blob: 3b3be10211fb5e9505c943bb9eb2a00a5943fdb0 [file] [log] [blame]
/*
* cl_newtonemapping_handler.cpp - CL tonemapping handler
*
* Copyright (c) 2015 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Wu Junkai <junkai.wu@intel.com>
*/
#include "cl_utils.h"
#include "cl_newtonemapping_handler.h"
namespace XCam {
static const XCamKernelInfo kernel_tone_mapping_pipe_info = {
"kernel_newtonemapping",
#include "kernel_newtonemapping.clx"
, 0,
};
CLNewTonemappingImageKernel::CLNewTonemappingImageKernel (
const SmartPtr<CLContext> &context, const char *name)
: CLImageKernel (context, name)
{
}
static void
haleq(int *y, int *hist, int *hist_leq, int left, int right, int level, int index_left, int index_right)
{
int l;
float e, le;
l = (left + right) / 2;
int num_left = left > 0 ? hist[left - 1] : 0;
int pixel_num = hist[right] - num_left;
e = y[num_left + pixel_num / 2];
if(e != 0)
{
le = 0.5f * (e - l) + l;
}
else
{
le = l;
}
int index = (index_left + index_right) / 2;
hist_leq[index] = (int)(le + 0.5f);
if(level > 5) return;
haleq (y, hist, hist_leq, left, (int)(le + 0.5f), level + 1, index_left, index);
haleq (y, hist, hist_leq, (int)(le + 0.5f) + 1, right, level + 1, index + 1, index_right);
}
static void
block_split_haleq(int* hist, int hist_bin_count, int pixel_num, int block_start_index, float* y_max, float* y_avg, float* map_hist)
{
int block_id = block_start_index / hist_bin_count;
for(int i = hist_bin_count - 1; i >= 0; i--)
{
if(hist[i] > 0)
{
y_max[block_id] = i;
break;
}
}
for(int i = 0; i < hist_bin_count; i++)
{
y_avg[block_id] += i * hist[i];
}
y_max[block_id] = y_max[block_id] + 1;
y_avg[block_id] = y_avg[block_id] / pixel_num;
int *hist_log = (int *) xcam_malloc0 (hist_bin_count * sizeof (int));
int *sort_y = (int *) xcam_malloc0 ((pixel_num + 1) * sizeof (int));
int *map_index_leq = (int *) xcam_malloc0 (hist_bin_count * sizeof (int));
int *map_index_log = (int *) xcam_malloc0 (hist_bin_count * sizeof (int));
XCAM_ASSERT (hist_log && sort_y && map_index_leq && map_index_log);
int thres = (int)(1500 * 1500 / (y_avg[block_id] * y_avg[block_id] + 1) * 600);
int y_max0 = (y_max[block_id] > thres) ? thres : y_max[block_id];
int y_max1 = (y_max[block_id] - thres) > 0 ? (y_max[block_id] - thres) : 0;
float t0 = 0.01f * y_max0 + 0.001f;
float t1 = 0.001f * y_max1 + 0.001f;
float max0_log = log(y_max0 + t0);
float max1_log = log(y_max1 + t1);
float t0_log = log(t0);
float t1_log = log(t1);
float factor0;
if(y_max[block_id] < thres)
{
factor0 = (hist_bin_count - 1) / (max0_log - t0_log + 0.001f);
}
else
factor0 = y_max0 / (max0_log - t0_log + 0.001f);
float factor1 = y_max1 / (max1_log - t1_log + 0.001f);
if(y_max[block_id] < thres)
{
for(int i = 0; i < y_max[block_id]; i++)
{
int index = (int)((log(i + t0) - t0_log) * factor0 + 0.5f);
hist_log[index] += hist[i];
map_index_log[i] = index;
}
}
else
{
for(int i = 0; i < y_max0; i++)
{
int index = (int)((log(i + t0) - t0_log) * factor0 + 0.5f);
hist_log[index] += hist[i];
map_index_log[i] = index;
}
for(int i = y_max0; i < y_max[block_id]; i++)
{
int r = y_max[block_id] - i;
int index = (int)((log(r + t1) - t1_log) * factor1 + 0.5f);
index = y_max[block_id] - index;
hist_log[index] += hist[i];
map_index_log[i] = index;
}
}
for(int i = y_max[block_id]; i < hist_bin_count; i++)
{
hist_log[map_index_log[(int)y_max[block_id] - 1]] += hist[i];
map_index_log[i] = map_index_log[(int)y_max[block_id] - 1];
}
int sort_index = 1;
for(int i = 0; i < hist_bin_count; i++)
{
for(int l = 0; l < hist_log[i]; l++)
{
sort_y[sort_index] = i;
