| /************************************************************************* |
| * |
| * $Id$ |
| * |
| * Copyright (C) 2001 Bjorn Reese <breese@users.sourceforge.net> |
| * |
| * Permission to use, copy, modify, and distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF |
| * MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND |
| * CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER. |
| * |
| ************************************************************************ |
| * |
| * Functions to handle special quantities in floating-point numbers |
| * (that is, NaNs and infinity). They provide the capability to detect |
| * and fabricate special quantities. |
| * |
| * Although written to be as portable as possible, it can never be |
| * guaranteed to work on all platforms, as not all hardware supports |
| * special quantities. |
| * |
| * The approach used here (approximately) is to: |
| * |
| * 1. Use C99 functionality when available. |
| * 2. Use IEEE 754 bit-patterns if possible. |
| * 3. Use platform-specific techniques. |
| * |
| ************************************************************************/ |
| |
| /* |
| * TODO: |
| * o Put all the magic into trio_fpclassify_and_signbit(), and use this from |
| * trio_isnan() etc. |
| */ |
| |
| /************************************************************************* |
| * Include files |
| */ |
| #include "triodef.h" |
| #include "trionan.h" |
| |
| #include <math.h> |
| #include <string.h> |
| #include <limits.h> |
| #include <float.h> |
| #if defined(TRIO_PLATFORM_UNIX) |
| # include <signal.h> |
| #endif |
| #if defined(TRIO_COMPILER_DECC) |
| # include <fp_class.h> |
| #endif |
| #include <assert.h> |
| |
| #if defined(TRIO_DOCUMENTATION) |
| # include "doc/doc_nan.h" |
| #endif |
| /** @addtogroup SpecialQuantities |
| @{ |
| */ |
| |
| /************************************************************************* |
| * Definitions |
| */ |
| |
| #define TRIO_TRUE (1 == 1) |
| #define TRIO_FALSE (0 == 1) |
| |
| /* We must enable IEEE floating-point on Alpha */ |
| #if defined(__alpha) && !defined(_IEEE_FP) |
| # if defined(TRIO_COMPILER_DECC) |
| # if defined(TRIO_PLATFORM_VMS) |
| # error "Must be compiled with option /IEEE_MODE=UNDERFLOW_TO_ZERO/FLOAT=IEEE" |
| # else |
| # if !defined(_CFE) |
| # error "Must be compiled with option -ieee" |
| # endif |
| # endif |
| # elif defined(TRIO_COMPILER_GCC) && (defined(__osf__) || defined(__linux__)) |
| # error "Must be compiled with option -mieee" |
| # endif |
| #endif /* __alpha && ! _IEEE_FP */ |
| |
| /* |
| * In ANSI/IEEE 754-1985 64-bits double format numbers have the |
| * following properties (amoungst others) |
| * |
| * o FLT_RADIX == 2: binary encoding |
| * o DBL_MAX_EXP == 1024: 11 bits exponent, where one bit is used |
| * to indicate special numbers (e.g. NaN and Infinity), so the |
| * maximum exponent is 10 bits wide (2^10 == 1024). |
| * o DBL_MANT_DIG == 53: The mantissa is 52 bits wide, but because |
| * numbers are normalized the initial binary 1 is represented |
| * implicitly (the so-called "hidden bit"), which leaves us with |
| * the ability to represent 53 bits wide mantissa. |
| */ |
| #if (FLT_RADIX == 2) && (DBL_MAX_EXP == 1024) && (DBL_MANT_DIG == 53) |
| # define USE_IEEE_754 |
| #endif |
| |
| |
| /************************************************************************* |
| * Constants |
| */ |
| |
