDD->Pred_Q16[ i ] = SKP_SMULWW( gain_adj_Q16, psDD->Pred_Q16[ i ] ); |
| psDD->Shape_Q10[ i ] = SKP_SMULWW( gain_adj_Q16, psDD->Shape_Q10[ i ] ); |
| } |
| } |
| } |
| |
| /* Scale input */ |
| for( i = 0; i < psEncC->subfr_length; i++ ) { |
| x_sc_Q10[ i ] = SKP_RSHIFT( SKP_SMULBB( x[ i ], ( opus_int16 )inv_gain_Q16 ), 6 ); |
| } |
| |
| /* save inv_gain */ |
| SKP_assert( inv_gain_Q16 != 0 ); |
| NSQ->prev_inv_gain_Q16 = inv_gain_Q16; |
| } |