| |
| /* png.c - location for general purpose libpng functions |
| * |
| * Last changed in libpng 1.5.6 [(PENDING RELEASE)] |
| * Copyright (c) 1998-2011 Glenn Randers-Pehrson |
| * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) |
| * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) |
| * |
| * This code is released under the libpng license. |
| * For conditions of distribution and use, see the disclaimer |
| * and license in png.h |
| */ |
| |
| #include "pngpriv.h" |
| |
| /* Generate a compiler error if there is an old png.h in the search path. */ |
| typedef png_libpng_version_1_5_6beta06 Your_png_h_is_not_version_1_5_6beta06; |
| |
| /* Tells libpng that we have already handled the first "num_bytes" bytes |
| * of the PNG file signature. If the PNG data is embedded into another |
| * stream we can set num_bytes = 8 so that libpng will not attempt to read |
| * or write any of the magic bytes before it starts on the IHDR. |
| */ |
| |
| #ifdef PNG_READ_SUPPORTED |
| void PNGAPI |
| png_set_sig_bytes(png_structp png_ptr, int num_bytes) |
| { |
| png_debug(1, "in png_set_sig_bytes"); |
| |
| if (png_ptr == NULL) |
| return; |
| |
| if (num_bytes > 8) |
| png_error(png_ptr, "Too many bytes for PNG signature"); |
| |
| png_ptr->sig_bytes = (png_byte)(num_bytes < 0 ? 0 : num_bytes); |
| } |
| |
| /* Checks whether the supplied bytes match the PNG signature. We allow |
| * checking less than the full 8-byte signature so that those apps that |
| * already read the first few bytes of a file to determine the file type |
| * can simply check the remaining bytes for extra assurance. Returns |
| * an integer less than, equal to, or greater than zero if sig is found, |
| * respectively, to be less than, to match, or be greater than the correct |
| * PNG signature (this is the same behavior as strcmp, memcmp, etc). |
| */ |
| int PNGAPI |
| png_sig_cmp(png_const_bytep sig, png_size_t start, png_size_t num_to_check) |
| { |
| png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10}; |
| |
| if (num_to_check > 8) |
| num_to_check = 8; |
| |
| else if (num_to_check < 1) |
| return (-1); |
| |
| if (start > 7) |
| return (-1); |
| |
| if (start + num_to_check > 8) |
| num_to_check = 8 - start; |
| |
| return ((int)(png_memcmp(&sig[start], &png_signature[start], num_to_check))); |
| } |
| |
| #endif /* PNG_READ_SUPPORTED */ |
| |
| #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) |
| /* Function to allocate memory for zlib */ |
| PNG_FUNCTION(voidpf /* PRIVATE */, |
| png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED) |
| { |
| png_voidp ptr; |
| png_structp p=(png_structp)png_ptr; |
| png_uint_32 save_flags=p->flags; |
| png_alloc_size_t num_bytes; |
| |
| if (png_ptr == NULL) |
| return (NULL); |
| |
| if (items > PNG_UINT_32_MAX/size) |
| { |
| png_warning (p, "Potential overflow in png_zalloc()"); |
| return (NULL); |
| } |
| num_bytes = (png_alloc_size_t)items * size; |
| |
| p->flags|=PNG_FLAG_MALLOC_NULL_MEM_OK; |
| ptr = (png_voidp)png_malloc((png_structp)png_ptr, num_bytes); |
| p->flags=save_flags; |
| |
| return ((voidpf)ptr); |
| } |
| |
| /* Function to free memory for zlib */ |
| void /* PRIVATE */ |
| png_zfree(voidpf png_ptr, voidpf ptr) |
| { |
| png_free((png_structp)png_ptr, (png_voidp)ptr); |
| } |
| |
| /* Reset the CRC variable to 32 bits of 1's. Care must be taken |
| * in case CRC is > 32 bits to leave the top bits 0. |
| */ |
| void /* PRIVATE */ |
| png_reset_crc(png_structp png_ptr) |
| { |
| /* The cast is safe because the crc is a 32 bit value. */ |
| png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0); |
| } |
| |
| /* Calculate the CRC over a section of data. We can only pass as |
| * much data to this routine as the largest single buffer size. We |
| * also check that this data will actually be used before going to the |
| * trouble of calculating it. |
| */ |
| void /* PRIVATE */ |
| png_calculate_crc(png_structp png_ptr, png_const_bytep ptr, png_size_t length) |
| { |
| int need_crc = 1; |
| |
| if (PNG_CHUNK_ANCILLIARY(png_ptr->chunk_name)) |
| { |
| if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) == |
| (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN)) |
| need_crc = 0; |
| } |
| |
| else /* critical */ |
| { |
| if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) |
| need_crc = 0; |
| } |
| |
| /* 'uLong' is defined as unsigned long, this means that on some systems it is |
| * a 64 bit value. crc32, however, returns 32 bits so the following cast is |
| * safe. 'uInt' may be no more than 16 bits, so it is necessary to perform a |
| * loop here. |
| */ |
| if (need_crc && length > 0) |
| { |
| uLong crc = png_ptr->crc; /* Should never issue a warning */ |
| |
| do |
| { |
| uInt safeLength = (uInt)length; |
| if (safeLength == 0) |
| safeLength = (uInt)-1; /* evil, but safe */ |
| |
| crc = crc32(crc, ptr, safeLength); |
| |
| /* The following should never issue compiler warnings, if they do the |
| * target system has characteristics that will probably violate other |
| * assumptions within the libpng code. |
| */ |
| ptr += safeLength; |
| length -= safeLength; |
| } |
| while (length > 0); |
| |
| /* And the following is always safe because the crc is only 32 bits. */ |
| png_ptr->crc = (png_uint_32)crc; |
| } |
| } |
| |
| /* Check a user supplied version number, called from both read and write |
| * functions that create a png_struct |
| */ |
| int |
| png_user_version_check(png_structp png_ptr, png_const_charp user_png_ver) |
| { |
| if (user_png_ver) |
| { |
| int i = 0; |
| |
| do |
| { |
| if (user_png_ver[i] != png_libpng_ver[i]) |
| png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; |
| } while (png_libpng_ver[i++]); |
| } |
| |
| else |
| png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; |
| |
| if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) |
| { |
| /* Libpng 0.90 and later are binary incompatible with libpng 0.89, so |
| * we must recompile any applications that use any older library version. |
| * For versions after libpng 1.0, we will be compatible, so we need |
| * only check the first digit. |
| */ |
| if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] || |
| (user_png_ver[0] == '1' && user_png_ver[2] != png_libpng_ver[2]) || |
| (user_png_ver[0] == '0' && user_png_ver[2] < '9')) |
| { |
| #ifdef PNG_WARNINGS_SUPPORTED |
| size_t pos = 0; |
| char m[128]; |
| |
| pos = png_safecat(m, sizeof m, pos, "Application built with libpng-"); |
| pos = png_safecat(m, sizeof m, pos, user_png_ver); |
| pos = png_safecat(m, sizeof m, pos, " but running with "); |
| pos = png_safecat(m, sizeof m, pos, png_libpng_ver); |
| |
| png_warning(png_ptr, m); |
| #endif |
| |
| #ifdef PNG_ERROR_NUMBERS_SUPPORTED |
| png_ptr->flags = 0; |
| #endif |
| |
| return 0; |
| } |
| } |
| |
| /* Success return. */ |
| return 1; |
| } |
| |
| /* Allocate the memory for an info_struct for the application. We don't |
| * really need the png_ptr, but it could potentially be useful in the |
| * future. This should be used in favour of malloc(png_sizeof(png_info)) |
| * and png_info_init() so that applications that want to use a shared |
| * libpng don't have to be recompiled if png_info changes size. |
| */ |
| PNG_FUNCTION(png_infop,PNGAPI |
| png_create_info_struct,(png_structp png_ptr),PNG_ALLOCATED) |
| { |
| png_infop info_ptr; |
| |
| png_debug(1, "in png_create_info_struct"); |
| |
| if (png_ptr == NULL) |
| return (NULL); |
| |
| #ifdef PNG_USER_MEM_SUPPORTED |
| info_ptr = (png_infop)png_create_struct_2(PNG_STRUCT_INFO, |
| png_ptr->malloc_fn, png_ptr->mem_ptr); |
| #else |
| info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO); |
| #endif |
| if (info_ptr != NULL) |
| png_info_init_3(&info_ptr, png_sizeof(png_info)); |
| |
| return (info_ptr); |
| } |
| |
| /* This function frees the memory associated with a single info struct. |
| * Normally, one would use either png_destroy_read_struct() or |
| * png_destroy_write_struct() to free an info struct, but this may be |
| * useful for some applications. |
| */ |
| void PNGAPI |
| png_destroy_info_struct(png_structp png_ptr, png_infopp info_ptr_ptr) |
| { |
| png_infop info_ptr = NULL; |
| |
| png_debug(1, "in png_destroy_info_struct"); |
| |
| if (png_ptr == NULL) |
| return; |
| |
| if (info_ptr_ptr != NULL) |
| info_ptr = *info_ptr_ptr; |
| |
| if (info_ptr != NULL) |
| { |
| png_info_destroy(png_ptr, info_ptr); |
| |
| #ifdef PNG_USER_MEM_SUPPORTED |
| png_destroy_struct_2((png_voidp)info_ptr, png_ptr->free_fn, |
| png_ptr->mem_ptr); |
| #else |
| png_destroy_struct((png_voidp)info_ptr); |
| #endif |
| *info_ptr_ptr = NULL; |
| } |
| } |
| |
| /* Initialize the info structure. This is now an internal function (0.89) |
| * and applications using it are urged to use png_create_info_struct() |
| * instead. |
| */ |
| |
| void PNGAPI |
| png_info_init_3(png_infopp ptr_ptr, png_size_t png_info_struct_size) |
| { |
| png_infop info_ptr = *ptr_ptr; |
| |
| png_debug(1, "in png_info_init_3"); |
| |
| if (info_ptr == NULL) |
| return; |
| |
| if (png_sizeof(png_info) > png_info_struct_size) |
| { |
| png_destroy_struct(info_ptr); |
| info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO); |
| *ptr_ptr = info_ptr; |
| } |
| |
| /* Set everything to 0 */ |
| png_memset(info_ptr, 0, png_sizeof(png_info)); |
| } |
| |
| void PNGAPI |
| png_data_freer(png_structp png_ptr, png_infop info_ptr, |
| int freer, png_uint_32 mask) |
| { |
| png_debug(1, "in png_data_freer"); |
| |
| if (png_ptr == NULL || info_ptr == NULL) |
| return; |
| |
| if (freer == PNG_DESTROY_WILL_FREE_DATA) |
| info_ptr->free_me |= mask; |
| |
| else if (freer == PNG_USER_WILL_FREE_DATA) |
| info_ptr->free_me &= ~mask; |
| |
| else |
| png_warning(png_ptr, |
| "Unknown freer parameter in png_data_freer"); |
| } |
| |
| void PNGAPI |
| png_free_data(png_structp png_ptr, png_infop info_ptr, png_uint_32 mask, |
| int num) |
| { |
| png_debug(1, "in png_free_data"); |
| |
| if (png_ptr == NULL || info_ptr == NULL) |
| return; |
| |
| #ifdef PNG_TEXT_SUPPORTED |
| /* Free text item num or (if num == -1) all text items */ |
| if ((mask & PNG_FREE_TEXT) & info_ptr->free_me) |
| { |
| if (num != -1) |
| { |
| if (info_ptr->text && info_ptr->text[num].key) |
| { |
| png_free(png_ptr, info_ptr->text[num].key); |
| info_ptr->text[num].key = NULL; |
| } |
| } |
| |
| else |
| { |
| int i; |
| for (i = 0; i < info_ptr->num_text; i++) |
| png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, i); |
| png_free(png_ptr, info_ptr->text); |
| info_ptr->text = NULL; |
| info_ptr->num_text=0; |
| } |
| } |
| #endif |
| |
| #ifdef PNG_tRNS_SUPPORTED |
| /* Free any tRNS entry */ |
| if ((mask & PNG_FREE_TRNS) & info_ptr->free_me) |
| { |
| png_free(png_ptr, info_ptr->trans_alpha); |
| info_ptr->trans_alpha = NULL; |
| info_ptr->valid &= ~PNG_INFO_tRNS; |
| } |
| #endif |
| |
| #ifdef PNG_sCAL_SUPPORTED |
| /* Free any sCAL entry */ |
| if ((mask & PNG_FREE_SCAL) & info_ptr->free_me) |
| { |
| png_free(png_ptr, info_ptr->scal_s_width); |