| static TRIO_CONST char rcsid[] = "@(#)$Id$"; |
| |
| #if defined(USE_IEEE_754) |
| |
| /* |
| * Endian-agnostic indexing macro. |
| * |
| * The value of internalEndianMagic, when converted into a 64-bit |
| * integer, becomes 0x0706050403020100 (we could have used a 64-bit |
| * integer value instead of a double, but not all platforms supports |
| * that type). The value is automatically encoded with the correct |
| * endianess by the compiler, which means that we can support any |
| * kind of endianess. The individual bytes are then used as an index |
| * for the IEEE 754 bit-patterns and masks. |
| */ |
| #define TRIO_DOUBLE_INDEX(x) (((unsigned char *)&internalEndianMagic)[7-(x)]) |
| |
| static TRIO_CONST double internalEndianMagic = 7.949928895127363e-275; |
| |
| /* Mask for the exponent */ |
| static TRIO_CONST unsigned char ieee_754_exponent_mask[] = { |
| 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 |
| }; |
| |
| /* Mask for the mantissa */ |
| static TRIO_CONST unsigned char ieee_754_mantissa_mask[] = { |
| 0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF |
| }; |
| |
| /* Mask for the sign bit */ |
| static TRIO_CONST unsigned char ieee_754_sign_mask[] = { |
| 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 |
| }; |
| |
| /* Bit-pattern for negative zero */ |
| static TRIO_CONST unsigned char ieee_754_negzero_array[] = { |
| 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 |
| }; |
| |
| /* Bit-pattern for infinity */ |
| static TRIO_CONST unsigned char ieee_754_infinity_array[] = { |
| 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 |
| }; |
| |
| /* Bit-pattern for quiet NaN */ |
| static TRIO_CONST unsigned char ieee_754_qnan_array[] = { |
| 0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 |
| }; |
| |
| |
| /************************************************************************* |
| * Functions |
| */ |
| |
| /* |
| * trio_make_double |
| */ |
| TRIO_PRIVATE double |
| trio_make_double |
| TRIO_ARGS1((values), |
| TRIO_CONST unsigned char *values) |
| { |
| TRIO_VOLATILE double result; |
| int i; |
| |
| for (i = 0; i < (int)sizeof(double); i++) { |
| ((TRIO_VOLATILE unsigned char *)&result)[TRIO_DOUBLE_INDEX(i)] = values[i]; |
| } |
| return result; |
| } |
| |
| /* |
| * trio_is_special_quantity |
| */ |
| TRIO_PRIVATE int |
| trio_is_special_quantity |
| TRIO_ARGS2((number, has_mantissa), |
| double number, |
| int *has_mantissa) |
| { |
| unsigned int i; |
| unsigned char current; |
| int is_special_quantity = TRIO_TRUE; |
| |
| *has_mantissa = 0; |
| |
| for (i = 0; i < (unsigned int)sizeof(double); i++) { |
| current = ((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)]; |
| is_special_quantity |
| &= ((current & ieee_754_exponent_mask[i]) == ieee_754_exponent_mask[i]); |
| *has_mantissa |= (current & ieee_754_mantissa_mask[i]); |
| } |
| return is_special_quantity; |
| } |
| |
| /* |
| * trio_is_negative |
| */ |
| TRIO_PRIVATE int |
| trio_is_negative |
| TRIO_ARGS1((number), |
| double number) |
| { |
| unsigned int i; |
| int is_negative = TRIO_FALSE; |
| |
| for (i = 0; i < (unsigned int)sizeof(double); i++) { |
| is_negative |= (((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)] |
| & ieee_754_sign_mask[i]); |
| } |
| return is_negative; |
| } |
| |
| #endif /* USE_IEEE_754 */ |
| |
| |
| /** |
| Generate negative zero. |
| |
| @return Floating-point representation of negative zero. |