sort_index++;
}
}
sort_y[0] = 0;
for(int i = 1; i < hist_bin_count; i++)
{
hist_log[i] += hist_log[i - 1];
}
int map_leq_index[256];
haleq(sort_y, hist_log, map_leq_index, 0, hist_bin_count - 1, 0, 0, 255);
map_leq_index[255] = hist_bin_count;
map_leq_index[0] = 0;
for(int i = 1; i < 255; i++)
{
if(i % 2 == 0) map_leq_index[i] = (map_leq_index[i - 1] + map_leq_index[i + 1]) / 2;
if(map_leq_index[i] < map_leq_index[i - 1])
map_leq_index[i] = map_leq_index[i - 1];
}
for(int i = 0; i < 255; i++)
{
for(int k = map_leq_index[i]; k < map_leq_index[i + 1]; k++)
{
map_index_leq[k] = (float)i;
}
}
for(int i = 0; i < hist_bin_count; i++)
{
map_hist[i + block_start_index] = map_index_leq[map_index_log[i]] / 255.0f;
}
y_max[block_id] = y_max[block_id] / hist_bin_count;
y_avg[block_id] = y_avg[block_id] / hist_bin_count;
xcam_free (hist_log);
hist_log = NULL;
xcam_free (map_index_leq);
map_index_leq = NULL;
xcam_free (map_index_log);
map_index_log = NULL;
xcam_free (sort_y);
sort_y = NULL;
}
CLNewTonemappingImageHandler::CLNewTonemappingImageHandler (
const SmartPtr<CLContext> &context, const char *name)
: CLImageHandler (context, name)
, _output_format (XCAM_PIX_FMT_SGRBG16_planar)
, _block_factor (4)
{
for(int i = 0; i < 65536; i++)
{
_map_hist[i] = i;
}
for(int i = 0; i < 4 * 4; i++)
{
_y_max[i] = 0.0f;
_y_avg[i] = 0.0f;
}
}
bool
CLNewTonemappingImageHandler::set_tonemapping_kernel(SmartPtr<CLNewTonemappingImageKernel> &kernel)
{
SmartPtr<CLImageKernel> image_kernel = kernel;
add_kernel (image_kernel);
_tonemapping_kernel = kernel;
return true;
}
XCamReturn
CLNewTonemappingImageHandler::prepare_buffer_pool_video_info (
const VideoBufferInfo &input,
VideoBufferInfo &output)
{
bool format_inited = output.init (_output_format, input.width, input.height);
XCAM_FAIL_RETURN (
WARNING,
format_inited,
XCAM_RETURN_ERROR_PARAM,
"CL image handler(%s) output format(%s) unsupported",
get_name (), xcam_fourcc_to_string (_output_format));
return XCAM_RETURN_NO_ERROR;
}
XCamReturn
CLNewTonemappingImageHandler::prepare_parameters (
SmartPtr<VideoBuffer> &input, SmartPtr<VideoBuffer> &output)
{
SmartPtr<CLContext> context = get_context ();
const VideoBufferInfo &video_info = input->get_video_info ();
CLArgList args;
CLWorkSize work_size;
XCAM_ASSERT (_tonemapping_kernel.ptr ());
CLImageDesc desc;
desc.format.image_channel_order = CL_RGBA;
desc.format.image_channel_data_type = CL_UNORM_INT16;
desc.width = video_info.aligned_width / 4;
desc.height = video_info.aligned_height * 4;
desc.row_pitch = video_info.strides[0];
desc.array_size = 4;
desc.slice_pitch = video_info.strides [0] * video_info.aligned_height;
SmartPtr<CLImage> image_in = convert_to_climage (context, input, desc);
SmartPtr<CLImage> image_out = convert_to_climage (context, output, desc);
int image_width = video_info.aligned_width;
int image_height = video_info.aligned_height;
XCAM_FAIL_RETURN (
WARNING,
image_in->is_valid () && image_out->is_valid (),
XCAM_RETURN_ERROR_MEM,
"cl image handler(%s) in/out memory not available", XCAM_STR (get_name ()));
SmartPtr<X3aStats> stats;
SmartPtr<CLVideoBuffer> cl_buf = input.dynamic_cast_ptr<CLVideoBuffer> ();
if (cl_buf.ptr ()) {
stats = cl_buf->find_3a_stats ();
}
#if HAVE_LIBDRM
else {
SmartPtr<DrmBoBuffer> bo_buf = input.dynamic_cast_ptr<DrmBoBuffer> ();
stats = bo_buf->find_3a_stats ();
}
#endif
XCAM_FAIL_RETURN (
ERROR, stats.ptr (), XCAM_RETURN_ERROR_MEM,
"new tonemapping handler prepare_arguments find_3a_stats failed");
XCam3AStats *stats_ptr = stats->get_stats ();
XCAM_FAIL_RETURN (