| png_free(png_ptr, info_ptr->scal_s_height); |
| info_ptr->scal_s_width = NULL; |
| info_ptr->scal_s_height = NULL; |
| info_ptr->valid &= ~PNG_INFO_sCAL; |
| } |
| #endif |
| |
| #ifdef PNG_pCAL_SUPPORTED |
| /* Free any pCAL entry */ |
| if ((mask & PNG_FREE_PCAL) & info_ptr->free_me) |
| { |
| png_free(png_ptr, info_ptr->pcal_purpose); |
| png_free(png_ptr, info_ptr->pcal_units); |
| info_ptr->pcal_purpose = NULL; |
| info_ptr->pcal_units = NULL; |
| if (info_ptr->pcal_params != NULL) |
| { |
| int i; |
| for (i = 0; i < (int)info_ptr->pcal_nparams; i++) |
| { |
| png_free(png_ptr, info_ptr->pcal_params[i]); |
| info_ptr->pcal_params[i] = NULL; |
| } |
| png_free(png_ptr, info_ptr->pcal_params); |
| info_ptr->pcal_params = NULL; |
| } |
| info_ptr->valid &= ~PNG_INFO_pCAL; |
| } |
| #endif |
| |
| #ifdef PNG_iCCP_SUPPORTED |
| /* Free any iCCP entry */ |
| if ((mask & PNG_FREE_ICCP) & info_ptr->free_me) |
| { |
| png_free(png_ptr, info_ptr->iccp_name); |
| png_free(png_ptr, info_ptr->iccp_profile); |
| info_ptr->iccp_name = NULL; |
| info_ptr->iccp_profile = NULL; |
| info_ptr->valid &= ~PNG_INFO_iCCP; |
| } |
| #endif |
| |
| #ifdef PNG_sPLT_SUPPORTED |
| /* Free a given sPLT entry, or (if num == -1) all sPLT entries */ |
| if ((mask & PNG_FREE_SPLT) & info_ptr->free_me) |
| { |
| if (num != -1) |
| { |
| if (info_ptr->splt_palettes) |
| { |
| png_free(png_ptr, info_ptr->splt_palettes[num].name); |
| png_free(png_ptr, info_ptr->splt_palettes[num].entries); |
| info_ptr->splt_palettes[num].name = NULL; |
| info_ptr->splt_palettes[num].entries = NULL; |
| } |
| } |
| |
| else |
| { |
| if (info_ptr->splt_palettes_num) |
| { |
| int i; |
| for (i = 0; i < (int)info_ptr->splt_palettes_num; i++) |
| png_free_data(png_ptr, info_ptr, PNG_FREE_SPLT, i); |
| |
| png_free(png_ptr, info_ptr->splt_palettes); |
| info_ptr->splt_palettes = NULL; |
| info_ptr->splt_palettes_num = 0; |
| } |
| info_ptr->valid &= ~PNG_INFO_sPLT; |
| } |
| } |
| #endif |
| |
| #ifdef PNG_UNKNOWN_CHUNKS_SUPPORTED |
| if (png_ptr->unknown_chunk.data) |
| { |
| png_free(png_ptr, png_ptr->unknown_chunk.data); |
| png_ptr->unknown_chunk.data = NULL; |
| } |
| |
| if ((mask & PNG_FREE_UNKN) & info_ptr->free_me) |
| { |
| if (num != -1) |
| { |
| if (info_ptr->unknown_chunks) |
| { |
| png_free(png_ptr, info_ptr->unknown_chunks[num].data); |
| info_ptr->unknown_chunks[num].data = NULL; |
| } |
| } |
| |
| else |
| { |
| int i; |
| |
| if (info_ptr->unknown_chunks_num) |
| { |
| for (i = 0; i < info_ptr->unknown_chunks_num; i++) |
| png_free_data(png_ptr, info_ptr, PNG_FREE_UNKN, i); |
| |
| png_free(png_ptr, info_ptr->unknown_chunks); |
| info_ptr->unknown_chunks = NULL; |
| info_ptr->unknown_chunks_num = 0; |
| } |
| } |
| } |
| #endif |
| |
| #ifdef PNG_hIST_SUPPORTED |
| /* Free any hIST entry */ |
| if ((mask & PNG_FREE_HIST) & info_ptr->free_me) |
| { |
| png_free(png_ptr, info_ptr->hist); |
| info_ptr->hist = NULL; |
| info_ptr->valid &= ~PNG_INFO_hIST; |
| } |
| #endif |
| |
| /* Free any PLTE entry that was internally allocated */ |
| if ((mask & PNG_FREE_PLTE) & info_ptr->free_me) |
| { |
| png_zfree(png_ptr, info_ptr->palette); |
| info_ptr->palette = NULL; |
| info_ptr->valid &= ~PNG_INFO_PLTE; |
| info_ptr->num_palette = 0; |
| } |
| |
| #ifdef PNG_INFO_IMAGE_SUPPORTED |
| /* Free any image bits attached to the info structure */ |
| if ((mask & PNG_FREE_ROWS) & info_ptr->free_me) |
| { |
| if (info_ptr->row_pointers) |
| { |
| int row; |
| for (row = 0; row < (int)info_ptr->height; row++) |
| { |
| png_free(png_ptr, info_ptr->row_pointers[row]); |
| info_ptr->row_pointers[row] = NULL; |
| } |
| png_free(png_ptr, info_ptr->row_pointers); |
| info_ptr->row_pointers = NULL; |
| } |
| info_ptr->valid &= ~PNG_INFO_IDAT; |
| } |
| #endif |
| |
| if (num != -1) |
| mask &= ~PNG_FREE_MUL; |
| |
| info_ptr->free_me &= ~mask; |
| } |
| |
| /* This is an internal routine to free any memory that the info struct is |
| * pointing to before re-using it or freeing the struct itself. Recall |
| * that png_free() checks for NULL pointers for us. |
| */ |
| void /* PRIVATE */ |
| png_info_destroy(png_structp png_ptr, png_infop info_ptr) |
| { |
| png_debug(1, "in png_info_destroy"); |
| |
| png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1); |
| |
| #ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED |
| if (png_ptr->num_chunk_list) |
| { |
| png_free(png_ptr, png_ptr->chunk_list); |
| png_ptr->chunk_list = NULL; |
| png_ptr->num_chunk_list = 0; |
| } |
| #endif |
| |
| png_info_init_3(&info_ptr, png_sizeof(png_info)); |
| } |
| #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */ |
| |
| /* This function returns a pointer to the io_ptr associated with the user |
| * functions. The application should free any memory associated with this |
| * pointer before png_write_destroy() or png_read_destroy() are called. |
| */ |
| png_voidp PNGAPI |
| png_get_io_ptr(png_structp png_ptr) |
| { |
| if (png_ptr == NULL) |
| return (NULL); |
| |
| return (png_ptr->io_ptr); |
| } |
| |
| #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) |
| # ifdef PNG_STDIO_SUPPORTED |
| /* Initialize the default input/output functions for the PNG file. If you |
| * use your own read or write routines, you can call either png_set_read_fn() |
| * or png_set_write_fn() instead of png_init_io(). If you have defined |
| * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a |
| * function of your own because "FILE *" isn't necessarily available. |
| */ |
| void PNGAPI |
| png_init_io(png_structp png_ptr, png_FILE_p fp) |
| { |
| png_debug(1, "in png_init_io"); |
| |
| if (png_ptr == NULL) |
| return; |
| |
| png_ptr->io_ptr = (png_voidp)fp; |
| } |
| # endif |
| |
| # ifdef PNG_TIME_RFC1123_SUPPORTED |
| /* Convert the supplied time into an RFC 1123 string suitable for use in |
| * a "Creation Time" or other text-based time string. |
| */ |
| png_const_charp PNGAPI |
| png_convert_to_rfc1123(png_structp png_ptr, png_const_timep ptime) |
| { |
| static PNG_CONST char short_months[12][4] = |
| {"Jan", "Feb", "Mar", "Apr", "May", "Jun", |
| "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"}; |
| |
| if (png_ptr == NULL) |
| return (NULL); |
| |
| { |
| size_t pos = 0; |
| char number_buf[5]; /* enough for a four digit year */ |
| |
| # define APPEND_STRING(string)\ |
| pos = png_safecat(png_ptr->time_buffer, sizeof png_ptr->time_buffer,\ |
| pos, (string)) |
| # define APPEND_NUMBER(format, value)\ |
| APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value))) |
| # define APPEND(ch)\ |
| if (pos < (sizeof png_ptr->time_buffer)-1)\ |
| png_ptr->time_buffer[pos++] = (ch) |
| |
| APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day % 32); |
| APPEND(' '); |
| APPEND_STRING(short_months[(ptime->month - 1) % 12]); |
| APPEND(' '); |
| APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year); |
| APPEND(' '); |
| APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour % 24); |
| APPEND(':'); |
| APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute % 60); |
| APPEND(':'); |
| APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second % 61); |
| APPEND_STRING(" +0000"); /* This reliably terminates the buffer */ |
| |
| # undef APPEND |
| # undef APPEND_NUMBER |
| # undef APPEND_STRING |
| } |
| |
| return png_ptr->time_buffer; |
| } |
| # endif /* PNG_TIME_RFC1123_SUPPORTED */ |
| |
| #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */ |
| |
| png_const_charp PNGAPI |
| png_get_copyright(png_const_structp png_ptr) |
| { |
| PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ |
| #ifdef PNG_STRING_COPYRIGHT |
| return PNG_STRING_COPYRIGHT |
| #else |
| # ifdef __STDC__ |
| return PNG_STRING_NEWLINE \ |
| "libpng version 1.5.6beta06 - October 17, 2011" PNG_STRING_NEWLINE \ |
| "Copyright (c) 1998-2011 Glenn Randers-Pehrson" PNG_STRING_NEWLINE \ |
| "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \ |
| "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \ |
| PNG_STRING_NEWLINE; |
| # else |
| return "libpng version 1.5.6beta06 - October 17, 2011\ |
| Copyright (c) 1998-2011 Glenn Randers-Pehrson\ |
| Copyright (c) 1996-1997 Andreas Dilger\ |
| Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc."; |
| # endif |
| #endif |
| } |
| |
| /* The following return the library version as a short string in the |
| * format 1.0.0 through 99.99.99zz. To get the version of *.h files |
| * used with your application, print out PNG_LIBPNG_VER_STRING, which |
| * is defined in png.h. |
| * Note: now there is no difference between png_get_libpng_ver() and |
| * png_get_header_ver(). Due to the version_nn_nn_nn typedef guard, |
| * it is guaranteed that png.c uses the correct version of png.h. |
| */ |
| png_const_charp PNGAPI |
| png_get_libpng_ver(png_const_structp png_ptr) |
| { |
| /* Version of *.c files used when building libpng */ |
| return png_get_header_ver(png_ptr); |
| } |
| |
| png_const_charp PNGAPI |
| png_get_header_ver(png_const_structp png_ptr) |
| { |
| /* Version of *.h files used when building libpng */ |
| PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ |
| return PNG_LIBPNG_VER_STRING; |
| } |
| |
| png_const_charp PNGAPI |
| png_get_header_version(png_const_structp png_ptr) |
| { |
| /* Returns longer string containing both version and date */ |
| PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ |
| #ifdef __STDC__ |
| return PNG_HEADER_VERSION_STRING |
| # ifndef PNG_READ_SUPPORTED |
| " (NO READ SUPPORT)" |
| # endif |
| PNG_STRING_NEWLINE; |
| #else |
| return PNG_HEADER_VERSION_STRING; |
| #endif |
| } |
| |
| #ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED |
| int PNGAPI |
| png_handle_as_unknown(png_structp png_ptr, png_const_bytep chunk_name) |
| { |
| /* Check chunk_name and return "keep" value if it's on the list, else 0 */ |
| png_const_bytep p, p_end; |
| |
| if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list <= 0) |
| return PNG_HANDLE_CHUNK_AS_DEFAULT; |
| |
| p_end = png_ptr->chunk_list; |
| p = p_end + png_ptr->num_chunk_list*5; /* beyond end */ |
| |
| /* The code is the fifth byte after each four byte string. Historically this |
| * code was always searched from the end of the list, so it should continue |
| * to do so in case there are duplicated entries. |
| */ |
| do /* num_chunk_list > 0, so at least one */ |
| { |
| p -= 5; |
| if (!png_memcmp(chunk_name, p, 4)) |
| return p[4]; |
| } |
| while (p > p_end); |
| |
| return PNG_HANDLE_CHUNK_AS_DEFAULT; |
| } |
| |
| int /* PRIVATE */ |
| png_chunk_unknown_handling(png_structp png_ptr, png_uint_32 chunk_name) |
| { |
| png_byte chunk_string[5]; |
| |
| PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name); |
| return png_handle_as_unknown(png_ptr, chunk_string); |
| } |
| #endif |
| |
| #ifdef PNG_READ_SUPPORTED |
| /* This function, added to libpng-1.0.6g, is untested. */ |
| int PNGAPI |
| png_reset_zstream(png_structp png_ptr) |
| { |
| if (png_ptr == NULL) |
| return Z_STREAM_ERROR; |
| |
| return (inflateReset(&png_ptr->zstream)); |
| } |
| #endif /* PNG_READ_SUPPORTED */ |