| */ |
| TRIO_PUBLIC double |
| trio_nzero(TRIO_NOARGS) |
| { |
| #if defined(USE_IEEE_754) |
| return trio_make_double(ieee_754_negzero_array); |
| #else |
| TRIO_VOLATILE double zero = 0.0; |
| |
| return -zero; |
| #endif |
| } |
| |
| /** |
| Generate positive infinity. |
| |
| @return Floating-point representation of positive infinity. |
| */ |
| TRIO_PUBLIC double |
| trio_pinf(TRIO_NOARGS) |
| { |
| /* Cache the result */ |
| static double result = 0.0; |
| |
| if (result == 0.0) { |
| |
| #if defined(INFINITY) && defined(__STDC_IEC_559__) |
| result = (double)INFINITY; |
| |
| #elif defined(USE_IEEE_754) |
| result = trio_make_double(ieee_754_infinity_array); |
| |
| #else |
| /* |
| * If HUGE_VAL is different from DBL_MAX, then HUGE_VAL is used |
| * as infinity. Otherwise we have to resort to an overflow |
| * operation to generate infinity. |
| */ |
| # if defined(TRIO_PLATFORM_UNIX) |
| void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN); |
| # endif |
| |
| result = HUGE_VAL; |
| if (HUGE_VAL == DBL_MAX) { |
| /* Force overflow */ |
| result += HUGE_VAL; |
| } |
| |
| # if defined(TRIO_PLATFORM_UNIX) |
| signal(SIGFPE, signal_handler); |
| # endif |
| |
| #endif |
| } |
| return result; |
| } |
| |
| /** |
| Generate negative infinity. |
| |
| @return Floating-point value of negative infinity. |
| */ |
| TRIO_PUBLIC double |
| trio_ninf(TRIO_NOARGS) |
| { |
| static double result = 0.0; |
| |
| if (result == 0.0) { |
| /* |
| * Negative infinity is calculated by negating positive infinity, |
| * which can be done because it is legal to do calculations on |
| * infinity (for example, 1 / infinity == 0). |
| */ |
| result = -trio_pinf(); |
| } |
| return result; |
| } |
| |
| /** |
| Generate NaN. |
| |
| @return Floating-point representation of NaN. |
| */ |
| TRIO_PUBLIC double |
| trio_nan(TRIO_NOARGS) |
| { |
| /* Cache the result */ |
| static double result = 0.0; |
| |
| if (result == 0.0) { |
| |
| #if defined(TRIO_COMPILER_SUPPORTS_C99) |
| result = nan(""); |
| |
| #elif defined(NAN) && defined(__STDC_IEC_559__) |
| result = (double)NAN; |
| |
| #elif defined(USE_IEEE_754) |
| result = trio_make_double(ieee_754_qnan_array); |
| |
| #else |
| /* |
| * There are several ways to generate NaN. The one used here is |
| * to divide infinity by infinity. I would have preferred to add |
| * negative infinity to positive infinity, but that yields wrong |
| * result (infinity) on FreeBSD. |
| * |
| * This may fail if the hardware does not support NaN, or if |
| * the Invalid Operation floating-point exception is unmasked. |
| */ |
| # if defined(TRIO_PLATFORM_UNIX) |
| void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN); |
| # endif |
| |
| result = trio_pinf() / trio_pinf(); |
| |
| # if defined(TRIO_PLATFORM_UNIX) |
| signal(SIGFPE, signal_handler); |
| # endif |
| |
| #endif |
| } |
| return result; |
| } |
| |
| /** |
| Check for NaN. |
| |
| @param number An arbitrary floating-point number. |
| @return Boolean value indicating whether or not the number is a NaN. |
| */ |
| TRIO_PUBLIC int |
| trio_isnan |
| TRIO_ARGS1((number), |
| double number) |
| { |
| #if (defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isnan)) \ |
| || defined(TRIO_COMPILER_SUPPORTS_UNIX95) |
| /* |
| * C99 defines isnan() as a macro. UNIX95 defines isnan() as a |
| * function. This function was already present in XPG4, but this |