ERROR, stats_ptr, XCAM_RETURN_ERROR_MEM,
"new tonemapping handler prepare_arguments get_stats failed");
int block_factor = 4;
int width_per_block = stats_ptr->info.width / block_factor;
int height_per_block = stats_ptr->info.height / block_factor;
int height_last_block = height_per_block + stats_ptr->info.height % block_factor;
int hist_bin_count = 1 << stats_ptr->info.bit_depth;
int *hist_per_block = (int *) xcam_malloc0 (hist_bin_count * sizeof (int));
XCAM_ASSERT (hist_per_block);
for(int block_row = 0; block_row < block_factor; block_row++)
{
for(int block_col = 0; block_col < block_factor; block_col++)
{
int block_start_index = (block_row * block_factor + block_col) * hist_bin_count;
int start_index = block_row * height_per_block * stats_ptr->info.width + block_col * width_per_block;
for(int i = 0; i < hist_bin_count; i++)
{
hist_per_block[i] = 0;
}
if(block_row == block_factor - 1)
{
height_per_block = height_last_block;
}
int block_totalnum = width_per_block * height_per_block;
for(int i = 0; i < height_per_block; i++)
{
for(int j = 0; j < width_per_block; j++)
{
int y = stats_ptr->stats[start_index + i * stats_ptr->info.width + j].avg_y;
hist_per_block[y]++;
}
}
block_split_haleq (hist_per_block, hist_bin_count, block_totalnum, block_start_index, _y_max, _y_avg, _map_hist);
}
}
xcam_free (hist_per_block);
hist_per_block = NULL;
SmartPtr<CLBuffer> y_max_buffer = new CLBuffer(
context, sizeof(float) * block_factor * block_factor,
CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR, &_y_max);
SmartPtr<CLBuffer> y_avg_buffer = new CLBuffer(
context, sizeof(float) * block_factor * block_factor,
CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR, &_y_avg);
SmartPtr<CLBuffer> map_hist_buffer = new CLBuffer(
context, sizeof(float) * hist_bin_count * block_factor * block_factor,
CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR, &_map_hist);
//set args;
args.push_back (new CLMemArgument (image_in));
args.push_back (new CLMemArgument (image_out));
args.push_back (new CLMemArgument (y_max_buffer));
args.push_back (new CLMemArgument (y_avg_buffer));
args.push_back (new CLMemArgument (map_hist_buffer));
args.push_back (new CLArgumentT<int> (image_width));
args.push_back (new CLArgumentT<int> (image_height));
const CLImageDesc out_info = image_out->get_image_desc ();
work_size.dim = XCAM_DEFAULT_IMAGE_DIM;
work_size.global[0] = out_info.width;
work_size.global[1] = out_info.height / 4;
work_size.local[0] = 8;
work_size.local[1] = 8;
XCAM_ASSERT (_tonemapping_kernel.ptr ());
XCamReturn ret = _tonemapping_kernel->set_arguments (args, work_size);
XCAM_FAIL_RETURN (
WARNING, ret == XCAM_RETURN_NO_ERROR, ret,
"new tone mapping kernel set arguments failed.");
return XCAM_RETURN_NO_ERROR;
}
SmartPtr<CLImageHandler>
create_cl_newtonemapping_image_handler (const SmartPtr<CLContext> &context)
{
SmartPtr<CLNewTonemappingImageHandler> tonemapping_handler;
SmartPtr<CLNewTonemappingImageKernel> tonemapping_kernel;
tonemapping_kernel = new CLNewTonemappingImageKernel (context, "kernel_newtonemapping");
XCAM_ASSERT (tonemapping_kernel.ptr ());
XCAM_FAIL_RETURN (
ERROR, tonemapping_kernel->build_kernel (kernel_tone_mapping_pipe_info, NULL) == XCAM_RETURN_NO_ERROR, NULL,
"build new tonemapping kernel(%s) failed", kernel_tone_mapping_pipe_info.kernel_name);
XCAM_ASSERT (tonemapping_kernel->is_valid ());
tonemapping_handler = new CLNewTonemappingImageHandler(context, "cl_handler_newtonemapping");
tonemapping_handler->set_tonemapping_kernel(tonemapping_kernel);
return tonemapping_handler;
}
};