| |
| /* This function was added to libpng-1.0.7 */ |
| png_uint_32 PNGAPI |
| png_access_version_number(void) |
| { |
| /* Version of *.c files used when building libpng */ |
| return((png_uint_32)PNG_LIBPNG_VER); |
| } |
| |
| |
| |
| #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) |
| /* png_convert_size: a PNGAPI but no longer in png.h, so deleted |
| * at libpng 1.5.5! |
| */ |
| |
| /* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */ |
| # ifdef PNG_CHECK_cHRM_SUPPORTED |
| |
| int /* PRIVATE */ |
| png_check_cHRM_fixed(png_structp png_ptr, |
| png_fixed_point white_x, png_fixed_point white_y, png_fixed_point red_x, |
| png_fixed_point red_y, png_fixed_point green_x, png_fixed_point green_y, |
| png_fixed_point blue_x, png_fixed_point blue_y) |
| { |
| int ret = 1; |
| unsigned long xy_hi,xy_lo,yx_hi,yx_lo; |
| |
| png_debug(1, "in function png_check_cHRM_fixed"); |
| |
| if (png_ptr == NULL) |
| return 0; |
| |
| /* (x,y,z) values are first limited to 0..100000 (PNG_FP_1), the white |
| * y must also be greater than 0. To test for the upper limit calculate |
| * (PNG_FP_1-y) - x must be <= to this for z to be >= 0 (and the expression |
| * cannot overflow.) At this point we know x and y are >= 0 and (x+y) is |
| * <= PNG_FP_1. The previous test on PNG_MAX_UINT_31 is removed because it |
| * pointless (and it produces compiler warnings!) |
| */ |
| if (white_x < 0 || white_y <= 0 || |
| red_x < 0 || red_y < 0 || |
| green_x < 0 || green_y < 0 || |
| blue_x < 0 || blue_y < 0) |
| { |
| png_warning(png_ptr, |
| "Ignoring attempt to set negative chromaticity value"); |
| ret = 0; |
| } |
| /* And (x+y) must be <= PNG_FP_1 (so z is >= 0) */ |
| if (white_x > PNG_FP_1 - white_y) |
| { |
| png_warning(png_ptr, "Invalid cHRM white point"); |
| ret = 0; |
| } |
| |
| if (red_x > PNG_FP_1 - red_y) |
| { |
| png_warning(png_ptr, "Invalid cHRM red point"); |
| ret = 0; |
| } |
| |
| if (green_x > PNG_FP_1 - green_y) |
| { |
| png_warning(png_ptr, "Invalid cHRM green point"); |
| ret = 0; |
| } |
| |
| if (blue_x > PNG_FP_1 - blue_y) |
| { |
| png_warning(png_ptr, "Invalid cHRM blue point"); |
| ret = 0; |
| } |
| |
| png_64bit_product(green_x - red_x, blue_y - red_y, &xy_hi, &xy_lo); |
| png_64bit_product(green_y - red_y, blue_x - red_x, &yx_hi, &yx_lo); |
| |
| if (xy_hi == yx_hi && xy_lo == yx_lo) |
| { |
| png_warning(png_ptr, |
| "Ignoring attempt to set cHRM RGB triangle with zero area"); |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| # endif /* PNG_CHECK_cHRM_SUPPORTED */ |
| |
| #ifdef PNG_cHRM_SUPPORTED |
| /* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for |
| * cHRM, as opposed to using chromaticities. These internal APIs return |
| * non-zero on a parameter error. The X, Y and Z values are required to be |
| * positive and less than 1.0. |
| */ |
| int png_xy_from_XYZ(png_xy *xy, png_XYZ XYZ) |
| { |
| png_int_32 d, dwhite, whiteX, whiteY; |
| |
| d = XYZ.redX + XYZ.redY + XYZ.redZ; |
| if (!png_muldiv(&xy->redx, XYZ.redX, PNG_FP_1, d)) return 1; |
| if (!png_muldiv(&xy->redy, XYZ.redY, PNG_FP_1, d)) return 1; |
| dwhite = d; |
| whiteX = XYZ.redX; |
| whiteY = XYZ.redY; |
| |
| d = XYZ.greenX + XYZ.greenY + XYZ.greenZ; |
| if (!png_muldiv(&xy->greenx, XYZ.greenX, PNG_FP_1, d)) return 1; |
| if (!png_muldiv(&xy->greeny, XYZ.greenY, PNG_FP_1, d)) return 1; |
| dwhite += d; |
| whiteX += XYZ.greenX; |
| whiteY += XYZ.greenY; |
| |
| d = XYZ.blueX + XYZ.blueY + XYZ.blueZ; |
| if (!png_muldiv(&xy->bluex, XYZ.blueX, PNG_FP_1, d)) return 1; |
| if (!png_muldiv(&xy->bluey, XYZ.blueY, PNG_FP_1, d)) return 1; |
| dwhite += d; |
| whiteX += XYZ.blueX; |
| whiteY += XYZ.blueY; |
| |
| /* The reference white is simply the same of the end-point (X,Y,Z) vectors, |
| * thus: |
| */ |
| if (!png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite)) return 1; |
| if (!png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite)) return 1; |
| |
| return 0; |
| } |
| |
| int png_XYZ_from_xy(png_XYZ *XYZ, png_xy xy) |
| { |
| png_fixed_point red_inverse, green_inverse, blue_scale; |
| png_fixed_point left, right, denominator; |
| |
| /* Check xy and, implicitly, z. Note that wide gamut color spaces typically |
| * have end points with 0 tristimulus values (these are impossible end |
| * points, but they are used to cover the possible colors.) |
| */ |
| if (xy.redx < 0 || xy.redx > PNG_FP_1) return 1; |
| if (xy.redy < 0 || xy.redy > PNG_FP_1-xy.redx) return 1; |
| if (xy.greenx < 0 || xy.greenx > PNG_FP_1) return 1; |
| if (xy.greeny < 0 || xy.greeny > PNG_FP_1-xy.greenx) return 1; |
| if (xy.bluex < 0 || xy.bluex > PNG_FP_1) return 1; |
| if (xy.bluey < 0 || xy.bluey > PNG_FP_1-xy.bluex) return 1; |
| if (xy.whitex < 0 || xy.whitex > PNG_FP_1) return 1; |
| if (xy.whitey < 0 || xy.whitey > PNG_FP_1-xy.whitex) return 1; |
| |
| /* The reverse calculation is more difficult because the original tristimulus |
| * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8 |
| * derived values were recorded in the cHRM chunk; |
| * (red,green,blue,white)x(x,y). This loses one degree of freedom and |
| * therefore an arbitrary ninth value has to be introduced to undo the |
| * original transformations. |
| * |
| * Think of the original end-points as points in (X,Y,Z) space. The |
| * chromaticity values (c) have the property: |
| * |
| * C |
| * c = --------- |
| * X + Y + Z |
| * |
| * For each c (x,y,z) from the corresponding original C (X,Y,Z). Thus the |
| * three chromaticity values (x,y,z) for each end-point obey the |
| * relationship: |
| * |
| * x + y + z = 1 |
| * |
| * This describes the plane in (X,Y,Z) space that intersects each axis at the |
| * value 1.0; call this the chromaticity plane. Thus the chromaticity |
| * calculation has scaled each end-point so that it is on the x+y+z=1 plane |
| * and chromaticity is the intersection of the vector from the origin to the |
| * (X,Y,Z) value with the chromaticity plane. |
| * |
| * To fully invert the chromaticity calculation we would need the three |
| * end-point scale factors, (red-scale, green-scale, blue-scale), but these |
| * were not recorded. Instead we calculated the reference white (X,Y,Z) and |
| * recorded the chromaticity of this. The reference white (X,Y,Z) would have |
| * given all three of the scale factors since: |
| * |
| * color-C = color-c * color-scale |
| * white-C = red-C + green-C + blue-C |
| * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale |
| * |
| * But cHRM records only white-x and white-y, so we have lost the white scale |
| * factor: |
| * |
| * white-C = white-c*white-scale |
| * |
| * To handle this the inverse transformation makes an arbitrary assumption |
| * about white-scale: |
| * |
| * Assume: white-Y = 1.0 |
| * Hence: white-scale = 1/white-y |
| * Or: red-Y + green-Y + blue-Y = 1.0 |
| * |
| * Notice the last statement of the assumption gives an equation in three of |
| * the nine values we want to calculate. 8 more equations come from the |
| * above routine as summarised at the top above (the chromaticity |
| * calculation): |
| * |
| * Given: color-x = color-X / (color-X + color-Y + color-Z) |
| * Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0 |
| * |
| * This is 9 simultaneous equations in the 9 variables "color-C" and can be |
| * solved by Cramer's rule. Cramer's rule requires calculating 10 9x9 matrix |
| * determinants, however this is not as bad as it seems because only 28 of |
| * the total of 90 terms in the various matrices are non-zero. Nevertheless |
| * Cramer's rule is notoriously numerically unstable because the determinant |
| * calculation involves the difference of large, but similar, numbers. It is |
| * difficult to be sure that the calculation is stable for real world values |
| * and it is certain that it becomes unstable where the end points are close |
| * together. |
| * |
| * So this code uses the perhaps slighly less optimal but more understandable |
| * and totally obvious approach of calculating color-scale. |
| * |
| * This algorithm depends on the precision in white-scale and that is |
| * (1/white-y), so we can immediately see that as white-y approaches 0 the |
| * accuracy inherent in the cHRM chunk drops off substantially. |
| * |
| * libpng arithmetic: a simple invertion of the above equations |
| * ------------------------------------------------------------ |
| * |
| * white_scale = 1/white-y |
| * white-X = white-x * white-scale |
| * white-Y = 1.0 |
| * white-Z = (1 - white-x - white-y) * white_scale |
| * |
| * white-C = red-C + green-C + blue-C |
| * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale |
| * |
| * This gives us three equations in (red-scale,green-scale,blue-scale) where |
| * all the coefficients are now known: |
| * |
| * red-x*red-scale + green-x*green-scale + blue-x*blue-scale |
| * = white-x/white-y |
| * red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1 |
| * red-z*red-scale + green-z*green-scale + blue-z*blue-scale |
| * = (1 - white-x - white-y)/white-y |
| * |
| * In the last equation color-z is (1 - color-x - color-y) so we can add all |
| * three equations together to get an alternative third: |
| * |
| * red-scale + green-scale + blue-scale = 1/white-y = white-scale |
| * |
| * So now we have a Cramer's rule solution where the determinants are just |
| * 3x3 - far more tractible. Unfortunately 3x3 determinants still involve |
| * multiplication of three coefficients so we can't guarantee to avoid |
| * overflow in the libpng fixed point representation. Using Cramer's rule in |
| * floating point is probably a good choice here, but it's not an option for |
| * fixed point. Instead proceed to simplify the first two equations by |
| * eliminating what is likely to be the largest value, blue-scale: |
| * |
| * blue-scale = white-scale - red-scale - green-scale |
| * |
| * Hence: |
| * |
| * (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale = |
| * (white-x - blue-x)*white-scale |
| * |
| * (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale = |
| * 1 - blue-y*white-scale |
| * |
| * And now we can trivially solve for (red-scale,green-scale): |
| * |
| * green-scale = |
| * (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale |
| * ----------------------------------------------------------- |
| * green-x - blue-x |
| * |
| * red-scale = |
| * 1 - blue-y*white-scale - (green-y - blue-y) * green-scale |
| * --------------------------------------------------------- |
| * red-y - blue-y |
| * |
| * Hence: |
| * |
| * red-scale = |
| * ( (green-x - blue-x) * (white-y - blue-y) - |
| * (green-y - blue-y) * (white-x - blue-x) ) / white-y |
| * ------------------------------------------------------------------------- |
| * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x) |
| * |
| * green-scale = |
| * ( (red-y - blue-y) * (white-x - blue-x) - |
| * (red-x - blue-x) * (white-y - blue-y) ) / white-y |
| * ------------------------------------------------------------------------- |
| * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x) |
