blob: 43939610764ca24b77180dae63fb2eb83b30680c [file] [log] [blame]
/*
* xcam_utils.h - xcam utilities
*
* Copyright (c) 2014-2015 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Wind Yuan <feng.yuan@intel.com>
* Author: Zong Wei <wei.zong@intel.com>
* Author: Junkai Wu <junkai.wu@intel.com>
* Author: Yinhang Liu <yinhangx.liu@intel.com>
*/
#include "xcam_utils.h"
#include "video_buffer.h"
#include "image_file_handle.h"
namespace XCam {
static float
transform_bowl_coord_to_image_x (
const float bowl_x, const float bowl_y,
const uint32_t img_width)
{
float offset_radian = (bowl_x < 0.0f) ? PI : ((bowl_y >= 0.0f) ? 2.0f * PI : 0.0f);
float arctan_radian = (bowl_x != 0.0f) ? atan (-bowl_y / bowl_x) : ((bowl_y >= 0.0f) ? -PI / 2.0f : PI / 2.0f);
float img_x = arctan_radian + offset_radian;
img_x *= img_width / (2.0f * PI);
return XCAM_CLAMP (img_x, 0.0f, img_width - 1.0f);
}
static float
transform_bowl_coord_to_image_y (
const BowlDataConfig &config,
const float bowl_x, const float bowl_y, const float bowl_z,
const uint32_t img_height)
{
float wall_image_height = config.wall_height / (config.wall_height + config.ground_length) * img_height;
float ground_image_height = img_height - wall_image_height;
float img_y = 0.0f;
if (bowl_z > 0.0f) {
img_y = (config.wall_height - bowl_z) * wall_image_height / config.wall_height;
img_y = XCAM_CLAMP (img_y, 0.0f, wall_image_height - 1.0f);
} else {
float max_semimajor = config.b *
sqrt (1 - config.center_z * config.center_z / (config.c * config.c));
float min_semimajor = max_semimajor - config.ground_length;
XCAM_ASSERT (min_semimajor >= 0);
XCAM_ASSERT (max_semimajor > min_semimajor);
float step = ground_image_height / (max_semimajor - min_semimajor);
float axis_ratio = config.a / config.b;
float cur_semimajor = sqrt (bowl_x * bowl_x + bowl_y * bowl_y * axis_ratio * axis_ratio) / axis_ratio;
cur_semimajor = XCAM_CLAMP (cur_semimajor, min_semimajor, max_semimajor);
img_y = (max_semimajor - cur_semimajor) * step + wall_image_height;
img_y = XCAM_CLAMP (img_y, wall_image_height, img_height - 1.0f);
}
return img_y;
}
PointFloat2 bowl_view_coords_to_image (
const BowlDataConfig &config,
const PointFloat3 &bowl_pos,
const uint32_t img_width, const uint32_t img_height)
{
PointFloat2 img_pos;
img_pos.x = transform_bowl_coord_to_image_x (bowl_pos.x, bowl_pos.y, img_width);
img_pos.y = transform_bowl_coord_to_image_y (config, bowl_pos.x, bowl_pos.y, bowl_pos.z, img_height);
return img_pos;
}
PointFloat3 bowl_view_image_to_world (
const BowlDataConfig &config,
const uint32_t img_width, const uint32_t img_height,
const PointFloat2 &img_pos)
{
PointFloat3 world;
float angle;
float a = config.a;
float b = config.b;
float c = config.c;
float wall_image_height = config.wall_height / (float)(config.wall_height + config.ground_length) * (float)img_height;
float ground_image_height = (float)img_height - wall_image_height;
float z_step = (float)config.wall_height / wall_image_height;
float angle_step = fabs(config.angle_end - config.angle_start) / img_width;
if(img_pos.y < wall_image_height) {
world.z = config.wall_height - img_pos.y * z_step; // TODO world.z
angle = degree2radian (config.angle_start + img_pos.x * angle_step);
float r2 = 1 - (world.z - config.center_z) * (world.z - config.center_z) / (c * c);
if(XCAM_DOUBLE_EQUAL_AROUND (angle, PI / 2)) {
world.x = 0.0f;
world.y = -sqrt(r2 * b * b);
} else if (XCAM_DOUBLE_EQUAL_AROUND (angle, PI * 3 / 2)) {
world.x = 0.0f;
world.y = sqrt(r2 * b * b);
} else if((angle < PI / 2) || (angle > PI * 3 / 2)) {
world.x = sqrt(r2 * a * a * b * b / (b * b + a * a * tan(angle) * tan(angle)));
world.y = -world.x * tan(angle);
} else {
world.x = -sqrt(r2 * a * a * b * b / (b * b + a * a * tan(angle) * tan(angle)));
world.y = -world.x * tan(angle);
}
} else {
a = a * sqrt(1 - config.center_z * config.center_z / (c * c));
b = b * sqrt(1 - config.center_z * config.center_z / (c * c));
float ratio_ab = b / a;
float step_b = config.ground_length / ground_image_height;
b = b - (img_pos.y - wall_image_height) * step_b;
a = b / ratio_ab;
angle = degree2radian (config.angle_start + img_pos.x * angle_step);
if(XCAM_DOUBLE_EQUAL_AROUND (angle, PI / 2)) {
world.x = 0.0f;
world.y = -b;
} else if (XCAM_DOUBLE_EQUAL_AROUND (angle, PI * 3 / 2)) {
world.x = 0.0f;
world.y = b;
} else if((angle < PI / 2) || (angle > PI * 3 / 2)) {
