Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 1 | /* Copyright (c) 2002-2008 Jean-Marc Valin |
| 2 | Copyright (c) 2007-2008 CSIRO |
| 3 | Copyright (c) 2007-2009 Xiph.Org Foundation |
| 4 | Written by Jean-Marc Valin */ |
| 5 | /** |
| 6 | @file mathops.h |
| 7 | @brief Various math functions |
| 8 | */ |
| 9 | /* |
| 10 | Redistribution and use in source and binary forms, with or without |
| 11 | modification, are permitted provided that the following conditions |
| 12 | are met: |
| 13 | |
| 14 | - Redistributions of source code must retain the above copyright |
| 15 | notice, this list of conditions and the following disclaimer. |
| 16 | |
| 17 | - Redistributions in binary form must reproduce the above copyright |
| 18 | notice, this list of conditions and the following disclaimer in the |
| 19 | documentation and/or other materials provided with the distribution. |
| 20 | |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 21 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 22 | ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 23 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
Jean-Marc Valin | cb05e7c | 2012-04-20 16:40:24 -0400 | [diff] [blame] | 24 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
| 25 | OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 26 | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 27 | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 28 | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 29 | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| 30 | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 31 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 32 | */ |
| 33 | |
| 34 | #ifdef HAVE_CONFIG_H |
| 35 | #include "config.h" |
| 36 | #endif |
| 37 | |
| 38 | #include "mathops.h" |
| 39 | |
Timothy B. Terriberry | 68242ac | 2010-07-27 15:09:51 -0700 | [diff] [blame] | 40 | /*Compute floor(sqrt(_val)) with exact arithmetic. |
| 41 | This has been tested on all possible 32-bit inputs.*/ |
Jean-Marc Valin | d77d6a5 | 2011-07-29 17:33:06 -0400 | [diff] [blame] | 42 | unsigned isqrt32(opus_uint32 _val){ |
Timothy B. Terriberry | 68242ac | 2010-07-27 15:09:51 -0700 | [diff] [blame] | 43 | unsigned b; |
| 44 | unsigned g; |
| 45 | int bshift; |
| 46 | /*Uses the second method from |
| 47 | http://www.azillionmonkeys.com/qed/sqroot.html |
| 48 | The main idea is to search for the largest binary digit b such that |
| 49 | (g+b)*(g+b) <= _val, and add it to the solution g.*/ |
| 50 | g=0; |
Gregory Maxwell | 75d2780 | 2011-08-30 14:02:41 -0400 | [diff] [blame] | 51 | bshift=(EC_ILOG(_val)-1)>>1; |
Timothy B. Terriberry | 68242ac | 2010-07-27 15:09:51 -0700 | [diff] [blame] | 52 | b=1U<<bshift; |
| 53 | do{ |
Jean-Marc Valin | d77d6a5 | 2011-07-29 17:33:06 -0400 | [diff] [blame] | 54 | opus_uint32 t; |
Gregory Maxwell | 75d2780 | 2011-08-30 14:02:41 -0400 | [diff] [blame] | 55 | t=(((opus_uint32)g<<1)+b)<<bshift; |
Timothy B. Terriberry | 68242ac | 2010-07-27 15:09:51 -0700 | [diff] [blame] | 56 | if(t<=_val){ |
| 57 | g+=b; |
| 58 | _val-=t; |
| 59 | } |
| 60 | b>>=1; |
| 61 | bshift--; |
| 62 | } |
| 63 | while(bshift>=0); |
| 64 | return g; |
| 65 | } |
| 66 | |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 67 | #ifdef FIXED_POINT |
| 68 | |
Jean-Marc Valin | ff5f722 | 2011-07-29 18:59:12 -0400 | [diff] [blame] | 69 | opus_val32 frac_div32(opus_val32 a, opus_val32 b) |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 70 | { |