| * |
| * Accuracy: |
| * The input values have 5 decimal digits of accuracy. The values are all in |
| * the range 0 < value < 1, so simple products are in the same range but may |
| * need up to 10 decimal digits to preserve the original precision and avoid |
| * underflow. Because we are using a 32-bit signed representation we cannot |
| * match this; the best is a little over 9 decimal digits, less than 10. |
| * |
| * The approach used here is to preserve the maximum precision within the |
| * signed representation. Because the red-scale calculation above uses the |
| * difference between two products of values that must be in the range -1..+1 |
| * it is sufficient to divide the product by 7; ceil(100,000/32767*2). The |
| * factor is irrelevant in the calculation because it is applied to both |
| * numerator and denominator. |
| * |
| * Note that the values of the differences of the products of the |
| * chromaticities in the above equations tend to be small, for example for |
| * the sRGB chromaticities they are: |
| * |
| * red numerator: -0.04751 |
| * green numerator: -0.08788 |
| * denominator: -0.2241 (without white-y multiplication) |
| * |
| * The resultant Y coefficients from the chromaticities of some widely used |
| * color space definitions are (to 15 decimal places): |
| * |
| * sRGB |
| * 0.212639005871510 0.715168678767756 0.072192315360734 |
| * Kodak ProPhoto |
| * 0.288071128229293 0.711843217810102 0.000085653960605 |
| * Adobe RGB |
| * 0.297344975250536 0.627363566255466 0.075291458493998 |
| * Adobe Wide Gamut RGB |
| * 0.258728243040113 0.724682314948566 0.016589442011321 |
| */ |
| /* By the argument, above overflow should be impossible here. The return |
| * value of 2 indicates an internal error to the caller. |
| */ |
| if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.redy - xy.bluey, 7)) return 2; |
| if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.redx - xy.bluex, 7)) return 2; |
| denominator = left - right; |
| |
| /* Now find the red numerator. */ |
| if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2; |
| if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.whitex-xy.bluex, 7)) return 2; |
| |
| /* Overflow is possible here and it indicates an extreme set of PNG cHRM |
| * chunk values. This calculation actually returns the reciprocal of the |
| * scale value because this allows us to delay the multiplication of white-y |
| * into the denominator, which tends to produce a small number. |
| */ |
| if (!png_muldiv(&red_inverse, xy.whitey, denominator, left-right) || |
| red_inverse <= xy.whitey /* r+g+b scales = white scale */) |
| return 1; |
| |
| /* Similarly for green_inverse: */ |
| if (!png_muldiv(&left, xy.redy-xy.bluey, xy.whitex-xy.bluex, 7)) return 2; |
| if (!png_muldiv(&right, xy.redx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2; |
| if (!png_muldiv(&green_inverse, xy.whitey, denominator, left-right) || |
| green_inverse <= xy.whitey) |
| return 1; |
| |
| /* And the blue scale, the checks above guarantee this can't overflow but it |
| * can still produce 0 for extreme cHRM values. |
| */ |
| blue_scale = png_reciprocal(xy.whitey) - png_reciprocal(red_inverse) - |
| png_reciprocal(green_inverse); |
| if (blue_scale <= 0) return 1; |
| |
| |
| /* And fill in the png_XYZ: */ |
| if (!png_muldiv(&XYZ->redX, xy.redx, PNG_FP_1, red_inverse)) return 1; |
| if (!png_muldiv(&XYZ->redY, xy.redy, PNG_FP_1, red_inverse)) return 1; |
| if (!png_muldiv(&XYZ->redZ, PNG_FP_1 - xy.redx - xy.redy, PNG_FP_1, |
| red_inverse)) |
| return 1; |
| |
| if (!png_muldiv(&XYZ->greenX, xy.greenx, PNG_FP_1, green_inverse)) return 1; |
| if (!png_muldiv(&XYZ->greenY, xy.greeny, PNG_FP_1, green_inverse)) return 1; |
| if (!png_muldiv(&XYZ->greenZ, PNG_FP_1 - xy.greenx - xy.greeny, PNG_FP_1, |
| green_inverse)) |
| return 1; |
| |
| if (!png_muldiv(&XYZ->blueX, xy.bluex, blue_scale, PNG_FP_1)) return 1; |
| if (!png_muldiv(&XYZ->blueY, xy.bluey, blue_scale, PNG_FP_1)) return 1; |
| if (!png_muldiv(&XYZ->blueZ, PNG_FP_1 - xy.bluex - xy.bluey, blue_scale, |
| PNG_FP_1)) |
| return 1; |
| |
| return 0; /*success*/ |
| } |
| |
| int png_XYZ_from_xy_checked(png_structp png_ptr, png_XYZ *XYZ, png_xy xy) |
| { |
| switch (png_XYZ_from_xy(XYZ, xy)) |
| { |
| case 0: /* success */ |
| return 1; |
| |
| case 1: |
| /* The chunk may be technically valid, but we got png_fixed_point |
| * overflow while trying to get XYZ values out of it. This is |
| * entirely benign - the cHRM chunk is pretty extreme. |
| */ |
| png_warning(png_ptr, |
| "extreme cHRM chunk cannot be converted to tristimulus values"); |
| break; |
| |
| default: |
| /* libpng is broken; this should be a warning but if it happens we |
| * want error reports so for the moment it is an error. |
| */ |
| png_error(png_ptr, "internal error in png_XYZ_from_xy"); |
| break; |
| } |
| |
| /* ERROR RETURN */ |
| return 0; |
| } |
| #endif |
| |
| void /* PRIVATE */ |
| png_check_IHDR(png_structp png_ptr, |
| png_uint_32 width, png_uint_32 height, int bit_depth, |
| int color_type, int interlace_type, int compression_type, |
| int filter_type) |
| { |
| int error = 0; |
| |
| /* Check for width and height valid values */ |
| if (width == 0) |
| { |
| png_warning(png_ptr, "Image width is zero in IHDR"); |
| error = 1; |
| } |
| |
| if (height == 0) |
| { |
| png_warning(png_ptr, "Image height is zero in IHDR"); |
| error = 1; |
| } |
| |
| # ifdef PNG_SET_USER_LIMITS_SUPPORTED |
| if (width > png_ptr->user_width_max) |
| |
| # else |
| if (width > PNG_USER_WIDTH_MAX) |
| # endif |
| { |
| png_warning(png_ptr, "Image width exceeds user limit in IHDR"); |
| error = 1; |
| } |
| |
| # ifdef PNG_SET_USER_LIMITS_SUPPORTED |
| if (height > png_ptr->user_height_max) |
| # else |
| if (height > PNG_USER_HEIGHT_MAX) |
| # endif |
| { |
| png_warning(png_ptr, "Image height exceeds user limit in IHDR"); |
| error = 1; |
| } |
| |
| if (width > PNG_UINT_31_MAX) |
| { |
| png_warning(png_ptr, "Invalid image width in IHDR"); |
| error = 1; |
| } |
| |
| if (height > PNG_UINT_31_MAX) |
| { |
| png_warning(png_ptr, "Invalid image height in IHDR"); |
| error = 1; |
| } |
| |
| if (width > (PNG_UINT_32_MAX |
| >> 3) /* 8-byte RGBA pixels */ |
| - 48 /* bigrowbuf hack */ |
| - 1 /* filter byte */ |
| - 7*8 /* rounding of width to multiple of 8 pixels */ |
| - 8) /* extra max_pixel_depth pad */ |
| png_warning(png_ptr, "Width is too large for libpng to process pixels"); |
| |
| /* Check other values */ |
| if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 && |
| bit_depth != 8 && bit_depth != 16) |
| { |
| png_warning(png_ptr, "Invalid bit depth in IHDR"); |
| error = 1; |
| } |
| |
| if (color_type < 0 || color_type == 1 || |
| color_type == 5 || color_type > 6) |
| { |
| png_warning(png_ptr, "Invalid color type in IHDR"); |
| error = 1; |
| } |
| |
| if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) || |
| ((color_type == PNG_COLOR_TYPE_RGB || |
| color_type == PNG_COLOR_TYPE_GRAY_ALPHA || |
| color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8)) |
| { |
| png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR"); |
| error = 1; |
| } |
| |
| if (interlace_type >= PNG_INTERLACE_LAST) |
| { |
| png_warning(png_ptr, "Unknown interlace method in IHDR"); |
| error = 1; |
| } |
| |
| if (compression_type != PNG_COMPRESSION_TYPE_BASE) |
| { |
| png_warning(png_ptr, "Unknown compression method in IHDR"); |
| error = 1; |
| } |
| |
| # ifdef PNG_MNG_FEATURES_SUPPORTED |
| /* Accept filter_method 64 (intrapixel differencing) only if |
| * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and |
| * 2. Libpng did not read a PNG signature (this filter_method is only |
| * used in PNG datastreams that are embedded in MNG datastreams) and |
| * 3. The application called png_permit_mng_features with a mask that |
| * included PNG_FLAG_MNG_FILTER_64 and |
| * 4. The filter_method is 64 and |
| * 5. The color_type is RGB or RGBA |
| */ |
| if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) && |
| png_ptr->mng_features_permitted) |
| png_warning(png_ptr, "MNG features are not allowed in a PNG datastream"); |
| |
| if (filter_type != PNG_FILTER_TYPE_BASE) |
| { |
| if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) && |
| (filter_type == PNG_INTRAPIXEL_DIFFERENCING) && |
| ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) && |
| (color_type == PNG_COLOR_TYPE_RGB || |
| color_type == PNG_COLOR_TYPE_RGB_ALPHA))) |
| { |
| png_warning(png_ptr, "Unknown filter method in IHDR"); |
| error = 1; |
| } |
| |
| if (png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) |
| { |
| png_warning(png_ptr, "Invalid filter method in IHDR"); |
| error = 1; |
| } |
| } |
| |
| # else |
| if (filter_type != PNG_FILTER_TYPE_BASE) |
| { |
| png_warning(png_ptr, "Unknown filter method in IHDR"); |
| error = 1; |
| } |
| # endif |
| |
| if (error == 1) |
| png_error(png_ptr, "Invalid IHDR data"); |
| } |
| |
| #if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED) |
| /* ASCII to fp functions */ |
| /* Check an ASCII formated floating point value, see the more detailed |
| * comments in pngpriv.h |
| */ |
| /* The following is used internally to preserve the sticky flags */ |
| #define png_fp_add(state, flags) ((state) |= (flags)) |
| #define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY)) |
| |
| int /* PRIVATE */ |
| png_check_fp_number(png_const_charp string, png_size_t size, int *statep, |
| png_size_tp whereami) |
| { |
| int state = *statep; |
| png_size_t i = *whereami; |
| |
| while (i < size) |
| { |
| int type; |
| /* First find the type of the next character */ |
| switch (string[i]) |
| { |
| case 43: type = PNG_FP_SAW_SIGN; break; |
| case 45: type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break; |
| case 46: type = PNG_FP_SAW_DOT; break; |
| case 48: type = PNG_FP_SAW_DIGIT; break; |
| case 49: case 50: case 51: case 52: |
| case 53: case 54: case 55: case 56: |
| case 57: type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break; |
| case 69: |
| case 101: type = PNG_FP_SAW_E; break; |
| default: goto PNG_FP_End; |
| } |
| |
| /* Now deal with this type according to the current |
| * state, the type is arranged to not overlap the |
| * bits of the PNG_FP_STATE. |
| */ |
| switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY)) |
| { |
| case PNG_FP_INTEGER + PNG_FP_SAW_SIGN: |
| if (state & PNG_FP_SAW_ANY) |
| goto PNG_FP_End; /* not a part of the number */ |
| |
| png_fp_add(state, type); |
| break; |
| |
| case PNG_FP_INTEGER + PNG_FP_SAW_DOT: |
| /* Ok as trailer, ok as lead of fraction. */ |
| if (state & PNG_FP_SAW_DOT) /* two dots */ |
| goto PNG_FP_End; |
| |
| else if (state & PNG_FP_SAW_DIGIT) /* trailing dot? */ |
| png_fp_add(state, type); |
| |
| else |
| png_fp_set(state, PNG_FP_FRACTION | type); |
| |
| break; |
| |
| case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT: |
| if (state & PNG_FP_SAW_DOT) /* delayed fraction */ |
| png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT); |