| * is a bit tricky to detect with compiler defines, so we choose |
| * the conservative approach and only use it for UNIX95. |
| */ |
| return isnan(number); |
| |
| #elif defined(TRIO_COMPILER_MSVC) |
| /* |
| * MSVC has an _isnan() function |
| */ |
| return _isnan(number); |
| |
| #elif defined(USE_IEEE_754) |
| /* |
| * Examine IEEE 754 bit-pattern. A NaN must have a special exponent |
| * pattern, and a non-empty mantissa. |
| */ |
| int has_mantissa; |
| int is_special_quantity; |
| |
| is_special_quantity = trio_is_special_quantity(number, &has_mantissa); |
| |
| return (is_special_quantity && has_mantissa); |
| |
| #else |
| /* |
| * Fallback solution |
| */ |
| int status; |
| double integral, fraction; |
| |
| # if defined(TRIO_PLATFORM_UNIX) |
| void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN); |
| # endif |
| |
| status = (/* |
| * NaN is the only number which does not compare to itself |
| */ |
| ((TRIO_VOLATILE double)number != (TRIO_VOLATILE double)number) || |
| /* |
| * Fallback solution if NaN compares to NaN |
| */ |
| ((number != 0.0) && |
| (fraction = modf(number, &integral), |
| integral == fraction))); |
| |
| # if defined(TRIO_PLATFORM_UNIX) |
| signal(SIGFPE, signal_handler); |
| # endif |
| |
| return status; |
| |
| #endif |
| } |
| |
| /** |
| Check for infinity. |
| |
| @param number An arbitrary floating-point number. |
| @return 1 if positive infinity, -1 if negative infinity, 0 otherwise. |
| */ |
| TRIO_PUBLIC int |
| trio_isinf |
| TRIO_ARGS1((number), |
| double number) |
| { |
| #if defined(TRIO_COMPILER_DECC) |
| /* |
| * DECC has an isinf() macro, but it works differently than that |
| * of C99, so we use the fp_class() function instead. |
| */ |
| return ((fp_class(number) == FP_POS_INF) |
| ? 1 |
| : ((fp_class(number) == FP_NEG_INF) ? -1 : 0)); |
| |
| #elif defined(isinf) |
| /* |
| * C99 defines isinf() as a macro. |
| */ |
| return isinf(number) |
| ? ((number > 0.0) ? 1 : -1) |
| : 0; |
| |
| #elif defined(TRIO_COMPILER_MSVC) |
| /* |
| * MSVC has an _fpclass() function that can be used to detect infinity. |
| */ |
| return ((_fpclass(number) == _FPCLASS_PINF) |
| ? 1 |
| : ((_fpclass(number) == _FPCLASS_NINF) ? -1 : 0)); |
| |
| #elif defined(USE_IEEE_754) |
| /* |
| * Examine IEEE 754 bit-pattern. Infinity must have a special exponent |
| * pattern, and an empty mantissa. |
| */ |
| int has_mantissa; |
| int is_special_quantity; |
| |
| is_special_quantity = trio_is_special_quantity(number, &has_mantissa); |
| |
| return (is_special_quantity && !has_mantissa) |
| ? ((number < 0.0) ? -1 : 1) |
| : 0; |
| |
| #else |
| /* |
| * Fallback solution. |
| */ |
| int status; |
| |
| # if defined(TRIO_PLATFORM_UNIX) |
| void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN); |
| # endif |
| |
| double infinity = trio_pinf(); |
| |
| status = ((number == infinity) |
| ? 1 |
| : ((number == -infinity) ? -1 : 0)); |
| |
| # if defined(TRIO_PLATFORM_UNIX) |
| signal(SIGFPE, signal_handler); |
| # endif |
| |
| return status; |
| |
| #endif |
| } |
| |
| |
| /** |
| Check for finity. |
| |
| @param number An arbitrary floating-point number. |
| @return Boolean value indicating whether or not the number is a finite. |
| */ |
| TRIO_PUBLIC int |
| trio_isfinite |
| TRIO_ARGS1((number), |
| double number) |
| { |
| #if defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isfinite) |
| /* |
| * C99 defines isfinite() as a macro. |