Jean-Marc Valin | ff5f722 | 2011-07-29 18:59:12 -0400 | [diff] [blame] | 71 | opus_val16 rcp; |
| 72 | opus_val32 result, rem; |
Jean-Marc Valin | 1ad93cf | 2010-11-06 22:02:32 -0400 | [diff] [blame] | 73 | int shift = celt_ilog2(b)-29; |
| 74 | a = VSHR32(a,shift); |
| 75 | b = VSHR32(b,shift); |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 76 | /* 16-bit reciprocal */ |
Jean-Marc Valin | 35095c6 | 2010-11-04 13:24:44 -0400 | [diff] [blame] | 77 | rcp = ROUND16(celt_rcp(ROUND16(b,16)),3); |
Jean-Marc Valin | 367c394 | 2012-04-12 11:07:21 -0400 | [diff] [blame] | 78 | result = MULT16_32_Q15(rcp, a); |
| 79 | rem = PSHR32(a,2)-MULT32_32_Q31(result, b); |
| 80 | result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2)); |
| 81 | if (result >= 536870912) /* 2^29 */ |
| 82 | return 2147483647; /* 2^31 - 1 */ |
| 83 | else if (result <= -536870912) /* -2^29 */ |
| 84 | return -2147483647; /* -2^31 */ |
| 85 | else |
| 86 | return SHL32(result, 2); |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 87 | } |
| 88 | |
| 89 | /** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */ |
Jean-Marc Valin | ff5f722 | 2011-07-29 18:59:12 -0400 | [diff] [blame] | 90 | opus_val16 celt_rsqrt_norm(opus_val32 x) |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 91 | { |
Jean-Marc Valin | ff5f722 | 2011-07-29 18:59:12 -0400 | [diff] [blame] | 92 | opus_val16 n; |
| 93 | opus_val16 r; |
| 94 | opus_val16 r2; |
| 95 | opus_val16 y; |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 96 | /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */ |
| 97 | n = x-32768; |
| 98 | /* Get a rough initial guess for the root. |
| 99 | The optimal minimax quadratic approximation (using relative error) is |
| 100 | r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485). |
| 101 | Coefficients here, and the final result r, are Q14.*/ |
| 102 | r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713)))); |
| 103 | /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14. |
| 104 | We can compute the result from n and r using Q15 multiplies with some |
| 105 | adjustment, carefully done to avoid overflow. |
| 106 | Range of y is [-1564,1594]. */ |
| 107 | r2 = MULT16_16_Q15(r, r); |
| 108 | y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1); |
| 109 | /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5). |
| 110 | This yields the Q14 reciprocal square root of the Q16 x, with a maximum |
| 111 | relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a |
| 112 | peak absolute error of 2.26591/16384. */ |
| 113 | return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y, |
| 114 | SUB16(MULT16_16_Q15(y, 12288), 16384)))); |
| 115 | } |
| 116 | |
| 117 | /** Sqrt approximation (QX input, QX/2 output) */ |
Jean-Marc Valin | ff5f722 | 2011-07-29 18:59:12 -0400 | [diff] [blame] | 118 | opus_val32 celt_sqrt(opus_val32 x) |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 119 | { |
| 120 | int k; |
Jean-Marc Valin | ff5f722 | 2011-07-29 18:59:12 -0400 | [diff] [blame] | 121 | opus_val16 n; |
| 122 | opus_val32 rt; |
| 123 | static const opus_val16 C[5] = {23175, 11561, -3011, 1699, -664}; |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 124 | if (x==0) |
| 125 | return 0; |
Jean-Marc Valin | c3273ed | 2012-11-29 16:51:06 -0500 | [diff] [blame] | 126 | else if (x>=1073741824) |
| 127 | return 32767; |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 128 | k = (celt_ilog2(x)>>1)-7; |
Jean-Marc Valin | 0da4f23 | 2011-09-25 00:11:46 -0400 | [diff] [blame] | 129 | x = VSHR32(x, 2*k); |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 130 | n = x-32768; |