| |
| png_fp_add(state, type | PNG_FP_WAS_VALID); |
| |
| break; |
| |
| case PNG_FP_INTEGER + PNG_FP_SAW_E: |
| if ((state & PNG_FP_SAW_DIGIT) == 0) |
| goto PNG_FP_End; |
| |
| png_fp_set(state, PNG_FP_EXPONENT); |
| |
| break; |
| |
| /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN: |
| goto PNG_FP_End; ** no sign in fraction */ |
| |
| /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT: |
| goto PNG_FP_End; ** Because SAW_DOT is always set */ |
| |
| case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT: |
| png_fp_add(state, type | PNG_FP_WAS_VALID); |
| break; |
| |
| case PNG_FP_FRACTION + PNG_FP_SAW_E: |
| /* This is correct because the trailing '.' on an |
| * integer is handled above - so we can only get here |
| * with the sequence ".E" (with no preceding digits). |
| */ |
| if ((state & PNG_FP_SAW_DIGIT) == 0) |
| goto PNG_FP_End; |
| |
| png_fp_set(state, PNG_FP_EXPONENT); |
| |
| break; |
| |
| case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN: |
| if (state & PNG_FP_SAW_ANY) |
| goto PNG_FP_End; /* not a part of the number */ |
| |
| png_fp_add(state, PNG_FP_SAW_SIGN); |
| |
| break; |
| |
| /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT: |
| goto PNG_FP_End; */ |
| |
| case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT: |
| png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID); |
| |
| break; |
| |
| /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E: |
| goto PNG_FP_End; */ |
| |
| default: goto PNG_FP_End; /* I.e. break 2 */ |
| } |
| |
| /* The character seems ok, continue. */ |
| ++i; |
| } |
| |
| PNG_FP_End: |
| /* Here at the end, update the state and return the correct |
| * return code. |
| */ |
| *statep = state; |
| *whereami = i; |
| |
| return (state & PNG_FP_SAW_DIGIT) != 0; |
| } |
| |
| |
| /* The same but for a complete string. */ |
| int |
| png_check_fp_string(png_const_charp string, png_size_t size) |
| { |
| int state=0; |
| png_size_t char_index=0; |
| |
| if (png_check_fp_number(string, size, &state, &char_index) && |
| (char_index == size || string[char_index] == 0)) |
| return state /* must be non-zero - see above */; |
| |
| return 0; /* i.e. fail */ |
| } |
| #endif /* pCAL or sCAL */ |
| |
| #ifdef PNG_READ_sCAL_SUPPORTED |
| # ifdef PNG_FLOATING_POINT_SUPPORTED |
| /* Utility used below - a simple accurate power of ten from an integral |
| * exponent. |
| */ |
| static double |
| png_pow10(int power) |
| { |
| int recip = 0; |
| double d = 1; |
| |
| /* Handle negative exponent with a reciprocal at the end because |
| * 10 is exact whereas .1 is inexact in base 2 |
| */ |
| if (power < 0) |
| { |
| if (power < DBL_MIN_10_EXP) return 0; |
| recip = 1, power = -power; |
| } |
| |
| if (power > 0) |
| { |
| /* Decompose power bitwise. */ |
| double mult = 10; |
| do |
| { |
| if (power & 1) d *= mult; |
| mult *= mult; |
| power >>= 1; |
| } |
| while (power > 0); |
| |
| if (recip) d = 1/d; |
| } |
| /* else power is 0 and d is 1 */ |
| |
| return d; |
| } |
| |
| /* Function to format a floating point value in ASCII with a given |
| * precision. |
| */ |
| void /* PRIVATE */ |
| png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size, |
| double fp, unsigned int precision) |
| { |
| /* We use standard functions from math.h, but not printf because |
| * that would require stdio. The caller must supply a buffer of |
| * sufficient size or we will png_error. The tests on size and |
| * the space in ascii[] consumed are indicated below. |
| */ |
| if (precision < 1) |
| precision = DBL_DIG; |
| |
| /* Enforce the limit of the implementation precision too. */ |
| if (precision > DBL_DIG+1) |
| precision = DBL_DIG+1; |
| |
| /* Basic sanity checks */ |
| if (size >= precision+5) /* See the requirements below. */ |
| { |
| if (fp < 0) |
| { |
| fp = -fp; |
| *ascii++ = 45; /* '-' PLUS 1 TOTAL 1 */ |
| --size; |
| } |
| |
| if (fp >= DBL_MIN && fp <= DBL_MAX) |
| { |
| int exp_b10; /* A base 10 exponent */ |
| double base; /* 10^exp_b10 */ |
| |
| /* First extract a base 10 exponent of the number, |
| * the calculation below rounds down when converting |
| * from base 2 to base 10 (multiply by log10(2) - |
| * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to |
| * be increased. Note that the arithmetic shift |
| * performs a floor() unlike C arithmetic - using a |
| * C multiply would break the following for negative |
| * exponents. |
| */ |
| (void)frexp(fp, &exp_b10); /* exponent to base 2 */ |
| |
| exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */ |
| |
| /* Avoid underflow here. */ |
| base = png_pow10(exp_b10); /* May underflow */ |
| |
| while (base < DBL_MIN || base < fp) |
| { |
| /* And this may overflow. */ |
| double test = png_pow10(exp_b10+1); |
| |
| if (test <= DBL_MAX) |
| ++exp_b10, base = test; |
| |
| else |
| break; |
| } |
| |
| /* Normalize fp and correct exp_b10, after this fp is in the |
| * range [.1,1) and exp_b10 is both the exponent and the digit |
| * *before* which the decimal point should be inserted |
| * (starting with 0 for the first digit). Note that this |
| * works even if 10^exp_b10 is out of range because of the |
| * test on DBL_MAX above. |
| */ |
| fp /= base; |
| while (fp >= 1) fp /= 10, ++exp_b10; |
| |
| /* Because of the code above fp may, at this point, be |
| * less than .1, this is ok because the code below can |
| * handle the leading zeros this generates, so no attempt |
| * is made to correct that here. |
| */ |
| |
| { |
| int czero, clead, cdigits; |
| char exponent[10]; |
| |
| /* Allow up to two leading zeros - this will not lengthen |
| * the number compared to using E-n. |
| */ |
| if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */ |
| { |
| czero = -exp_b10; /* PLUS 2 digits: TOTAL 3 */ |
| exp_b10 = 0; /* Dot added below before first output. */ |
| } |
| else |
| czero = 0; /* No zeros to add */ |
| |
| /* Generate the digit list, stripping trailing zeros and |
| * inserting a '.' before a digit if the exponent is 0. |
| */ |
| clead = czero; /* Count of leading zeros */ |
| cdigits = 0; /* Count of digits in list. */ |
| |
| do |
| { |
| double d; |
| |
| fp *= 10; |
| /* Use modf here, not floor and subtract, so that |
| * the separation is done in one step. At the end |
| * of the loop don't break the number into parts so |
| * that the final digit is rounded. |
| */ |
| if (cdigits+czero-clead+1 < (int)precision) |
| fp = modf(fp, &d); |
| |
| else |
| { |
| d = floor(fp + .5); |
| |
| if (d > 9) |
| { |
| /* Rounding up to 10, handle that here. */ |
| if (czero > 0) |
| { |
| --czero, d = 1; |
| if (cdigits == 0) --clead; |
| } |
| else |
| { |
| while (cdigits > 0 && d > 9) |
| { |
| int ch = *--ascii; |
| |
| if (exp_b10 != (-1)) |
| ++exp_b10; |
| |
| else if (ch == 46) |
| { |
| ch = *--ascii, ++size; |
| /* Advance exp_b10 to '1', so that the |
| * decimal point happens after the |
| * previous digit. |
| */ |
| exp_b10 = 1; |
| } |
| |
| --cdigits; |
| d = ch - 47; /* I.e. 1+(ch-48) */ |
| } |
| |
| /* Did we reach the beginning? If so adjust the |
| * exponent but take into account the leading |
| * decimal point. |
| */ |
| if (d > 9) /* cdigits == 0 */ |
| { |
| if (exp_b10 == (-1)) |
| { |
| /* Leading decimal point (plus zeros?), if |
| * we lose the decimal point here it must |
| * be reentered below. |
| */ |
| int ch = *--ascii; |
| |
| if (ch == 46) |
| ++size, exp_b10 = 1; |
| |
| /* Else lost a leading zero, so 'exp_b10' is |
| * still ok at (-1) |
| */ |
| } |
| else |
| ++exp_b10; |
| |
| /* In all cases we output a '1' */ |
| d = 1; |
| } |
| } |
| } |
| fp = 0; /* Guarantees termination below. */ |
| } |
| |
| if (d == 0) |
| { |
| ++czero; |
| if (cdigits == 0) ++clead; |
| } |
| else |
| { |
| /* Included embedded zeros in the digit count. */ |
| cdigits += czero - clead; |
| clead = 0; |
| |
| while (czero > 0) |
| { |
| /* exp_b10 == (-1) means we just output the decimal |
| * place - after the DP don't adjust 'exp_b10' any |
| * more! |
| */ |
| if (exp_b10 != (-1)) |
| { |
| if (exp_b10 == 0) *ascii++ = 46, --size; |
| /* PLUS 1: TOTAL 4 */ |
| --exp_b10; |
| } |
| *ascii++ = 48, --czero; |
| } |
| |
| if (exp_b10 != (-1)) |
| { |
| if (exp_b10 == 0) *ascii++ = 46, --size; /* counted |
| above */ |
| --exp_b10; |
| } |
| *ascii++ = (char)(48 + (int)d), ++cdigits; |
| } |
| } |
| while (cdigits+czero-clead < (int)precision && fp > DBL_MIN); |
| |
| /* The total output count (max) is now 4+precision */ |
| |
| /* Check for an exponent, if we don't need one we are |
| * done and just need to terminate the string. At |
| * this point exp_b10==(-1) is effectively if flag - it got |
| * to '-1' because of the decrement after outputing |
| * the decimal point above (the exponent required is |
| * *not* -1!) |
| */ |
| if (exp_b10 >= (-1) && exp_b10 <= 2) |
| { |
| /* The following only happens if we didn't output the |
| * leading zeros above for negative exponent, so this |
| * doest add to the digit requirement. Note that the |
| * two zeros here can only be output if the two leading |
| * zeros were *not* output, so this doesn't increase |
| * the output count. |
| */ |
| while (--exp_b10 >= 0) *ascii++ = 48; |
| |
| *ascii = 0; |
| |
| /* Total buffer requirement (including the '\0') is |
| * 5+precision - see check at the start. |
| */ |
| return; |
| } |
| |
| /* Here if an exponent is required, adjust size for |
| * the digits we output but did not count. The total |
| * digit output here so far is at most 1+precision - no |
| * decimal point and no leading or trailing zeros have |
| * been output. |
| */ |
| size -= cdigits; |
| |
| *ascii++ = 69, --size; /* 'E': PLUS 1 TOTAL 2+precision */ |
| |
| /* The following use of an unsigned temporary avoids ambiguities in |
| * the signed arithmetic on exp_b10 and permits GCC at least to do |
| * better optimization. |
| */ |
| { |
| unsigned int uexp_b10; |
| |
| if (exp_b10 < 0) |
| { |
| *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */ |
| uexp_b10 = -exp_b10; |
| } |
| |
| else |
| uexp_b10 = exp_b10; |
| |
| cdigits = 0; |
| |
| while (uexp_b10 > 0) |
| { |
| exponent[cdigits++] = (char)(48 + uexp_b10 % 10); |
| uexp_b10 /= 10; |
| } |
| } |
| |
| /* Need another size check here for the exponent digits, so |
| * this need not be considered above. |
| */ |
| if ((int)size > cdigits) |
| { |
| while (cdigits > 0) *ascii++ = exponent[--cdigits]; |
| |
| *ascii = 0; |
| |
| return; |
| } |
| } |
| } |
| else if (!(fp >= DBL_MIN)) |
| { |
| *ascii++ = 48; /* '0' */ |
| *ascii = 0; |
| return; |
| } |
| else |
| { |
| *ascii++ = 105; /* 'i' */ |
| *ascii++ = 110; /* 'n' */ |
| *ascii++ = 102; /* 'f' */ |
| *ascii = 0; |
| return; |
| } |
| } |
| |
| /* Here on buffer too small. */ |
| png_error(png_ptr, "ASCII conversion buffer too small"); |
| } |
| |
| # endif /* FLOATING_POINT */ |
| |
| # ifdef PNG_FIXED_POINT_SUPPORTED |
| /* Function to format a fixed point value in ASCII. |
| */ |
| void /* PRIVATE */ |
| png_ascii_from_fixed(png_structp png_ptr, png_charp ascii, png_size_t size, |