| */ |
| return isfinite(number); |
| |
| #elif defined(TRIO_COMPILER_MSVC) |
| /* |
| * MSVC uses _finite(). |
| */ |
| return _finite(number); |
| |
| #elif defined(USE_IEEE_754) |
| /* |
| * Examine IEEE 754 bit-pattern. For finity we do not care about the |
| * mantissa. |
| */ |
| int dummy; |
| |
| return (! trio_is_special_quantity(number, &dummy)); |
| |
| #else |
| /* |
| * Fallback solution. |
| */ |
| return ((trio_isinf(number) == 0) && (trio_isnan(number) == 0)); |
| |
| #endif |
| } |
| |
| /* |
| * The sign of NaN is always false |
| */ |
| TRIO_PUBLIC int |
| trio_fpclassify_and_signbit |
| TRIO_ARGS2((number, is_negative), |
| double number, |
| int *is_negative) |
| { |
| #if defined(fpclassify) && defined(signbit) |
| /* |
| * C99 defines fpclassify() and signbit() as a macros |
| */ |
| *is_negative = signbit(number); |
| switch (fpclassify(number)) { |
| case FP_NAN: |
| return TRIO_FP_NAN; |
| case FP_INFINITE: |
| return TRIO_FP_INFINITE; |
| case FP_SUBNORMAL: |
| return TRIO_FP_SUBNORMAL; |
| case FP_ZERO: |
| return TRIO_FP_ZERO; |
| default: |
| return TRIO_FP_NORMAL; |
| } |
| |
| #elif defined(TRIO_COMPILER_DECC) |
| /* |
| * DECC has an fp_class() function. |
| */ |
| switch (fp_class(number)) { |
| case FP_QNAN: |
| case FP_SNAN: |
| *is_negative = TRIO_FALSE; /* NaN has no sign */ |
| return TRIO_FP_NAN; |
| case FP_POS_INF: |
| *is_negative = TRIO_FALSE; |
| return TRIO_FP_INFINITE; |
| case FP_NEG_INF: |
| *is_negative = TRIO_TRUE; |
| return TRIO_FP_INFINITE; |
| case FP_POS_DENORM: |
| *is_negative = TRIO_FALSE; |
| return TRIO_FP_SUBNORMAL; |
| case FP_NEG_DENORM: |
| *is_negative = TRIO_TRUE; |
| return TRIO_FP_SUBNORMAL; |
| case FP_POS_ZERO: |
| *is_negative = TRIO_FALSE; |
| return TRIO_FP_ZERO; |
| case FP_NEG_ZERO: |
| *is_negative = TRIO_TRUE; |
| return TRIO_FP_ZERO; |
| case FP_POS_NORM: |
| *is_negative = TRIO_FALSE; |
| return TRIO_FP_NORMAL; |
| case FP_NEG_NORM: |
| *is_negative = TRIO_TRUE; |
| return TRIO_FP_NORMAL; |
| default: |
| /* Just in case... */ |
| *is_negative = (number < 0.0); |
| return TRIO_FP_NORMAL; |
| } |
| |
| #elif defined(TRIO_COMPILER_MSVC) |
| /* |
| * MSVC has an _fpclass() function. |
| */ |
| switch (_fpclass(number)) { |
| case _FPCLASS_QNAN: |
| case _FPCLASS_SNAN: |
| *is_negative = TRIO_FALSE; |
| return TRIO_FP_NAN; |
| case _FPCLASS_PINF: |
| *is_negative = TRIO_FALSE; |
| return TRIO_FP_INFINITE; |
| case _FPCLASS_NINF: |
| *is_negative = TRIO_TRUE; |
| return TRIO_FP_INFINITE; |
| case _FPCLASS_PD: |
| *is_negative = TRIO_FALSE; |
| return TRIO_FP_SUBNORMAL; |
| case _FPCLASS_ND: |
| *is_negative = TRIO_TRUE; |
| return TRIO_FP_SUBNORMAL; |
| case _FPCLASS_PZ: |
| *is_negative = TRIO_FALSE; |
| return TRIO_FP_ZERO; |
| case _FPCLASS_NZ: |
| *is_negative = TRIO_TRUE; |
| return TRIO_FP_ZERO; |
| case _FPCLASS_PN: |
| *is_negative = TRIO_FALSE; |
| return TRIO_FP_NORMAL; |
| case _FPCLASS_NN: |
| *is_negative = TRIO_TRUE; |
| return TRIO_FP_NORMAL; |
| default: |
| /* Just in case... */ |
| *is_negative = (number < 0.0); |
| return TRIO_FP_NORMAL; |
| } |
| |
| #elif defined(FP_PLUS_NORM) || defined(__hpux) |
| |
| /* |
| * HP-UX 9.x and 10.x have an fpclassify() function, that is different |
| * from the C99 fpclassify() macro supported on HP-UX 11.x. |
| */ |
| switch (fpclassify(number)) { |
| case FP_QNAN: |
| case FP_SNAN: |
| *is_negative = TRIO_FALSE; |
| return TRIO_FP_NAN; |
| case FP_PLUS_INF: |
| *is_negative = TRIO_FALSE; |
| return TRIO_FP_INFINITE; |
| case FP_MINUS_INF: |
| *is_negative = TRIO_TRUE; |
| return TRIO_FP_INFINITE; |
| case FP_PLUS_DENORM: |
| *is_negative = TRIO_FALSE; |
| return TRIO_FP_SUBNORMAL; |
| case FP_MINUS_DENORM: |
| *is_negative = TRIO_TRUE; |
| return TRIO_FP_SUBNORMAL; |
| case FP_PLUS_ZERO: |
| *is_negative = TRIO_FALSE; |
| return TRIO_FP_ZERO; |
| case FP_MINUS_ZERO: |
| *is_negative = TRIO_TRUE; |
| return TRIO_FP_ZERO; |
| case FP_PLUS_NORM: |
| *is_negative = TRIO_FALSE; |
| return TRIO_FP_NORMAL; |
| case FP_MINUS_NORM: |
| *is_negative = TRIO_TRUE; |
| return TRIO_FP_NORMAL; |
| default: |
| assert(0); |
| } |
| |
| #else |
| /* |
| * Fallback solution. |
| */ |
| int rc; |
| |
| if (number == 0.0) { |
| /* |
| * In IEEE 754 the sign of zero is ignored in comparisons, so we |
| * have to handle this as a special case by examining the sign bit |
| * directly. |
| */ |
| #if defined(USE_IEEE_754) |
| *is_negative = trio_is_negative(number); |
| #else |
| *is_negative = TRIO_FALSE; /* FIXME */ |
| #endif |
| return TRIO_FP_ZERO; |
| } |
| if (trio_isnan(number)) { |
| *is_negative = TRIO_FALSE; |
| return TRIO_FP_NAN; |
| } |
| if ((rc = trio_isinf(number))) { |
| *is_negative = (rc == -1); |
| return TRIO_FP_INFINITE; |
| } |
| if ((number > 0.0) && (number < DBL_MIN)) { |
| *is_negative = TRIO_FALSE; |
| return TRIO_FP_SUBNORMAL; |
| } |
| if ((number < 0.0) && (number > -DBL_MIN)) { |
| *is_negative = TRIO_TRUE; |
| return TRIO_FP_SUBNORMAL; |
| } |
| *is_negative = (number < 0.0); |
| return TRIO_FP_NORMAL; |
| |
| #endif |
| } |
| |
| /** |
| Examine the sign of a number. |
| |
| @param number An arbitrary floating-point number. |
| @return Boolean value indicating whether or not the number has the |
| sign bit set (i.e. is negative). |
| */ |
| TRIO_PUBLIC int |
| trio_signbit |
| TRIO_ARGS1((number), |
| double number) |
| { |
| int is_negative; |
| |
| (void)trio_fpclassify_and_signbit(number, &is_negative); |
| return is_negative; |
| } |
| |
| /** |
| Examine the class of a number. |
| |
| @param number An arbitrary floating-point number. |
| @return Enumerable value indicating the class of @p number |
| */ |
| TRIO_PUBLIC int |
| trio_fpclassify |
| TRIO_ARGS1((number), |
| double number) |
| { |
| int dummy; |
| |
| return trio_fpclassify_and_signbit(number, &dummy); |
| } |
| |
| |
| /** @} SpecialQuantities */ |
| |
| /************************************************************************* |
| * For test purposes. |
| * |
| * Add the following compiler option to include this test code. |
| * |
| * Unix : -DSTANDALONE |
| * VMS : /DEFINE=(STANDALONE) |
| */ |
| #if defined(STANDALONE) |
| # include <stdio.h> |
| |
| static TRIO_CONST char * |
| getClassification |
| TRIO_ARGS1((type) |
| int type) |
| { |
| switch (type) { |
| case TRIO_FP_INFINITE: |
| return "FP_INFINITE"; |
| case TRIO_FP_NAN: |
| return "FP_NAN"; |
| case TRIO_FP_NORMAL: |
| return "FP_NORMAL"; |
| case TRIO_FP_SUBNORMAL: |
| return "FP_SUBNORMAL"; |
| case TRIO_FP_ZERO: |
| return "FP_ZERO"; |
| default: |
| return "FP_UNKNOWN"; |
| } |
| } |
| |
| static void |
| print_class |
| TRIO_ARGS2((prefix, number) |
| TRIO_CONST char *prefix, |
| double number) |
| { |
| printf("%-6s: %s %-15s %g\n", |
| prefix, |
| trio_signbit(number) ? "-" : "+", |
| getClassification(trio_fpclassify(number)), |