world.x = a * b / sqrt(b * b + a * a * tan(angle) * tan(angle));
world.y = -world.x * tan(angle);
} else {
world.x = -a * b / sqrt(b * b + a * a * tan(angle) * tan(angle));
world.y = -world.x * tan(angle);
}
world.z = 0.0f;
}
return world;
}
void centralize_bowl_coord_from_cameras (
ExtrinsicParameter &front_cam, ExtrinsicParameter &right_cam,
ExtrinsicParameter &rear_cam, ExtrinsicParameter &left_cam,
PointFloat3 &bowl_coord_offset)
{
bowl_coord_offset.x = (front_cam.trans_x + rear_cam.trans_x) / 2.0f;
bowl_coord_offset.y = (right_cam.trans_y + left_cam.trans_y) / 2.0f;
bowl_coord_offset.z = 0.0f;
front_cam.trans_x -= bowl_coord_offset.x;
front_cam.trans_y -= bowl_coord_offset.y;
right_cam.trans_x -= bowl_coord_offset.x;
right_cam.trans_y -= bowl_coord_offset.y;
rear_cam.trans_x -= bowl_coord_offset.x;
rear_cam.trans_y -= bowl_coord_offset.y;
left_cam.trans_x -= bowl_coord_offset.x;
left_cam.trans_y -= bowl_coord_offset.y;
}
double
linear_interpolate_p2 (
double value_start, double value_end,
double ref_start, double ref_end,
double ref_curr)
{
double weight_start = 0;
double weight_end = 0;
double dist_start = 0;
double dist_end = 0;
double dist_sum = 0;
double value = 0;
dist_start = abs(ref_curr - ref_start);
dist_end = abs(ref_end - ref_curr);
dist_sum = dist_start + dist_end;
if (dist_start == 0) {
weight_start = 10000000.0;
} else {
weight_start = ((double)dist_sum / dist_start);
}
if (dist_end == 0) {
weight_end = 10000000.0;
} else {
weight_end = ((double)dist_sum / dist_end);
}
value = (value_start * weight_start + value_end * weight_end) / (weight_start + weight_end);
return value;
}
double
linear_interpolate_p4(
double value_lt, double value_rt,
double value_lb, double value_rb,
double ref_lt_x, double ref_rt_x,
double ref_lb_x, double ref_rb_x,
double ref_lt_y, double ref_rt_y,
double ref_lb_y, double ref_rb_y,
double ref_curr_x, double ref_curr_y)
{
double weight_lt = 0;
double weight_rt = 0;
double weight_lb = 0;
double weight_rb = 0;
double dist_lt = 0;
double dist_rt = 0;
double dist_lb = 0;
double dist_rb = 0;
double dist_sum = 0;
double value = 0;
dist_lt = (double)abs(ref_curr_x - ref_lt_x) + (double)abs(ref_curr_y - ref_lt_y);
dist_rt = (double)abs(ref_curr_x - ref_rt_x) + (double)abs(ref_curr_y - ref_rt_y);
dist_lb = (double)abs(ref_curr_x - ref_lb_x) + (double)abs(ref_curr_y - ref_lb_y);
dist_rb = (double)abs(ref_curr_x - ref_rb_x) + (double)abs(ref_curr_y - ref_rb_y);
dist_sum = dist_lt + dist_rt + dist_lb + dist_rb;
if (dist_lt == 0) {
weight_lt = 10000000.0;
} else {
weight_lt = ((float)dist_sum / dist_lt);
}
if (dist_rt == 0) {
weight_rt = 10000000.0;
} else {
weight_rt = ((float)dist_sum / dist_rt);
}
if (dist_lb == 0) {
weight_lb = 10000000.0;
} else {
weight_lb = ((float)dist_sum / dist_lb);
}
if (dist_rb == 0) {
weight_rb = 10000000.0;
} else {
weight_rb = ((float)dist_sum / dist_rt);
}
value = (double)floor ( (value_lt * weight_lt + value_rt * weight_rt +
value_lb * weight_lb + value_rb * weight_rb) /
(weight_lt + weight_rt + weight_lb + weight_rb) + 0.5 );
return value;
}
void
get_gauss_table (uint32_t radius, float sigma, std::vector<float> &table, bool normalize)
{
uint32_t i;
uint32_t scale = radius * 2 + 1;
float dis = 0.0f, sum = 1.0f;
//XCAM_ASSERT (scale < 512);
table.resize (scale);
table[radius] = 1.0f;
for (i = 0; i < radius; i++) {
dis = ((float)i - radius) * ((float)i - radius);
table[i] = table[scale - i - 1] = exp(-dis / (2.0f * sigma * sigma));
sum += table[i] * 2.0f;
}
if (!normalize)
return;
for(i = 0; i < scale; i++)
table[i] /= sum;
}
void
dump_buf_perfix_path (const SmartPtr<VideoBuffer> buf, const char *prefix_name)
{
char file_name[256];
XCAM_ASSERT (prefix_name);
XCAM_ASSERT (buf.ptr ());
const VideoBufferInfo &info = buf->get_video_info ();
snprintf (
file_name, 256, "%s-%dx%d.%s",
prefix_name, info.width, info.height, xcam_fourcc_to_string (info.format));
dump_video_buf (buf, file_name);
}
bool
dump_video_buf (const SmartPtr<VideoBuffer> buf, const char *file_name)
{
ImageFileHandle file;
XCAM_ASSERT (file_name);
XCamReturn ret = file.open (file_name, "wb");
XCAM_FAIL_RETURN (
ERROR, xcam_ret_is_ok (ret), false,
"dump buffer failed when open file: %s", file_name);
ret = file.write_buf (buf);
XCAM_FAIL_RETURN (
ERROR, xcam_ret_is_ok (ret), false,
"dump buffer to file: %s failed", file_name);
return true;
}
}