| png_fixed_point fp) |
| { |
| /* Require space for 10 decimal digits, a decimal point, a minus sign and a |
| * trailing \0, 13 characters: |
| */ |
| if (size > 12) |
| { |
| png_uint_32 num; |
| |
| /* Avoid overflow here on the minimum integer. */ |
| if (fp < 0) |
| *ascii++ = 45, --size, num = -fp; |
| else |
| num = fp; |
| |
| if (num <= 0x80000000) /* else overflowed */ |
| { |
| unsigned int ndigits = 0, first = 16 /* flag value */; |
| char digits[10]; |
| |
| while (num) |
| { |
| /* Split the low digit off num: */ |
| unsigned int tmp = num/10; |
| num -= tmp*10; |
| digits[ndigits++] = (char)(48 + num); |
| /* Record the first non-zero digit, note that this is a number |
| * starting at 1, it's not actually the array index. |
| */ |
| if (first == 16 && num > 0) |
| first = ndigits; |
| num = tmp; |
| } |
| |
| if (ndigits > 0) |
| { |
| while (ndigits > 5) *ascii++ = digits[--ndigits]; |
| /* The remaining digits are fractional digits, ndigits is '5' or |
| * smaller at this point. It is certainly not zero. Check for a |
| * non-zero fractional digit: |
| */ |
| if (first <= 5) |
| { |
| unsigned int i; |
| *ascii++ = 46; /* decimal point */ |
| /* ndigits may be <5 for small numbers, output leading zeros |
| * then ndigits digits to first: |
| */ |
| i = 5; |
| while (ndigits < i) *ascii++ = 48, --i; |
| while (ndigits >= first) *ascii++ = digits[--ndigits]; |
| /* Don't output the trailing zeros! */ |
| } |
| } |
| else |
| *ascii++ = 48; |
| |
| /* And null terminate the string: */ |
| *ascii = 0; |
| return; |
| } |
| } |
| |
| /* Here on buffer too small. */ |
| png_error(png_ptr, "ASCII conversion buffer too small"); |
| } |
| # endif /* FIXED_POINT */ |
| #endif /* READ_SCAL */ |
| |
| #if defined(PNG_FLOATING_POINT_SUPPORTED) && \ |
| !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) |
| png_fixed_point |
| png_fixed(png_structp png_ptr, double fp, png_const_charp text) |
| { |
| double r = floor(100000 * fp + .5); |
| |
| if (r > 2147483647. || r < -2147483648.) |
| png_fixed_error(png_ptr, text); |
| |
| return (png_fixed_point)r; |
| } |
| #endif |
| |
| #if defined(PNG_READ_GAMMA_SUPPORTED) || \ |
| defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG__READ_pHYs_SUPPORTED) |
| /* muldiv functions */ |
| /* This API takes signed arguments and rounds the result to the nearest |
| * integer (or, for a fixed point number - the standard argument - to |
| * the nearest .00001). Overflow and divide by zero are signalled in |
| * the result, a boolean - true on success, false on overflow. |
| */ |
| int |
| png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times, |
| png_int_32 divisor) |
| { |
| /* Return a * times / divisor, rounded. */ |
| if (divisor != 0) |
| { |
| if (a == 0 || times == 0) |
| { |
| *res = 0; |
| return 1; |
| } |
| else |
| { |
| #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
| double r = a; |
| r *= times; |
| r /= divisor; |
| r = floor(r+.5); |
| |
| /* A png_fixed_point is a 32-bit integer. */ |
| if (r <= 2147483647. && r >= -2147483648.) |
| { |
| *res = (png_fixed_point)r; |
| return 1; |
| } |
| #else |
| int negative = 0; |
| png_uint_32 A, T, D; |
| png_uint_32 s16, s32, s00; |
| |
| if (a < 0) |
| negative = 1, A = -a; |
| else |
| A = a; |
| |
| if (times < 0) |
| negative = !negative, T = -times; |
| else |
| T = times; |
| |
| if (divisor < 0) |
| negative = !negative, D = -divisor; |
| else |
| D = divisor; |
| |
| /* Following can't overflow because the arguments only |
| * have 31 bits each, however the result may be 32 bits. |
| */ |
| s16 = (A >> 16) * (T & 0xffff) + |
| (A & 0xffff) * (T >> 16); |
| /* Can't overflow because the a*times bit is only 30 |
| * bits at most. |
| */ |
| s32 = (A >> 16) * (T >> 16) + (s16 >> 16); |
| s00 = (A & 0xffff) * (T & 0xffff); |
| |
| s16 = (s16 & 0xffff) << 16; |
| s00 += s16; |
| |
| if (s00 < s16) |
| ++s32; /* carry */ |
| |
| if (s32 < D) /* else overflow */ |
| { |
| /* s32.s00 is now the 64-bit product, do a standard |
| * division, we know that s32 < D, so the maximum |
| * required shift is 31. |
| */ |
| int bitshift = 32; |
| png_fixed_point result = 0; /* NOTE: signed */ |
| |
| while (--bitshift >= 0) |
| { |
| png_uint_32 d32, d00; |
| |
| if (bitshift > 0) |
| d32 = D >> (32-bitshift), d00 = D << bitshift; |
| |
| else |
| d32 = 0, d00 = D; |
| |
| if (s32 > d32) |
| { |
| if (s00 < d00) --s32; /* carry */ |
| s32 -= d32, s00 -= d00, result += 1<<bitshift; |
| } |
| |
| else |
| if (s32 == d32 && s00 >= d00) |
| s32 = 0, s00 -= d00, result += 1<<bitshift; |
| } |
| |
| /* Handle the rounding. */ |
| if (s00 >= (D >> 1)) |
| ++result; |
| |
| if (negative) |
| result = -result; |
| |
| /* Check for overflow. */ |
| if ((negative && result <= 0) || (!negative && result >= 0)) |
| { |
| *res = result; |
| return 1; |
| } |
| } |
| #endif |
| } |
| } |
| |
| return 0; |
| } |
| #endif /* READ_GAMMA || INCH_CONVERSIONS */ |
| |
| #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED) |
| /* The following is for when the caller doesn't much care about the |
| * result. |
| */ |
| png_fixed_point |
| png_muldiv_warn(png_structp png_ptr, png_fixed_point a, png_int_32 times, |
| png_int_32 divisor) |
| { |
| png_fixed_point result; |
| |
| if (png_muldiv(&result, a, times, divisor)) |
| return result; |
| |
| png_warning(png_ptr, "fixed point overflow ignored"); |
| return 0; |
| } |
| #endif |
| |
| #ifdef PNG_READ_GAMMA_SUPPORTED /* more fixed point functions for gammma */ |
| /* Calculate a reciprocal, return 0 on div-by-zero or overflow. */ |
| png_fixed_point |
| png_reciprocal(png_fixed_point a) |
| { |
| #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
| double r = floor(1E10/a+.5); |
| |
| if (r <= 2147483647. && r >= -2147483648.) |
| return (png_fixed_point)r; |
| #else |
| png_fixed_point res; |
| |
| if (png_muldiv(&res, 100000, 100000, a)) |
| return res; |
| #endif |
| |
| return 0; /* error/overflow */ |
| } |
| |
| /* A local convenience routine. */ |
| static png_fixed_point |
| png_product2(png_fixed_point a, png_fixed_point b) |
| { |
| /* The required result is 1/a * 1/b; the following preserves accuracy. */ |
| #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
| double r = a * 1E-5; |
| r *= b; |
| r = floor(r+.5); |
| |
| if (r <= 2147483647. && r >= -2147483648.) |
| return (png_fixed_point)r; |
| #else |
| png_fixed_point res; |
| |
| if (png_muldiv(&res, a, b, 100000)) |
| return res; |
| #endif |
| |
| return 0; /* overflow */ |
| } |
| |
| /* The inverse of the above. */ |
| png_fixed_point |
| png_reciprocal2(png_fixed_point a, png_fixed_point b) |
| { |
| /* The required result is 1/a * 1/b; the following preserves accuracy. */ |
| #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
| double r = 1E15/a; |
| r /= b; |
| r = floor(r+.5); |
| |
| if (r <= 2147483647. && r >= -2147483648.) |
| return (png_fixed_point)r; |
| #else |
| /* This may overflow because the range of png_fixed_point isn't symmetric, |
| * but this API is only used for the product of file and screen gamma so it |
| * doesn't matter that the smallest number it can produce is 1/21474, not |
| * 1/100000 |
| */ |
| png_fixed_point res = png_product2(a, b); |
| |
| if (res != 0) |
| return png_reciprocal(res); |
| #endif |
| |
| return 0; /* overflow */ |
| } |
| #endif /* READ_GAMMA */ |
| |
| #ifdef PNG_CHECK_cHRM_SUPPORTED |
| /* Added at libpng version 1.2.34 (Dec 8, 2008) and 1.4.0 (Jan 2, |
| * 2010: moved from pngset.c) */ |
| /* |
| * Multiply two 32-bit numbers, V1 and V2, using 32-bit |
| * arithmetic, to produce a 64-bit result in the HI/LO words. |
| * |
| * A B |
| * x C D |
| * ------ |
| * AD || BD |
| * AC || CB || 0 |
| * |
| * where A and B are the high and low 16-bit words of V1, |
| * C and D are the 16-bit words of V2, AD is the product of |
| * A and D, and X || Y is (X << 16) + Y. |
| */ |
| |
| void /* PRIVATE */ |
| png_64bit_product (long v1, long v2, unsigned long *hi_product, |
| unsigned long *lo_product) |
| { |
| int a, b, c, d; |
| long lo, hi, x, y; |
| |
| a = (v1 >> 16) & 0xffff; |
| b = v1 & 0xffff; |
| c = (v2 >> 16) & 0xffff; |
| d = v2 & 0xffff; |
| |
| lo = b * d; /* BD */ |
| x = a * d + c * b; /* AD + CB */ |
| y = ((lo >> 16) & 0xffff) + x; |
| |
| lo = (lo & 0xffff) | ((y & 0xffff) << 16); |
| hi = (y >> 16) & 0xffff; |
| |
| hi += a * c; /* AC */ |
| |
| *hi_product = (unsigned long)hi; |
| *lo_product = (unsigned long)lo; |
| } |
| #endif /* CHECK_cHRM */ |
| |
| #ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */ |
| #ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED |
| /* Fixed point gamma. |
| * |
| * To calculate gamma this code implements fast log() and exp() calls using only |
| * fixed point arithmetic. This code has sufficient precision for either 8-bit |
| * or 16-bit sample values. |
| * |
| * The tables used here were calculated using simple 'bc' programs, but C double |
| * precision floating point arithmetic would work fine. The programs are given |
| * at the head of each table. |
| * |
| * 8-bit log table |
| * This is a table of -log(value/255)/log(2) for 'value' in the range 128 to |
| * 255, so it's the base 2 logarithm of a normalized 8-bit floating point |
| * mantissa. The numbers are 32-bit fractions. |
| */ |
| static png_uint_32 |
| png_8bit_l2[128] = |
| { |
| # if PNG_DO_BC |
| for (i=128;i<256;++i) { .5 - l(i/255)/l(2)*65536*65536; } |
| # endif |
| 4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U, |
| 3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U, |
| 3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U, |
| 3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U, |
| 3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U, |
| 2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U, |
| 2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U, |
| 2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U, |
| 2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U, |
| 2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U, |
| 1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U, |
| 1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U, |
| 1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U, |
| 1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U, |
| 1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U, |
| 971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U, |
| 803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U, |
| 639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U, |
| 479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U, |
| 324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U, |
| 172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U, |
| 24347096U, 0U |
| #if 0 |
| /* The following are the values for 16-bit tables - these work fine for the |
| * 8-bit conversions but produce very slightly larger errors in the 16-bit |
| * log (about 1.2 as opposed to 0.7 absolute error in the final value). To |
| * use these all the shifts below must be adjusted appropriately. |