| number); |
| } |
| |
| int main(TRIO_NOARGS) |
| { |
| double my_nan; |
| double my_pinf; |
| double my_ninf; |
| # if defined(TRIO_PLATFORM_UNIX) |
| void (*signal_handler) TRIO_PROTO((int)); |
| # endif |
| |
| my_nan = trio_nan(); |
| my_pinf = trio_pinf(); |
| my_ninf = trio_ninf(); |
| |
| print_class("Nan", my_nan); |
| print_class("PInf", my_pinf); |
| print_class("NInf", my_ninf); |
| print_class("PZero", 0.0); |
| print_class("NZero", -0.0); |
| print_class("PNorm", 1.0); |
| print_class("NNorm", -1.0); |
| print_class("PSub", 1.01e-307 - 1.00e-307); |
| print_class("NSub", 1.00e-307 - 1.01e-307); |
| |
| printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", |
| my_nan, |
| ((unsigned char *)&my_nan)[0], |
| ((unsigned char *)&my_nan)[1], |
| ((unsigned char *)&my_nan)[2], |
| ((unsigned char *)&my_nan)[3], |
| ((unsigned char *)&my_nan)[4], |
| ((unsigned char *)&my_nan)[5], |
| ((unsigned char *)&my_nan)[6], |
| ((unsigned char *)&my_nan)[7], |
| trio_isnan(my_nan), trio_isinf(my_nan)); |
| printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", |
| my_pinf, |
| ((unsigned char *)&my_pinf)[0], |
| ((unsigned char *)&my_pinf)[1], |
| ((unsigned char *)&my_pinf)[2], |
| ((unsigned char *)&my_pinf)[3], |
| ((unsigned char *)&my_pinf)[4], |
| ((unsigned char *)&my_pinf)[5], |
| ((unsigned char *)&my_pinf)[6], |
| ((unsigned char *)&my_pinf)[7], |
| trio_isnan(my_pinf), trio_isinf(my_pinf)); |
| printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", |
| my_ninf, |
| ((unsigned char *)&my_ninf)[0], |
| ((unsigned char *)&my_ninf)[1], |
| ((unsigned char *)&my_ninf)[2], |
| ((unsigned char *)&my_ninf)[3], |
| ((unsigned char *)&my_ninf)[4], |
| ((unsigned char *)&my_ninf)[5], |
| ((unsigned char *)&my_ninf)[6], |
| ((unsigned char *)&my_ninf)[7], |
| trio_isnan(my_ninf), trio_isinf(my_ninf)); |
| |
| # if defined(TRIO_PLATFORM_UNIX) |
| signal_handler = signal(SIGFPE, SIG_IGN); |
| # endif |
| |
| my_pinf = DBL_MAX + DBL_MAX; |
| my_ninf = -my_pinf; |
| my_nan = my_pinf / my_pinf; |
| |
| # if defined(TRIO_PLATFORM_UNIX) |
| signal(SIGFPE, signal_handler); |
| # endif |
| |
| printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", |
| my_nan, |
| ((unsigned char *)&my_nan)[0], |
| ((unsigned char *)&my_nan)[1], |
| ((unsigned char *)&my_nan)[2], |
| ((unsigned char *)&my_nan)[3], |
| ((unsigned char *)&my_nan)[4], |
| ((unsigned char *)&my_nan)[5], |
| ((unsigned char *)&my_nan)[6], |
| ((unsigned char *)&my_nan)[7], |
| trio_isnan(my_nan), trio_isinf(my_nan)); |
| printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", |
| my_pinf, |
| ((unsigned char *)&my_pinf)[0], |
| ((unsigned char *)&my_pinf)[1], |
| ((unsigned char *)&my_pinf)[2], |
| ((unsigned char *)&my_pinf)[3], |
| ((unsigned char *)&my_pinf)[4], |
| ((unsigned char *)&my_pinf)[5], |
| ((unsigned char *)&my_pinf)[6], |
| ((unsigned char *)&my_pinf)[7], |
| trio_isnan(my_pinf), trio_isinf(my_pinf)); |
| printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", |
| my_ninf, |
| ((unsigned char *)&my_ninf)[0], |
| ((unsigned char *)&my_ninf)[1], |
| ((unsigned char *)&my_ninf)[2], |
| ((unsigned char *)&my_ninf)[3], |
| ((unsigned char *)&my_ninf)[4], |
| ((unsigned char *)&my_ninf)[5], |
| ((unsigned char *)&my_ninf)[6], |
| ((unsigned char *)&my_ninf)[7], |
| trio_isnan(my_ninf), trio_isinf(my_ninf)); |
| |
| return 0; |
| } |
| #endif |