| 131 | rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], |
| 132 | MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4]))))))))); |
| 133 | rt = VSHR32(rt,7-k); |
| 134 | return rt; |
| 135 | } |
| 136 | |
| 137 | #define L1 32767 |
| 138 | #define L2 -7651 |
| 139 | #define L3 8277 |
| 140 | #define L4 -626 |
| 141 | |
Gregory Maxwell | 7830cf1 | 2013-10-17 15:56:52 -0700 | [diff] [blame] | 142 | static OPUS_INLINE opus_val16 _celt_cos_pi_2(opus_val16 x) |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 143 | { |
Jean-Marc Valin | ff5f722 | 2011-07-29 18:59:12 -0400 | [diff] [blame] | 144 | opus_val16 x2; |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 145 | |
| 146 | x2 = MULT16_16_P15(x,x); |
| 147 | return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2 |
| 148 | )))))))); |
| 149 | } |
| 150 | |
| 151 | #undef L1 |
| 152 | #undef L2 |
| 153 | #undef L3 |
| 154 | #undef L4 |
| 155 | |
Jean-Marc Valin | ff5f722 | 2011-07-29 18:59:12 -0400 | [diff] [blame] | 156 | opus_val16 celt_cos_norm(opus_val32 x) |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 157 | { |
| 158 | x = x&0x0001ffff; |
| 159 | if (x>SHL32(EXTEND32(1), 16)) |
| 160 | x = SUB32(SHL32(EXTEND32(1), 17),x); |
| 161 | if (x&0x00007fff) |
| 162 | { |
| 163 | if (x<SHL32(EXTEND32(1), 15)) |
| 164 | { |
| 165 | return _celt_cos_pi_2(EXTRACT16(x)); |
| 166 | } else { |
Jean-Marc Valin | b66080a | 2016-06-20 12:11:05 -0400 | [diff] [blame^] | 167 | return NEG16(_celt_cos_pi_2(EXTRACT16(65536-x))); |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 168 | } |
| 169 | } else { |
| 170 | if (x&0x0000ffff) |
| 171 | return 0; |
| 172 | else if (x&0x0001ffff) |
| 173 | return -32767; |
| 174 | else |
| 175 | return 32767; |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | /** Reciprocal approximation (Q15 input, Q16 output) */ |
Jean-Marc Valin | ff5f722 | 2011-07-29 18:59:12 -0400 | [diff] [blame] | 180 | opus_val32 celt_rcp(opus_val32 x) |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 181 | { |
| 182 | int i; |
Jean-Marc Valin | ff5f722 | 2011-07-29 18:59:12 -0400 | [diff] [blame] | 183 | opus_val16 n; |
| 184 | opus_val16 r; |
Jean-Marc Valin | 48923ae | 2010-07-23 17:28:50 -0400 | [diff] [blame] | 185 | celt_assert2(x>0, "celt_rcp() only defined for positive values"); |
| 186 | i = celt_ilog2(x); |
| 187 | /* n is Q15 with range [0,1). */ |
| 188 | n = VSHR32(x,i-15)-32768; |
| 189 | /* Start with a linear approximation: |
| 190 | r = 1.8823529411764706-0.9411764705882353*n. |
| 191 | The coefficients and the result are Q14 in the range [15420,30840].*/ |
| 192 | r = ADD16(30840, MULT16_16_Q15(-15420, n)); |
| 193 | /* Perform two Newton iterations: |
| 194 | r -= r*((r*n)-1.Q15) |
| 195 | = r*((r*n)+(r-1.Q15)). */ |
| 196 | r = SUB16(r, MULT16_16_Q15(r, |
| 197 | ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))); |
| 198 | /* We subtract an extra 1 in the second iteration to avoid overflow; it also |
| 199 | neatly compensates for truncation error in the rest of the process. */ |
| 200 | r = SUB16(r, ADD16(1, MULT16_16_Q15(r, |
| 201 | ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))))); |
| 202 | /* r is now the Q15 solution to 2/(n+1), with a maximum relative error |
| 203 | of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute |
| 204 | error of 1.24665/32768. */ |
| 205 | return VSHR32(EXTEND32(r),i-16); |
| 206 | } |
| 207 | |
| 208 | #endif |