| */ |
| 65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054, |
| 57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803, |
| 50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068, |
| 43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782, |
| 37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887, |
| 31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339, |
| 25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098, |
| 20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132, |
| 15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415, |
| 10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523, |
| 6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495, |
| 1119, 744, 372 |
| #endif |
| }; |
| |
| PNG_STATIC png_int_32 |
| png_log8bit(unsigned int x) |
| { |
| unsigned int lg2 = 0; |
| /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log, |
| * because the log is actually negate that means adding 1. The final |
| * returned value thus has the range 0 (for 255 input) to 7.994 (for 1 |
| * input), return 7.99998 for the overflow (log 0) case - so the result is |
| * always at most 19 bits. |
| */ |
| if ((x &= 0xff) == 0) |
| return 0xffffffff; |
| |
| if ((x & 0xf0) == 0) |
| lg2 = 4, x <<= 4; |
| |
| if ((x & 0xc0) == 0) |
| lg2 += 2, x <<= 2; |
| |
| if ((x & 0x80) == 0) |
| lg2 += 1, x <<= 1; |
| |
| /* result is at most 19 bits, so this cast is safe: */ |
| return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16)); |
| } |
| |
| /* The above gives exact (to 16 binary places) log2 values for 8-bit images, |
| * for 16-bit images we use the most significant 8 bits of the 16-bit value to |
| * get an approximation then multiply the approximation by a correction factor |
| * determined by the remaining up to 8 bits. This requires an additional step |
| * in the 16-bit case. |
| * |
| * We want log2(value/65535), we have log2(v'/255), where: |
| * |
| * value = v' * 256 + v'' |
| * = v' * f |
| * |
| * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128 |
| * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less |
| * than 258. The final factor also needs to correct for the fact that our 8-bit |
| * value is scaled by 255, whereas the 16-bit values must be scaled by 65535. |
| * |
| * This gives a final formula using a calculated value 'x' which is value/v' and |
| * scaling by 65536 to match the above table: |
| * |
| * log2(x/257) * 65536 |
| * |
| * Since these numbers are so close to '1' we can use simple linear |
| * interpolation between the two end values 256/257 (result -368.61) and 258/257 |
| * (result 367.179). The values used below are scaled by a further 64 to give |
| * 16-bit precision in the interpolation: |
| * |
| * Start (256): -23591 |
| * Zero (257): 0 |
| * End (258): 23499 |
| */ |
| PNG_STATIC png_int_32 |
| png_log16bit(png_uint_32 x) |
| { |
| unsigned int lg2 = 0; |
| |
| /* As above, but now the input has 16 bits. */ |
| if ((x &= 0xffff) == 0) |
| return 0xffffffff; |
| |
| if ((x & 0xff00) == 0) |
| lg2 = 8, x <<= 8; |
| |
| if ((x & 0xf000) == 0) |
| lg2 += 4, x <<= 4; |
| |
| if ((x & 0xc000) == 0) |
| lg2 += 2, x <<= 2; |
| |
| if ((x & 0x8000) == 0) |
| lg2 += 1, x <<= 1; |
| |
| /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional |
| * value. |
| */ |
| lg2 <<= 28; |
| lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4; |
| |
| /* Now we need to interpolate the factor, this requires a division by the top |
| * 8 bits. Do this with maximum precision. |
| */ |
| x = ((x << 16) + (x >> 9)) / (x >> 8); |
| |
| /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24, |
| * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly |
| * 16 bits to interpolate to get the low bits of the result. Round the |
| * answer. Note that the end point values are scaled by 64 to retain overall |
| * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust |
| * the overall scaling by 6-12. Round at every step. |
| */ |
| x -= 1U << 24; |
| |
| if (x <= 65536U) /* <= '257' */ |
| lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12); |
| |
| else |
| lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12); |
| |
| /* Safe, because the result can't have more than 20 bits: */ |
| return (png_int_32)((lg2 + 2048) >> 12); |
| } |
| |
| /* The 'exp()' case must invert the above, taking a 20-bit fixed point |
| * logarithmic value and returning a 16 or 8-bit number as appropriate. In |
| * each case only the low 16 bits are relevant - the fraction - since the |
| * integer bits (the top 4) simply determine a shift. |
| * |
| * The worst case is the 16-bit distinction between 65535 and 65534, this |
| * requires perhaps spurious accuracty in the decoding of the logarithm to |
| * distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance |
| * of getting this accuracy in practice. |
| * |
| * To deal with this the following exp() function works out the exponent of the |
| * frational part of the logarithm by using an accurate 32-bit value from the |
| * top four fractional bits then multiplying in the remaining bits. |
| */ |
| static png_uint_32 |
| png_32bit_exp[16] = |
| { |
| # if PNG_DO_BC |
| for (i=0;i<16;++i) { .5 + e(-i/16*l(2))*2^32; } |
| # endif |
| /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */ |
| 4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U, |
| 3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U, |
| 2553802834U, 2445529972U, 2341847524U, 2242560872U |
| }; |
| |
| /* Adjustment table; provided to explain the numbers in the code below. */ |
| #if PNG_DO_BC |
| for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"} |
| 11 44937.64284865548751208448 |
| 10 45180.98734845585101160448 |
| 9 45303.31936980687359311872 |
| 8 45364.65110595323018870784 |
| 7 45395.35850361789624614912 |
| 6 45410.72259715102037508096 |
| 5 45418.40724413220722311168 |
| 4 45422.25021786898173001728 |
| 3 45424.17186732298419044352 |
| 2 45425.13273269940811464704 |
| 1 45425.61317555035558641664 |
| 0 45425.85339951654943850496 |
| #endif |
| |
| PNG_STATIC png_uint_32 |
| png_exp(png_fixed_point x) |
| { |
| if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */ |
| { |
| /* Obtain a 4-bit approximation */ |
| png_uint_32 e = png_32bit_exp[(x >> 12) & 0xf]; |
| |
| /* Incorporate the low 12 bits - these decrease the returned value by |
| * multiplying by a number less than 1 if the bit is set. The multiplier |
| * is determined by the above table and the shift. Notice that the values |
| * converge on 45426 and this is used to allow linear interpolation of the |
| * low bits. |
| */ |
| if (x & 0x800) |
| e -= (((e >> 16) * 44938U) + 16U) >> 5; |
| |
| if (x & 0x400) |
| e -= (((e >> 16) * 45181U) + 32U) >> 6; |
| |
| if (x & 0x200) |
| e -= (((e >> 16) * 45303U) + 64U) >> 7; |
| |
| if (x & 0x100) |
| e -= (((e >> 16) * 45365U) + 128U) >> 8; |
| |
| if (x & 0x080) |
| e -= (((e >> 16) * 45395U) + 256U) >> 9; |
| |
| if (x & 0x040) |
| e -= (((e >> 16) * 45410U) + 512U) >> 10; |
| |
| /* And handle the low 6 bits in a single block. */ |
| e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9; |
| |
| /* Handle the upper bits of x. */ |
| e >>= x >> 16; |
| return e; |
| } |
| |
| /* Check for overflow */ |
| if (x <= 0) |
| return png_32bit_exp[0]; |
| |
| /* Else underflow */ |
| return 0; |
| } |
| |
| PNG_STATIC png_byte |
| png_exp8bit(png_fixed_point lg2) |
| { |
| /* Get a 32-bit value: */ |
| png_uint_32 x = png_exp(lg2); |
| |
| /* Convert the 32-bit value to 0..255 by multiplying by 256-1, note that the |
| * second, rounding, step can't overflow because of the first, subtraction, |
| * step. |
| */ |
| x -= x >> 8; |
| return (png_byte)((x + 0x7fffffU) >> 24); |
| } |
| |
| PNG_STATIC png_uint_16 |
| png_exp16bit(png_fixed_point lg2) |
| { |
| /* Get a 32-bit value: */ |
| png_uint_32 x = png_exp(lg2); |
| |
| /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */ |
| x -= x >> 16; |
| return (png_uint_16)((x + 32767U) >> 16); |
| } |
| #endif /* FLOATING_ARITHMETIC */ |
| |
| png_byte |
| png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val) |
| { |
| if (value > 0 && value < 255) |
| { |
| # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
| double r = floor(255*pow(value/255.,gamma_val*.00001)+.5); |
| return (png_byte)r; |
| # else |
| png_int_32 lg2 = png_log8bit(value); |
| png_fixed_point res; |
| |
| if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1)) |
| return png_exp8bit(res); |
| |
| /* Overflow. */ |
| value = 0; |
| # endif |
| } |
| |
| return (png_byte)value; |
| } |
| |
| png_uint_16 |
| png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val) |
| { |
| if (value > 0 && value < 65535) |
| { |
| # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
| double r = floor(65535*pow(value/65535.,gamma_val*.00001)+.5); |
| return (png_uint_16)r; |
| # else |
| png_int_32 lg2 = png_log16bit(value); |
| png_fixed_point res; |
| |
| if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1)) |
| return png_exp16bit(res); |
| |
| /* Overflow. */ |
| value = 0; |
| # endif |
| } |
| |
| return (png_uint_16)value; |
| } |
| |
| /* This does the right thing based on the bit_depth field of the |
| * png_struct, interpreting values as 8-bit or 16-bit. While the result |
| * is nominally a 16-bit value if bit depth is 8 then the result is |
| * 8-bit (as are the arguments.) |
| */ |
| png_uint_16 /* PRIVATE */ |
| png_gamma_correct(png_structp png_ptr, unsigned int value, |
| png_fixed_point gamma_val) |
| { |
| if (png_ptr->bit_depth == 8) |
| return png_gamma_8bit_correct(value, gamma_val); |
| |
| else |
| return png_gamma_16bit_correct(value, gamma_val); |
| } |
| |
| /* This is the shared test on whether a gamma value is 'significant' - whether |
| * it is worth doing gamma correction. |
| */ |
| int /* PRIVATE */ |
| png_gamma_significant(png_fixed_point gamma_val) |
| { |
| return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED || |
| gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED; |
| } |
| |
| /* Internal function to build a single 16-bit table - the table consists of |
| * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount |
| * to shift the input values right (or 16-number_of_signifiant_bits). |
| * |
| * The caller is responsible for ensuring that the table gets cleaned up on |
| * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument |
| * should be somewhere that will be cleaned. |
| */ |
| static void |
| png_build_16bit_table(png_structp png_ptr, png_uint_16pp *ptable, |
| PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val) |
| { |
| /* Various values derived from 'shift': */ |
| PNG_CONST unsigned int num = 1U << (8U - shift); |
| PNG_CONST unsigned int max = (1U << (16U - shift))-1U; |
| PNG_CONST unsigned int max_by_2 = 1U << (15U-shift); |
| unsigned int i; |
| |
| png_uint_16pp table = *ptable = |
| (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p)); |
| |
| for (i = 0; i < num; i++) |
| { |
| png_uint_16p sub_table = table[i] = |
| (png_uint_16p)png_malloc(png_ptr, 256 * png_sizeof(png_uint_16)); |
| |
| /* The 'threshold' test is repeated here because it can arise for one of |
| * the 16-bit tables even if the others don't hit it. |
| */ |
| if (png_gamma_significant(gamma_val)) |
| { |
| /* The old code would overflow at the end and this would cause the |
| * 'pow' function to return a result >1, resulting in an |
| * arithmetic error. This code follows the spec exactly; ig is |
| * the recovered input sample, it always has 8-16 bits. |
| * |
| * We want input * 65535/max, rounded, the arithmetic fits in 32 |
| * bits (unsigned) so long as max <= 32767. |
| */ |
| unsigned int j; |
| for (j = 0; j < 256; j++) |
| { |
| png_uint_32 ig = (j << (8-shift)) + i; |
| # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED |
| /* Inline the 'max' scaling operation: */ |
| double d = floor(65535*pow(ig/(double)max, gamma_val*.00001)+.5); |
| sub_table[j] = (png_uint_16)d; |
| # else |
| if (shift) |
| ig = (ig * 65535U + max_by_2)/max; |
| |
| sub_table[j] = png_gamma_16bit_correct(ig, gamma_val); |
| # endif |
| } |
| } |
| else |
| { |
| /* We must still build a table, but do it the fast way. */ |
| unsigned int j; |
| |
| for (j = 0; j < 256; j++) |
| { |
| png_uint_32 ig = (j << (8-shift)) + i; |
| |
| if (shift) |
| ig = (ig * 65535U + max_by_2)/max; |
| |
| sub_table[j] = (png_uint_16)ig; |
| } |
| } |
| } |
| } |
| |
| /* NOTE: this function expects the *inverse* of the overall gamma transformation |
| * required. |
| */ |
| static void |
| png_build_16to8_table(png_structp png_ptr, png_uint_16pp *ptable, |
| PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val) |
| { |
| PNG_CONST unsigned int num = 1U << (8U - shift); |
| PNG_CONST unsigned int max = (1U << (16U - shift))-1U; |
| unsigned int i; |
| png_uint_32 last; |
| |
| png_uint_16pp table = *ptable = |
| (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p)); |
| |
| /* 'num' is the number of tables and also the number of low bits of low |
| * bits of the input 16-bit value used to select a table. Each table is |
| * itself index by the high 8 bits of the value. |
| */ |
| for (i = 0; i < num; i++) |
| table[i] = (png_uint_16p)png_malloc(png_ptr, |
| 256 * png_sizeof(png_uint_16)); |
| |
| /* 'gamma_val' is set to the reciprocal of the value calculated above, so |
| * pow(out,g) is an *input* value. 'last' is the last input value set. |
| * |
| * In the loop 'i' is used to find output values. Since the output is |
| * 8-bit there are only 256 possible values. The tables are set up to |
| * select the closest possible output value for each input by finding |
| * the input value at the boundary between each pair of output values |
| * and filling the table up to that boundary with the lower output |
| * value. |
| * |
| * The boundary values are 0.5,1.5..253.5,254.5. Since these are 9-bit |
| * values the code below uses a 16-bit value in i; the values start at |
| * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last |
| * entries are filled with 255). Start i at 128 and fill all 'last' |
| * table entries <= 'max' |
| */ |
| last = 0; |
| for (i = 0; i < 255; ++i) /* 8-bit output value */ |
| { |
| /* Find the corresponding maximum input value */ |
| png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */ |
| |
| /* Find the boundary value in 16 bits: */ |
| png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val); |
| |
| /* Adjust (round) to (16-shift) bits: */ |
| bound = (bound * max + 32768U)/65535U + 1U; |
| |
| while (last < bound) |
| { |
| table[last & (0xffU >> shift)][last >> (8U - shift)] = out; |
| last++; |
| } |
| } |
| |
| /* And fill in the final entries. */ |
| while (last < (num << 8)) |
| { |
| table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U; |
| last++; |
| } |
| } |
| |
| /* Build a single 8-bit table: same as the 16-bit case but much simpler (and |
| * typically much faster). Note that libpng currently does no sBIT processing |
| * (apparently contrary to the spec) so a 256 entry table is always generated. |
| */ |
| static void |
| png_build_8bit_table(png_structp png_ptr, png_bytepp ptable, |
| PNG_CONST png_fixed_point gamma_val) |
| { |
| unsigned int i; |
| png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256); |
| |
| if (png_gamma_significant(gamma_val)) for (i=0; i<256; i++) |
| table[i] = png_gamma_8bit_correct(i, gamma_val); |
| |
| else for (i=0; i<256; ++i) |
| table[i] = (png_byte)i; |
| } |
| |
| /* Used from png_read_destroy and below to release the memory used by the gamma |
| * tables. |
| */ |
| void /* PRIVATE */ |
| png_destroy_gamma_table(png_structp png_ptr) |
| { |
| png_free(png_ptr, png_ptr->gamma_table); |
| png_ptr->gamma_table = NULL; |
| |
| if (png_ptr->gamma_16_table != NULL) |
| { |
| int i; |
| int istop = (1 << (8 - png_ptr->gamma_shift)); |
| for (i = 0; i < istop; i++) |
| { |
| png_free(png_ptr, png_ptr->gamma_16_table[i]); |
| } |
| png_free(png_ptr, png_ptr->gamma_16_table); |
| png_ptr->gamma_16_table = NULL; |
| } |
| |
| #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ |
| defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ |
| defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) |
| png_free(png_ptr, png_ptr->gamma_from_1); |
| png_ptr->gamma_from_1 = NULL; |
| png_free(png_ptr, png_ptr->gamma_to_1); |
| png_ptr->gamma_to_1 = NULL; |
| |
| if (png_ptr->gamma_16_from_1 != NULL) |
| { |
| int i; |
| int istop = (1 << (8 - png_ptr->gamma_shift)); |
| for (i = 0; i < istop; i++) |
| { |
| png_free(png_ptr, png_ptr->gamma_16_from_1[i]); |
| } |
| png_free(png_ptr, png_ptr->gamma_16_from_1); |
| png_ptr->gamma_16_from_1 = NULL; |
| } |
| if (png_ptr->gamma_16_to_1 != NULL) |
| { |
| int i; |
| int istop = (1 << (8 - png_ptr->gamma_shift)); |
| for (i = 0; i < istop; i++) |
| { |
| png_free(png_ptr, png_ptr->gamma_16_to_1[i]); |
| } |
| png_free(png_ptr, png_ptr->gamma_16_to_1); |
| png_ptr->gamma_16_to_1 = NULL; |
| } |
| #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ |
| } |
| |
| /* We build the 8- or 16-bit gamma tables here. Note that for 16-bit |
| * tables, we don't make a full table if we are reducing to 8-bit in |
| * the future. Note also how the gamma_16 tables are segmented so that |
| * we don't need to allocate > 64K chunks for a full 16-bit table. |
| */ |
| void /* PRIVATE */ |
| png_build_gamma_table(png_structp png_ptr, int bit_depth) |
| { |
| png_debug(1, "in png_build_gamma_table"); |
| |
| /* Remove any existing table; this copes with multiple calls to |
| * png_read_update_info. The warning is because building the gamma tables |
| * multiple times is a performance hit - it's harmless but the ability to call |
| * png_read_update_info() multiple times is new in 1.5.6 so it seems sensible |
| * to warn if the app introduces such a hit. |
| */ |
| if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL) |
| { |
| png_warning(png_ptr, "gamma table being rebuilt"); |
| png_destroy_gamma_table(png_ptr); |
| } |
| |
| if (bit_depth <= 8) |
| { |
| png_build_8bit_table(png_ptr, &png_ptr->gamma_table, |
| png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->gamma, |
| png_ptr->screen_gamma) : PNG_FP_1); |
| |
| #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ |
| defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ |
| defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) |
| if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) |
| { |
| png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1, |
| png_reciprocal(png_ptr->gamma)); |
| |
| png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1, |
| png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) : |
| png_ptr->gamma/* Probably doing rgb_to_gray */); |
| } |
| #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ |
| } |
| else |
| { |
| png_byte shift, sig_bit; |
| |
| if (png_ptr->color_type & PNG_COLOR_MASK_COLOR) |
| { |
| sig_bit = png_ptr->sig_bit.red; |
| |
| if (png_ptr->sig_bit.green > sig_bit) |
| sig_bit = png_ptr->sig_bit.green; |
| |
| if (png_ptr->sig_bit.blue > sig_bit) |
| sig_bit = png_ptr->sig_bit.blue; |
| } |
| else |
| sig_bit = png_ptr->sig_bit.gray; |
| |
| /* 16-bit gamma code uses this equation: |
| * |
| * ov = table[(iv & 0xff) >> gamma_shift][iv >> 8] |
| * |
| * Where 'iv' is the input color value and 'ov' is the output value - |
| * pow(iv, gamma). |
| * |
| * Thus the gamma table consists of up to 256 256 entry tables. The table |
| * is selected by the (8-gamma_shift) most significant of the low 8 bits of |
| * the color value then indexed by the upper 8 bits: |
| * |
| * table[low bits][high 8 bits] |
| * |
| * So the table 'n' corresponds to all those 'iv' of: |
| * |
| * <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1> |
| * |
| */ |
| if (sig_bit > 0 && sig_bit < 16U) |
| shift = (png_byte)(16U - sig_bit); /* shift == insignificant bits */ |
| |
| else |
| shift = 0; /* keep all 16 bits */ |
| |
| if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) |
| { |
| /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively |
| * the significant bits in the *input* when the output will |
| * eventually be 8 bits. By default it is 11. |
| */ |
| if (shift < (16U - PNG_MAX_GAMMA_8)) |
| shift = (16U - PNG_MAX_GAMMA_8); |
| } |
| |
| if (shift > 8U) |
| shift = 8U; /* Guarantees at least one table! */ |
| |
| png_ptr->gamma_shift = shift; |
| |
| #ifdef PNG_16BIT_SUPPORTED |
| /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now |
| * PNG_COMPOSE). This effectively smashed the background calculation for |
| * 16-bit output because the 8-bit table assumes the result will be reduced |
| * to 8 bits. |
| */ |
| if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) |
| #endif |
| png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift, |
| png_ptr->screen_gamma > 0 ? png_product2(png_ptr->gamma, |
| png_ptr->screen_gamma) : PNG_FP_1); |
| |
| #ifdef PNG_16BIT_SUPPORTED |
| else |
| png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift, |
| png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->gamma, |
| png_ptr->screen_gamma) : PNG_FP_1); |
| #endif |
| |
| #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ |
| defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ |
| defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) |
| if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) |
| { |
| png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift, |
| png_reciprocal(png_ptr->gamma)); |
| |
| /* Notice that the '16 from 1' table should be full precision, however |
| * the lookup on this table still uses gamma_shift, so it can't be. |
| * TODO: fix this. |
| */ |
| png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift, |
| png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) : |
| png_ptr->gamma/* Probably doing rgb_to_gray */); |
| } |
| #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ |
| } |
| } |
| #endif /* READ_GAMMA */ |
| #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */ |