| /* |
| * regexp.c: generic and extensible Regular Expression engine |
| * |
| * Basically designed with the purpose of compiling regexps for |
| * the variety of validation/shemas mechanisms now available in |
| * XML related specifications these include: |
| * - XML-1.0 DTD validation |
| * - XML Schemas structure part 1 |
| * - XML Schemas Datatypes part 2 especially Appendix F |
| * - RELAX-NG/TREX i.e. the counter proposal |
| * |
| * See Copyright for the status of this software. |
| * |
| * Daniel Veillard <veillard@redhat.com> |
| */ |
| |
| #define IN_LIBXML |
| #include "libxml.h" |
| |
| #ifdef LIBXML_REGEXP_ENABLED |
| |
| /* #define DEBUG_ERR */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| #ifdef HAVE_LIMITS_H |
| #include <limits.h> |
| #endif |
| |
| #include <libxml/tree.h> |
| #include <libxml/parserInternals.h> |
| #include <libxml/xmlregexp.h> |
| #include <libxml/xmlautomata.h> |
| #include <libxml/xmlunicode.h> |
| |
| #ifndef INT_MAX |
| #define INT_MAX 123456789 /* easy to flag and big enough for our needs */ |
| #endif |
| |
| /* #define DEBUG_REGEXP_GRAPH */ |
| /* #define DEBUG_REGEXP_EXEC */ |
| /* #define DEBUG_PUSH */ |
| /* #define DEBUG_COMPACTION */ |
| |
| #define MAX_PUSH 10000000 |
| |
| #define ERROR(str) \ |
| ctxt->error = XML_REGEXP_COMPILE_ERROR; \ |
| xmlRegexpErrCompile(ctxt, str); |
| #define NEXT ctxt->cur++ |
| #define CUR (*(ctxt->cur)) |
| #define NXT(index) (ctxt->cur[index]) |
| |
| #define CUR_SCHAR(s, l) xmlStringCurrentChar(NULL, s, &l) |
| #define NEXTL(l) ctxt->cur += l; |
| #define XML_REG_STRING_SEPARATOR '|' |
| /* |
| * Need PREV to check on a '-' within a Character Group. May only be used |
| * when it's guaranteed that cur is not at the beginning of ctxt->string! |
| */ |
| #define PREV (ctxt->cur[-1]) |
| |
| /** |
| * TODO: |
| * |
| * macro to flag unimplemented blocks |
| */ |
| #define TODO \ |
| xmlGenericError(xmlGenericErrorContext, \ |
| "Unimplemented block at %s:%d\n", \ |
| __FILE__, __LINE__); |
| |
| /************************************************************************ |
| * * |
| * Datatypes and structures * |
| * * |
| ************************************************************************/ |
| |
| /* |
| * Note: the order of the enums below is significant, do not shuffle |
| */ |
| typedef enum { |
| XML_REGEXP_EPSILON = 1, |
| XML_REGEXP_CHARVAL, |
| XML_REGEXP_RANGES, |
| XML_REGEXP_SUBREG, /* used for () sub regexps */ |
| XML_REGEXP_STRING, |
| XML_REGEXP_ANYCHAR, /* . */ |
| XML_REGEXP_ANYSPACE, /* \s */ |
| XML_REGEXP_NOTSPACE, /* \S */ |
| XML_REGEXP_INITNAME, /* \l */ |
| XML_REGEXP_NOTINITNAME, /* \L */ |
| XML_REGEXP_NAMECHAR, /* \c */ |
| XML_REGEXP_NOTNAMECHAR, /* \C */ |
| XML_REGEXP_DECIMAL, /* \d */ |
| XML_REGEXP_NOTDECIMAL, /* \D */ |
| XML_REGEXP_REALCHAR, /* \w */ |
| XML_REGEXP_NOTREALCHAR, /* \W */ |
| XML_REGEXP_LETTER = 100, |
| XML_REGEXP_LETTER_UPPERCASE, |
| XML_REGEXP_LETTER_LOWERCASE, |
| XML_REGEXP_LETTER_TITLECASE, |
| XML_REGEXP_LETTER_MODIFIER, |
| XML_REGEXP_LETTER_OTHERS, |
| XML_REGEXP_MARK, |
| XML_REGEXP_MARK_NONSPACING, |
| XML_REGEXP_MARK_SPACECOMBINING, |
| XML_REGEXP_MARK_ENCLOSING, |
| XML_REGEXP_NUMBER, |
| XML_REGEXP_NUMBER_DECIMAL, |
| XML_REGEXP_NUMBER_LETTER, |
| XML_REGEXP_NUMBER_OTHERS, |
| XML_REGEXP_PUNCT, |
| XML_REGEXP_PUNCT_CONNECTOR, |
| XML_REGEXP_PUNCT_DASH, |
| XML_REGEXP_PUNCT_OPEN, |
| XML_REGEXP_PUNCT_CLOSE, |
| XML_REGEXP_PUNCT_INITQUOTE, |
| XML_REGEXP_PUNCT_FINQUOTE, |
| XML_REGEXP_PUNCT_OTHERS, |
| XML_REGEXP_SEPAR, |
| XML_REGEXP_SEPAR_SPACE, |
| XML_REGEXP_SEPAR_LINE, |
| XML_REGEXP_SEPAR_PARA, |
| XML_REGEXP_SYMBOL, |
| XML_REGEXP_SYMBOL_MATH, |
| XML_REGEXP_SYMBOL_CURRENCY, |
| XML_REGEXP_SYMBOL_MODIFIER, |
| XML_REGEXP_SYMBOL_OTHERS, |
| XML_REGEXP_OTHER, |
| XML_REGEXP_OTHER_CONTROL, |
| XML_REGEXP_OTHER_FORMAT, |
| XML_REGEXP_OTHER_PRIVATE, |
| XML_REGEXP_OTHER_NA, |
| XML_REGEXP_BLOCK_NAME |
| } xmlRegAtomType; |
| |
| typedef enum { |
| XML_REGEXP_QUANT_EPSILON = 1, |
| XML_REGEXP_QUANT_ONCE, |
| XML_REGEXP_QUANT_OPT, |
| XML_REGEXP_QUANT_MULT, |
| XML_REGEXP_QUANT_PLUS, |
| XML_REGEXP_QUANT_ONCEONLY, |
| XML_REGEXP_QUANT_ALL, |
| XML_REGEXP_QUANT_RANGE |
| } xmlRegQuantType; |
| |
| typedef enum { |
| XML_REGEXP_START_STATE = 1, |
| XML_REGEXP_FINAL_STATE, |
| XML_REGEXP_TRANS_STATE, |
| XML_REGEXP_SINK_STATE, |
| XML_REGEXP_UNREACH_STATE |
| } xmlRegStateType; |
| |
| typedef enum { |
| XML_REGEXP_MARK_NORMAL = 0, |
| XML_REGEXP_MARK_START, |
| XML_REGEXP_MARK_VISITED |
| } xmlRegMarkedType; |
| |
| typedef struct _xmlRegRange xmlRegRange; |
| typedef xmlRegRange *xmlRegRangePtr; |
| |
| struct _xmlRegRange { |
| int neg; /* 0 normal, 1 not, 2 exclude */ |
| xmlRegAtomType type; |
| int start; |
| int end; |
| xmlChar *blockName; |
| }; |
| |
| typedef struct _xmlRegAtom xmlRegAtom; |
| typedef xmlRegAtom *xmlRegAtomPtr; |
| |
| typedef struct _xmlAutomataState xmlRegState; |
| typedef xmlRegState *xmlRegStatePtr; |
| |
| struct _xmlRegAtom { |
| int no; |
| xmlRegAtomType type; |
| xmlRegQuantType quant; |
| int min; |
| int max; |
| |
| void *valuep; |
| void *valuep2; |
| int neg; |
| int codepoint; |
| xmlRegStatePtr start; |
| xmlRegStatePtr start0; |
| xmlRegStatePtr stop; |
| int maxRanges; |
| int nbRanges; |
| xmlRegRangePtr *ranges; |
| void *data; |
| }; |
| |
| typedef struct _xmlRegCounter xmlRegCounter; |
| typedef xmlRegCounter *xmlRegCounterPtr; |
| |
| struct _xmlRegCounter { |
| int min; |
| int max; |
| }; |
| |
| typedef struct _xmlRegTrans xmlRegTrans; |
| typedef xmlRegTrans *xmlRegTransPtr; |
| |
| struct _xmlRegTrans { |
| xmlRegAtomPtr atom; |
| int to; |
| int counter; |
| int count; |
| int nd; |
| }; |
| |
| struct _xmlAutomataState { |
| xmlRegStateType type; |
| xmlRegMarkedType mark; |
| xmlRegMarkedType reached; |
| int no; |
| int maxTrans; |
| int nbTrans; |
| xmlRegTrans *trans; |
| /* knowing states ponting to us can speed things up */ |
| int maxTransTo; |
| int nbTransTo; |
| int *transTo; |
| }; |
| |
| typedef struct _xmlAutomata xmlRegParserCtxt; |
| typedef xmlRegParserCtxt *xmlRegParserCtxtPtr; |
| |
| #define AM_AUTOMATA_RNG 1 |
| |
| struct _xmlAutomata { |
| xmlChar *string; |
| xmlChar *cur; |
| |
| int error; |
| int neg; |
| |
| xmlRegStatePtr start; |
| xmlRegStatePtr end; |
| xmlRegStatePtr state; |
| |
| xmlRegAtomPtr atom; |
| |
| int maxAtoms; |
| int nbAtoms; |
| xmlRegAtomPtr *atoms; |
| |
| int maxStates; |
| int nbStates; |
| xmlRegStatePtr *states; |
| |
| int maxCounters; |
| int nbCounters; |
| xmlRegCounter *counters; |
| |
| int determinist; |
| int negs; |
| int flags; |
| }; |
| |
| struct _xmlRegexp { |
| xmlChar *string; |
| int nbStates; |
| xmlRegStatePtr *states; |
| int nbAtoms; |
| xmlRegAtomPtr *atoms; |
| int nbCounters; |
| xmlRegCounter *counters; |
| int determinist; |
| int flags; |
| /* |
| * That's the compact form for determinists automatas |
| */ |
| int nbstates; |
| int *compact; |
| void **transdata; |
| int nbstrings; |
| xmlChar **stringMap; |
| }; |
| |
| typedef struct _xmlRegExecRollback xmlRegExecRollback; |
| typedef xmlRegExecRollback *xmlRegExecRollbackPtr; |
| |
| struct _xmlRegExecRollback { |
| xmlRegStatePtr state;/* the current state */ |
| int index; /* the index in the input stack */ |
| int nextbranch; /* the next transition to explore in that state */ |
| int *counts; /* save the automata state if it has some */ |
| }; |
| |
| typedef struct _xmlRegInputToken xmlRegInputToken; |
| typedef xmlRegInputToken *xmlRegInputTokenPtr; |
| |
| struct _xmlRegInputToken { |
| xmlChar *value; |
| void *data; |
| }; |
| |
| struct _xmlRegExecCtxt { |
| int status; /* execution status != 0 indicate an error */ |
| int determinist; /* did we find an indeterministic behaviour */ |
| xmlRegexpPtr comp; /* the compiled regexp */ |
| xmlRegExecCallbacks callback; |
| void *data; |
| |
| xmlRegStatePtr state;/* the current state */ |
| int transno; /* the current transition on that state */ |
| int transcount; /* the number of chars in char counted transitions */ |
| |
| /* |
| * A stack of rollback states |
| */ |
| int maxRollbacks; |
| int nbRollbacks; |
| xmlRegExecRollback *rollbacks; |
| |
| /* |
| * The state of the automata if any |
| */ |
| int *counts; |
| |
| /* |
| * The input stack |
| */ |
| int inputStackMax; |
| int inputStackNr; |
| int index; |
| int *charStack; |
| const xmlChar *inputString; /* when operating on characters */ |
| xmlRegInputTokenPtr inputStack;/* when operating on strings */ |
| |
| /* |
| * error handling |
| */ |
| int errStateNo; /* the error state number */ |
| xmlRegStatePtr errState; /* the error state */ |
| xmlChar *errString; /* the string raising the error */ |
| int *errCounts; /* counters at the error state */ |
| int nbPush; |
| }; |
| |
| #define REGEXP_ALL_COUNTER 0x123456 |
| #define REGEXP_ALL_LAX_COUNTER 0x123457 |
| |
| static void xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top); |
| static void xmlRegFreeState(xmlRegStatePtr state); |
| static void xmlRegFreeAtom(xmlRegAtomPtr atom); |
| static int xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr); |
| static int xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint); |
| static int xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint, |
| int neg, int start, int end, const xmlChar *blockName); |
| |
| void xmlAutomataSetFlags(xmlAutomataPtr am, int flags); |
| |
| /************************************************************************ |
| * * |
| * Regexp memory error handler * |
| * * |
| ************************************************************************/ |
| /** |
| * xmlRegexpErrMemory: |
| * @extra: extra information |
| * |
| * Handle an out of memory condition |
| */ |
| static void |
| xmlRegexpErrMemory(xmlRegParserCtxtPtr ctxt, const char *extra) |
| { |
| const char *regexp = NULL; |
| if (ctxt != NULL) { |
| regexp = (const char *) ctxt->string; |
| ctxt->error = XML_ERR_NO_MEMORY; |
| } |
| __xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP, |
| XML_ERR_NO_MEMORY, XML_ERR_FATAL, NULL, 0, extra, |
| regexp, NULL, 0, 0, |
| "Memory allocation failed : %s\n", extra); |
| } |
| |
| /** |
| * xmlRegexpErrCompile: |
| * @extra: extra information |
| * |
| * Handle a compilation failure |
| */ |
| static void |
| xmlRegexpErrCompile(xmlRegParserCtxtPtr ctxt, const char *extra) |
| { |
| const char *regexp = NULL; |
| int idx = 0; |
| |
| if (ctxt != NULL) { |
| regexp = (const char *) ctxt->string; |
| idx = ctxt->cur - ctxt->string; |
| ctxt->error = XML_REGEXP_COMPILE_ERROR; |
| } |
| __xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP, |
| XML_REGEXP_COMPILE_ERROR, XML_ERR_FATAL, NULL, 0, extra, |
| regexp, NULL, idx, 0, |
| "failed to compile: %s\n", extra); |
| } |
| |
| /************************************************************************ |
| * * |
| * Allocation/Deallocation * |
| * * |
| ************************************************************************/ |
| |
| static int xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt); |
| /** |
| * xmlRegEpxFromParse: |
| * @ctxt: the parser context used to build it |
| * |
| * Allocate a new regexp and fill it with the result from the parser |
| * |
| * Returns the new regexp or NULL in case of error |
| */ |
| static xmlRegexpPtr |
| xmlRegEpxFromParse(xmlRegParserCtxtPtr ctxt) { |
| xmlRegexpPtr ret; |
| |
| ret = (xmlRegexpPtr) xmlMalloc(sizeof(xmlRegexp)); |
| if (ret == NULL) { |
| xmlRegexpErrMemory(ctxt, "compiling regexp"); |
| return(NULL); |
| } |
| memset(ret, 0, sizeof(xmlRegexp)); |
| ret->string = ctxt->string; |
| ret->nbStates = ctxt->nbStates; |
| ret->states = ctxt->states; |
| ret->nbAtoms = ctxt->nbAtoms; |
| ret->atoms = ctxt->atoms; |
| ret->nbCounters = ctxt->nbCounters; |
| ret->counters = ctxt->counters; |
| ret->determinist = ctxt->determinist; |
| ret->flags = ctxt->flags; |
| if (ret->determinist == -1) { |
| xmlRegexpIsDeterminist(ret); |
| } |
| |
| if ((ret->determinist != 0) && |
| (ret->nbCounters == 0) && |
| (ctxt->negs == 0) && |
| (ret->atoms != NULL) && |
| (ret->atoms[0] != NULL) && |
| (ret->atoms[0]->type == XML_REGEXP_STRING)) { |
| int i, j, nbstates = 0, nbatoms = 0; |
| int *stateRemap; |
| int *stringRemap; |
| int *transitions; |
| void **transdata; |
| xmlChar **stringMap; |
| xmlChar *value; |
| |
| /* |
| * Switch to a compact representation |
| * 1/ counting the effective number of states left |
| * 2/ counting the unique number of atoms, and check that |
| * they are all of the string type |
| * 3/ build a table state x atom for the transitions |
| */ |
| |
| stateRemap = xmlMalloc(ret->nbStates * sizeof(int)); |
| if (stateRemap == NULL) { |
| xmlRegexpErrMemory(ctxt, "compiling regexp"); |
| xmlFree(ret); |
| return(NULL); |
| } |
| for (i = 0;i < ret->nbStates;i++) { |
| if (ret->states[i] != NULL) { |
| stateRemap[i] = nbstates; |
| nbstates++; |
| } else { |
| stateRemap[i] = -1; |
| } |
| } |
| #ifdef DEBUG_COMPACTION |
| printf("Final: %d states\n", nbstates); |
| #endif |
| stringMap = xmlMalloc(ret->nbAtoms * sizeof(char *)); |
| if (stringMap == NULL) { |
| xmlRegexpErrMemory(ctxt, "compiling regexp"); |
| xmlFree(stateRemap); |
| xmlFree(ret); |
| return(NULL); |
| } |
| stringRemap = xmlMalloc(ret->nbAtoms * sizeof(int)); |
| if (stringRemap == NULL) { |
| xmlRegexpErrMemory(ctxt, "compiling regexp"); |
| xmlFree(stringMap); |
| xmlFree(stateRemap); |
| xmlFree(ret); |
| return(NULL); |
| } |
| for (i = 0;i < ret->nbAtoms;i++) { |
| if ((ret->atoms[i]->type == XML_REGEXP_STRING) && |
| (ret->atoms[i]->quant == XML_REGEXP_QUANT_ONCE)) { |
| value = ret->atoms[i]->valuep; |
| for (j = 0;j < nbatoms;j++) { |
| if (xmlStrEqual(stringMap[j], value)) { |
| stringRemap[i] = j; |
| break; |
| } |
| } |
| if (j >= nbatoms) { |
| stringRemap[i] = nbatoms; |
| stringMap[nbatoms] = xmlStrdup(value); |
| if (stringMap[nbatoms] == NULL) { |
| for (i = 0;i < nbatoms;i++) |
| xmlFree(stringMap[i]); |
| xmlFree(stringRemap); |
| xmlFree(stringMap); |
| xmlFree(stateRemap); |
| xmlFree(ret); |
| return(NULL); |
| } |
| nbatoms++; |
| } |
| } else { |
| xmlFree(stateRemap); |
| xmlFree(stringRemap); |
| for (i = 0;i < nbatoms;i++) |
| xmlFree(stringMap[i]); |
| xmlFree(stringMap); |
| xmlFree(ret); |
| return(NULL); |
| } |
| } |
| #ifdef DEBUG_COMPACTION |
| printf("Final: %d atoms\n", nbatoms); |
| #endif |
| transitions = (int *) xmlMalloc((nbstates + 1) * |
| (nbatoms + 1) * sizeof(int)); |
| if (transitions == NULL) { |
| xmlFree(stateRemap); |
| xmlFree(stringRemap); |
| xmlFree(stringMap); |
| xmlFree(ret); |
| return(NULL); |
| } |
| memset(transitions, 0, (nbstates + 1) * (nbatoms + 1) * sizeof(int)); |
| |
| /* |
| * Allocate the transition table. The first entry for each |
| * state corresponds to the state type. |
| */ |
| transdata = NULL; |
| |
| for (i = 0;i < ret->nbStates;i++) { |
| int stateno, atomno, targetno, prev; |
| xmlRegStatePtr state; |
| xmlRegTransPtr trans; |
| |
| stateno = stateRemap[i]; |
| if (stateno == -1) |
| continue; |
| state = ret->states[i]; |
| |
| transitions[stateno * (nbatoms + 1)] = state->type; |
| |
| for (j = 0;j < state->nbTrans;j++) { |
| trans = &(state->trans[j]); |
| if ((trans->to == -1) || (trans->atom == NULL)) |
| continue; |
| atomno = stringRemap[trans->atom->no]; |
| if ((trans->atom->data != NULL) && (transdata == NULL)) { |
| transdata = (void **) xmlMalloc(nbstates * nbatoms * |
| sizeof(void *)); |
| if (transdata != NULL) |
| memset(transdata, 0, |
| nbstates * nbatoms * sizeof(void *)); |
| else { |
| xmlRegexpErrMemory(ctxt, "compiling regexp"); |
| break; |
| } |
| } |
| targetno = stateRemap[trans->to]; |
| /* |
| * if the same atom can generate transitions to 2 different |
| * states then it means the automata is not determinist and |
| * the compact form can't be used ! |
| */ |
| prev = transitions[stateno * (nbatoms + 1) + atomno + 1]; |
| if (prev != 0) { |
| if (prev != targetno + 1) { |
| ret->determinist = 0; |
| #ifdef DEBUG_COMPACTION |
| printf("Indet: state %d trans %d, atom %d to %d : %d to %d\n", |
| i, j, trans->atom->no, trans->to, atomno, targetno); |
| printf(" previous to is %d\n", prev); |
| #endif |
| if (transdata != NULL) |
| xmlFree(transdata); |
| xmlFree(transitions); |
| xmlFree(stateRemap); |
| xmlFree(stringRemap); |
| for (i = 0;i < nbatoms;i++) |
| xmlFree(stringMap[i]); |
| xmlFree(stringMap); |
| goto not_determ; |
| } |
| } else { |
| #if 0 |
| printf("State %d trans %d: atom %d to %d : %d to %d\n", |
| i, j, trans->atom->no, trans->to, atomno, targetno); |
| #endif |
| transitions[stateno * (nbatoms + 1) + atomno + 1] = |
| targetno + 1; /* to avoid 0 */ |
| if (transdata != NULL) |
| transdata[stateno * nbatoms + atomno] = |
| trans->atom->data; |
| } |
| } |
| } |
| ret->determinist = 1; |
| #ifdef DEBUG_COMPACTION |
| /* |
| * Debug |
| */ |
| for (i = 0;i < nbstates;i++) { |
| for (j = 0;j < nbatoms + 1;j++) { |
| printf("%02d ", transitions[i * (nbatoms + 1) + j]); |
| } |
| printf("\n"); |
| } |
| printf("\n"); |
| #endif |
| /* |
| * Cleanup of the old data |
| */ |
| if (ret->states != NULL) { |
| for (i = 0;i < ret->nbStates;i++) |
| xmlRegFreeState(ret->states[i]); |
| xmlFree(ret->states); |
| } |
| ret->states = NULL; |
| ret->nbStates = 0; |
| if (ret->atoms != NULL) { |
| for (i = 0;i < ret->nbAtoms;i++) |
| xmlRegFreeAtom(ret->atoms[i]); |
| xmlFree(ret->atoms); |
| } |
| ret->atoms = NULL; |
| ret->nbAtoms = 0; |
| |
| ret->compact = transitions; |
| ret->transdata = transdata; |
| ret->stringMap = stringMap; |
| ret->nbstrings = nbatoms; |
| ret->nbstates = nbstates; |
| xmlFree(stateRemap); |
| xmlFree(stringRemap); |
| } |
| not_determ: |
| ctxt->string = NULL; |
| ctxt->nbStates = 0; |
| ctxt->states = NULL; |
| ctxt->nbAtoms = 0; |
| ctxt->atoms = NULL; |
| ctxt->nbCounters = 0; |
| ctxt->counters = NULL; |
| return(ret); |
| } |
| |
| /** |
| * xmlRegNewParserCtxt: |
| * @string: the string to parse |
| * |
| * Allocate a new regexp parser context |
| * |
| * Returns the new context or NULL in case of error |
| */ |
| static xmlRegParserCtxtPtr |
| xmlRegNewParserCtxt(const xmlChar *string) { |
| xmlRegParserCtxtPtr ret; |
| |
| ret = (xmlRegParserCtxtPtr) xmlMalloc(sizeof(xmlRegParserCtxt)); |
| if (ret == NULL) |
| return(NULL); |
| memset(ret, 0, sizeof(xmlRegParserCtxt)); |
| if (string != NULL) |
| ret->string = xmlStrdup(string); |
| ret->cur = ret->string; |
| ret->neg = 0; |
| ret->negs = 0; |
| ret->error = 0; |
| ret->determinist = -1; |
| return(ret); |
| } |
| |
| /** |
| * xmlRegNewRange: |
| * @ctxt: the regexp parser context |
| * @neg: is that negative |
| * @type: the type of range |
| * @start: the start codepoint |
| * @end: the end codepoint |
| * |
| * Allocate a new regexp range |
| * |
| * Returns the new range or NULL in case of error |
| */ |
| static xmlRegRangePtr |
| xmlRegNewRange(xmlRegParserCtxtPtr ctxt, |
| int neg, xmlRegAtomType type, int start, int end) { |
| xmlRegRangePtr ret; |
| |
| ret = (xmlRegRangePtr) xmlMalloc(sizeof(xmlRegRange)); |
| if (ret == NULL) { |
| xmlRegexpErrMemory(ctxt, "allocating range"); |
| return(NULL); |
| } |
| ret->neg = neg; |
| ret->type = type; |
| ret->start = start; |
| ret->end = end; |
| return(ret); |
| } |
| |
| /** |
| * xmlRegFreeRange: |
| * @range: the regexp range |
| * |
| * Free a regexp range |
| */ |
| static void |
| xmlRegFreeRange(xmlRegRangePtr range) { |
| if (range == NULL) |
| return; |
| |
| if (range->blockName != NULL) |
| xmlFree(range->blockName); |
| xmlFree(range); |
| } |
| |
| /** |
| * xmlRegCopyRange: |
| * @range: the regexp range |
| * |
| * Copy a regexp range |
| * |
| * Returns the new copy or NULL in case of error. |
| */ |
| static xmlRegRangePtr |
| xmlRegCopyRange(xmlRegParserCtxtPtr ctxt, xmlRegRangePtr range) { |
| xmlRegRangePtr ret; |
| |
| if (range == NULL) |
| return(NULL); |
| |
| ret = xmlRegNewRange(ctxt, range->neg, range->type, range->start, |
| range->end); |
| if (ret == NULL) |
| return(NULL); |
| if (range->blockName != NULL) { |
| ret->blockName = xmlStrdup(range->blockName); |
| if (ret->blockName == NULL) { |
| xmlRegexpErrMemory(ctxt, "allocating range"); |
| xmlRegFreeRange(ret); |
| return(NULL); |
| } |
| } |
| return(ret); |
| } |
| |
| /** |
| * xmlRegNewAtom: |
| * @ctxt: the regexp parser context |
| * @type: the type of atom |
| * |
| * Allocate a new atom |
| * |
| * Returns the new atom or NULL in case of error |
| */ |
| static xmlRegAtomPtr |
| xmlRegNewAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomType type) { |
| xmlRegAtomPtr ret; |
| |
| ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom)); |
| if (ret == NULL) { |
| xmlRegexpErrMemory(ctxt, "allocating atom"); |
| return(NULL); |
| } |
| memset(ret, 0, sizeof(xmlRegAtom)); |
| ret->type = type; |
| ret->quant = XML_REGEXP_QUANT_ONCE; |
| ret->min = 0; |
| ret->max = 0; |
| return(ret); |
| } |
| |
| /** |
| * xmlRegFreeAtom: |
| * @atom: the regexp atom |
| * |
| * Free a regexp atom |
| */ |
| static void |
| xmlRegFreeAtom(xmlRegAtomPtr atom) { |
| int i; |
| |
| if (atom == NULL) |
| return; |
| |
| for (i = 0;i < atom->nbRanges;i++) |
| xmlRegFreeRange(atom->ranges[i]); |
| if (atom->ranges != NULL) |
| xmlFree(atom->ranges); |
| if ((atom->type == XML_REGEXP_STRING) && (atom->valuep != NULL)) |
| xmlFree(atom->valuep); |
| if ((atom->type == XML_REGEXP_STRING) && (atom->valuep2 != NULL)) |
| xmlFree(atom->valuep2); |
| if ((atom->type == XML_REGEXP_BLOCK_NAME) && (atom->valuep != NULL)) |
| xmlFree(atom->valuep); |
| xmlFree(atom); |
| } |
| |
| /** |
| * xmlRegCopyAtom: |
| * @ctxt: the regexp parser context |
| * @atom: the oiginal atom |
| * |
| * Allocate a new regexp range |
| * |
| * Returns the new atom or NULL in case of error |
| */ |
| static xmlRegAtomPtr |
| xmlRegCopyAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) { |
| xmlRegAtomPtr ret; |
| |
| ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom)); |
| if (ret == NULL) { |
| xmlRegexpErrMemory(ctxt, "copying atom"); |
| return(NULL); |
| } |
| memset(ret, 0, sizeof(xmlRegAtom)); |
| ret->type = atom->type; |
| ret->quant = atom->quant; |
| ret->min = atom->min; |
| ret->max = atom->max; |
| if (atom->nbRanges > 0) { |
| int i; |
| |
| ret->ranges = (xmlRegRangePtr *) xmlMalloc(sizeof(xmlRegRangePtr) * |
| atom->nbRanges); |
| if (ret->ranges == NULL) { |
| xmlRegexpErrMemory(ctxt, "copying atom"); |
| goto error; |
| } |
| for (i = 0;i < atom->nbRanges;i++) { |
| ret->ranges[i] = xmlRegCopyRange(ctxt, atom->ranges[i]); |
| if (ret->ranges[i] == NULL) |
| goto error; |
| ret->nbRanges = i + 1; |
| } |
| } |
| return(ret); |
| |
| error: |
| xmlRegFreeAtom(ret); |
| return(NULL); |
| } |
| |
| static xmlRegStatePtr |
| xmlRegNewState(xmlRegParserCtxtPtr ctxt) { |
| xmlRegStatePtr ret; |
| |
| ret = (xmlRegStatePtr) xmlMalloc(sizeof(xmlRegState)); |
| if (ret == NULL) { |
| xmlRegexpErrMemory(ctxt, "allocating state"); |
| return(NULL); |
| } |
| memset(ret, 0, sizeof(xmlRegState)); |
| ret->type = XML_REGEXP_TRANS_STATE; |
| ret->mark = XML_REGEXP_MARK_NORMAL; |
| return(ret); |
| } |
| |
| /** |
| * xmlRegFreeState: |
| * @state: the regexp state |
| * |
| * Free a regexp state |
| */ |
| static void |
| xmlRegFreeState(xmlRegStatePtr state) { |
| if (state == NULL) |
| return; |
| |
| if (state->trans != NULL) |
| xmlFree(state->trans); |
| if (state->transTo != NULL) |
| xmlFree(state->transTo); |
| xmlFree(state); |
| } |
| |
| /** |
| * xmlRegFreeParserCtxt: |
| * @ctxt: the regexp parser context |
| * |
| * Free a regexp parser context |
| */ |
| static void |
| xmlRegFreeParserCtxt(xmlRegParserCtxtPtr ctxt) { |
| int i; |
| if (ctxt == NULL) |
| return; |
| |
| if (ctxt->string != NULL) |
| xmlFree(ctxt->string); |
| if (ctxt->states != NULL) { |
| for (i = 0;i < ctxt->nbStates;i++) |
| xmlRegFreeState(ctxt->states[i]); |
| xmlFree(ctxt->states); |
| } |
| if (ctxt->atoms != NULL) { |
| for (i = 0;i < ctxt->nbAtoms;i++) |
| xmlRegFreeAtom(ctxt->atoms[i]); |
| xmlFree(ctxt->atoms); |
| } |
| if (ctxt->counters != NULL) |
| xmlFree(ctxt->counters); |
| xmlFree(ctxt); |
| } |
| |
| /************************************************************************ |
| * * |
| * Display of Data structures * |
| * * |
| ************************************************************************/ |
| |
| static void |
| xmlRegPrintAtomType(FILE *output, xmlRegAtomType type) { |
| switch (type) { |
| case XML_REGEXP_EPSILON: |
| fprintf(output, "epsilon "); break; |
| case XML_REGEXP_CHARVAL: |
| fprintf(output, "charval "); break; |
| case XML_REGEXP_RANGES: |
| fprintf(output, "ranges "); break; |
| case XML_REGEXP_SUBREG: |
| fprintf(output, "subexpr "); break; |
| case XML_REGEXP_STRING: |
| fprintf(output, "string "); break; |
| case XML_REGEXP_ANYCHAR: |
| fprintf(output, "anychar "); break; |
| case XML_REGEXP_ANYSPACE: |
| fprintf(output, "anyspace "); break; |
| case XML_REGEXP_NOTSPACE: |
| fprintf(output, "notspace "); break; |
| case XML_REGEXP_INITNAME: |
| fprintf(output, "initname "); break; |
| case XML_REGEXP_NOTINITNAME: |
| fprintf(output, "notinitname "); break; |
| case XML_REGEXP_NAMECHAR: |
| fprintf(output, "namechar "); break; |
| case XML_REGEXP_NOTNAMECHAR: |
| fprintf(output, "notnamechar "); break; |
| case XML_REGEXP_DECIMAL: |
| fprintf(output, "decimal "); break; |
| case XML_REGEXP_NOTDECIMAL: |
| fprintf(output, "notdecimal "); break; |
| case XML_REGEXP_REALCHAR: |
| fprintf(output, "realchar "); break; |
| case XML_REGEXP_NOTREALCHAR: |
| fprintf(output, "notrealchar "); break; |
| case XML_REGEXP_LETTER: |
| fprintf(output, "LETTER "); break; |
| case XML_REGEXP_LETTER_UPPERCASE: |
| fprintf(output, "LETTER_UPPERCASE "); break; |
| case XML_REGEXP_LETTER_LOWERCASE: |
| fprintf(output, "LETTER_LOWERCASE "); break; |
| case XML_REGEXP_LETTER_TITLECASE: |
| fprintf(output, "LETTER_TITLECASE "); break; |
| case XML_REGEXP_LETTER_MODIFIER: |
| fprintf(output, "LETTER_MODIFIER "); break; |
| case XML_REGEXP_LETTER_OTHERS: |
| fprintf(output, "LETTER_OTHERS "); break; |
| case XML_REGEXP_MARK: |
| fprintf(output, "MARK "); break; |
| case XML_REGEXP_MARK_NONSPACING: |
| fprintf(output, "MARK_NONSPACING "); break; |
| case XML_REGEXP_MARK_SPACECOMBINING: |
| fprintf(output, "MARK_SPACECOMBINING "); break; |
| case XML_REGEXP_MARK_ENCLOSING: |
| fprintf(output, "MARK_ENCLOSING "); break; |
| case XML_REGEXP_NUMBER: |
| fprintf(output, "NUMBER "); break; |
| case XML_REGEXP_NUMBER_DECIMAL: |
| fprintf(output, "NUMBER_DECIMAL "); break; |
| case XML_REGEXP_NUMBER_LETTER: |
| fprintf(output, "NUMBER_LETTER "); break; |
| case XML_REGEXP_NUMBER_OTHERS: |
| fprintf(output, "NUMBER_OTHERS "); break; |
| case XML_REGEXP_PUNCT: |
| fprintf(output, "PUNCT "); break; |
| case XML_REGEXP_PUNCT_CONNECTOR: |
| fprintf(output, "PUNCT_CONNECTOR "); break; |
| case XML_REGEXP_PUNCT_DASH: |
| fprintf(output, "PUNCT_DASH "); break; |
| case XML_REGEXP_PUNCT_OPEN: |
| fprintf(output, "PUNCT_OPEN "); break; |
| case XML_REGEXP_PUNCT_CLOSE: |
| fprintf(output, "PUNCT_CLOSE "); break; |
| case XML_REGEXP_PUNCT_INITQUOTE: |
| fprintf(output, "PUNCT_INITQUOTE "); break; |
| case XML_REGEXP_PUNCT_FINQUOTE: |
| fprintf(output, "PUNCT_FINQUOTE "); break; |
| case XML_REGEXP_PUNCT_OTHERS: |
| fprintf(output, "PUNCT_OTHERS "); break; |
| case XML_REGEXP_SEPAR: |
| fprintf(output, "SEPAR "); break; |
| case XML_REGEXP_SEPAR_SPACE: |
| fprintf(output, "SEPAR_SPACE "); break; |
| case XML_REGEXP_SEPAR_LINE: |
| fprintf(output, "SEPAR_LINE "); break; |
| case XML_REGEXP_SEPAR_PARA: |
| fprintf(output, "SEPAR_PARA "); break; |
| case XML_REGEXP_SYMBOL: |
| fprintf(output, "SYMBOL "); break; |
| case XML_REGEXP_SYMBOL_MATH: |
| fprintf(output, "SYMBOL_MATH "); break; |
| case XML_REGEXP_SYMBOL_CURRENCY: |
| fprintf(output, "SYMBOL_CURRENCY "); break; |
| case XML_REGEXP_SYMBOL_MODIFIER: |
| fprintf(output, "SYMBOL_MODIFIER "); break; |
| case XML_REGEXP_SYMBOL_OTHERS: |
| fprintf(output, "SYMBOL_OTHERS "); break; |
| case XML_REGEXP_OTHER: |
| fprintf(output, "OTHER "); break; |
| case XML_REGEXP_OTHER_CONTROL: |
| fprintf(output, "OTHER_CONTROL "); break; |
| case XML_REGEXP_OTHER_FORMAT: |
| fprintf(output, "OTHER_FORMAT "); break; |
| case XML_REGEXP_OTHER_PRIVATE: |
| fprintf(output, "OTHER_PRIVATE "); break; |
| case XML_REGEXP_OTHER_NA: |
| fprintf(output, "OTHER_NA "); break; |
| case XML_REGEXP_BLOCK_NAME: |
| fprintf(output, "BLOCK "); break; |
| } |
| } |
| |
| static void |
| xmlRegPrintQuantType(FILE *output, xmlRegQuantType type) { |
| switch (type) { |
| case XML_REGEXP_QUANT_EPSILON: |
| fprintf(output, "epsilon "); break; |
| case XML_REGEXP_QUANT_ONCE: |
| fprintf(output, "once "); break; |
| case XML_REGEXP_QUANT_OPT: |
| fprintf(output, "? "); break; |
| case XML_REGEXP_QUANT_MULT: |
| fprintf(output, "* "); break; |
| case XML_REGEXP_QUANT_PLUS: |
| fprintf(output, "+ "); break; |
| case XML_REGEXP_QUANT_RANGE: |
| fprintf(output, "range "); break; |
| case XML_REGEXP_QUANT_ONCEONLY: |
| fprintf(output, "onceonly "); break; |
| case XML_REGEXP_QUANT_ALL: |
| fprintf(output, "all "); break; |
| } |
| } |
| static void |
| xmlRegPrintRange(FILE *output, xmlRegRangePtr range) { |
| fprintf(output, " range: "); |
| if (range->neg) |
| fprintf(output, "negative "); |
| xmlRegPrintAtomType(output, range->type); |
| fprintf(output, "%c - %c\n", range->start, range->end); |
| } |
| |
| static void |
| xmlRegPrintAtom(FILE *output, xmlRegAtomPtr atom) { |
| fprintf(output, " atom: "); |
| if (atom == NULL) { |
| fprintf(output, "NULL\n"); |
| return; |
| } |
| if (atom->neg) |
| fprintf(output, "not "); |
| xmlRegPrintAtomType(output, atom->type); |
| xmlRegPrintQuantType(output, atom->quant); |
| if (atom->quant == XML_REGEXP_QUANT_RANGE) |
| fprintf(output, "%d-%d ", atom->min, atom->max); |
| if (atom->type == XML_REGEXP_STRING) |
| fprintf(output, "'%s' ", (char *) atom->valuep); |
| if (atom->type == XML_REGEXP_CHARVAL) |
| fprintf(output, "char %c\n", atom->codepoint); |
| else if (atom->type == XML_REGEXP_RANGES) { |
| int i; |
| fprintf(output, "%d entries\n", atom->nbRanges); |
| for (i = 0; i < atom->nbRanges;i++) |
| xmlRegPrintRange(output, atom->ranges[i]); |
| } else if (atom->type == XML_REGEXP_SUBREG) { |
| fprintf(output, "start %d end %d\n", atom->start->no, atom->stop->no); |
| } else { |
| fprintf(output, "\n"); |
| } |
| } |
| |
| static void |
| xmlRegPrintTrans(FILE *output, xmlRegTransPtr trans) { |
| fprintf(output, " trans: "); |
| if (trans == NULL) { |
| fprintf(output, "NULL\n"); |
| return; |
| } |
| if (trans->to < 0) { |
| fprintf(output, "removed\n"); |
| return; |
| } |
| if (trans->nd != 0) { |
| if (trans->nd == 2) |
| fprintf(output, "last not determinist, "); |
| else |
| fprintf(output, "not determinist, "); |
| } |
| if (trans->counter >= 0) { |
| fprintf(output, "counted %d, ", trans->counter); |
| } |
| if (trans->count == REGEXP_ALL_COUNTER) { |
| fprintf(output, "all transition, "); |
| } else if (trans->count >= 0) { |
| fprintf(output, "count based %d, ", trans->count); |
| } |
| if (trans->atom == NULL) { |
| fprintf(output, "epsilon to %d\n", trans->to); |
| return; |
| } |
| if (trans->atom->type == XML_REGEXP_CHARVAL) |
| fprintf(output, "char %c ", trans->atom->codepoint); |
| fprintf(output, "atom %d, to %d\n", trans->atom->no, trans->to); |
| } |
| |
| static void |
| xmlRegPrintState(FILE *output, xmlRegStatePtr state) { |
| int i; |
| |
| fprintf(output, " state: "); |
| if (state == NULL) { |
| fprintf(output, "NULL\n"); |
| return; |
| } |
| if (state->type == XML_REGEXP_START_STATE) |
| fprintf(output, "START "); |
| if (state->type == XML_REGEXP_FINAL_STATE) |
| fprintf(output, "FINAL "); |
| |
| fprintf(output, "%d, %d transitions:\n", state->no, state->nbTrans); |
| for (i = 0;i < state->nbTrans; i++) { |
| xmlRegPrintTrans(output, &(state->trans[i])); |
| } |
| } |
| |
| #ifdef DEBUG_REGEXP_GRAPH |
| static void |
| xmlRegPrintCtxt(FILE *output, xmlRegParserCtxtPtr ctxt) { |
| int i; |
| |
| fprintf(output, " ctxt: "); |
| if (ctxt == NULL) { |
| fprintf(output, "NULL\n"); |
| return; |
| } |
| fprintf(output, "'%s' ", ctxt->string); |
| if (ctxt->error) |
| fprintf(output, "error "); |
| if (ctxt->neg) |
| fprintf(output, "neg "); |
| fprintf(output, "\n"); |
| fprintf(output, "%d atoms:\n", ctxt->nbAtoms); |
| for (i = 0;i < ctxt->nbAtoms; i++) { |
| fprintf(output, " %02d ", i); |
| xmlRegPrintAtom(output, ctxt->atoms[i]); |
| } |
| if (ctxt->atom != NULL) { |
| fprintf(output, "current atom:\n"); |
| xmlRegPrintAtom(output, ctxt->atom); |
| } |
| fprintf(output, "%d states:", ctxt->nbStates); |
| if (ctxt->start != NULL) |
| fprintf(output, " start: %d", ctxt->start->no); |
| if (ctxt->end != NULL) |
| fprintf(output, " end: %d", ctxt->end->no); |
| fprintf(output, "\n"); |
| for (i = 0;i < ctxt->nbStates; i++) { |
| xmlRegPrintState(output, ctxt->states[i]); |
| } |
| fprintf(output, "%d counters:\n", ctxt->nbCounters); |
| for (i = 0;i < ctxt->nbCounters; i++) { |
| fprintf(output, " %d: min %d max %d\n", i, ctxt->counters[i].min, |
| ctxt->counters[i].max); |
| } |
| } |
| #endif |
| |
| /************************************************************************ |
| * * |
| * Finite Automata structures manipulations * |
| * * |
| ************************************************************************/ |
| |
| static void |
| xmlRegAtomAddRange(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom, |
| int neg, xmlRegAtomType type, int start, int end, |
| xmlChar *blockName) { |
| xmlRegRangePtr range; |
| |
| if (atom == NULL) { |
| ERROR("add range: atom is NULL"); |
| return; |
| } |
| if (atom->type != XML_REGEXP_RANGES) { |
| ERROR("add range: atom is not ranges"); |
| return; |
| } |
| if (atom->maxRanges == 0) { |
| atom->maxRanges = 4; |
| atom->ranges = (xmlRegRangePtr *) xmlMalloc(atom->maxRanges * |
| sizeof(xmlRegRangePtr)); |
| if (atom->ranges == NULL) { |
| xmlRegexpErrMemory(ctxt, "adding ranges"); |
| atom->maxRanges = 0; |
| return; |
| } |
| } else if (atom->nbRanges >= atom->maxRanges) { |
| xmlRegRangePtr *tmp; |
| atom->maxRanges *= 2; |
| tmp = (xmlRegRangePtr *) xmlRealloc(atom->ranges, atom->maxRanges * |
| sizeof(xmlRegRangePtr)); |
| if (tmp == NULL) { |
| xmlRegexpErrMemory(ctxt, "adding ranges"); |
| atom->maxRanges /= 2; |
| return; |
| } |
| atom->ranges = tmp; |
| } |
| range = xmlRegNewRange(ctxt, neg, type, start, end); |
| if (range == NULL) |
| return; |
| range->blockName = blockName; |
| atom->ranges[atom->nbRanges++] = range; |
| |
| } |
| |
| static int |
| xmlRegGetCounter(xmlRegParserCtxtPtr ctxt) { |
| if (ctxt->maxCounters == 0) { |
| ctxt->maxCounters = 4; |
| ctxt->counters = (xmlRegCounter *) xmlMalloc(ctxt->maxCounters * |
| sizeof(xmlRegCounter)); |
| if (ctxt->counters == NULL) { |
| xmlRegexpErrMemory(ctxt, "allocating counter"); |
| ctxt->maxCounters = 0; |
| return(-1); |
| } |
| } else if (ctxt->nbCounters >= ctxt->maxCounters) { |
| xmlRegCounter *tmp; |
| ctxt->maxCounters *= 2; |
| tmp = (xmlRegCounter *) xmlRealloc(ctxt->counters, ctxt->maxCounters * |
| sizeof(xmlRegCounter)); |
| if (tmp == NULL) { |
| xmlRegexpErrMemory(ctxt, "allocating counter"); |
| ctxt->maxCounters /= 2; |
| return(-1); |
| } |
| ctxt->counters = tmp; |
| } |
| ctxt->counters[ctxt->nbCounters].min = -1; |
| ctxt->counters[ctxt->nbCounters].max = -1; |
| return(ctxt->nbCounters++); |
| } |
| |
| static int |
| xmlRegAtomPush(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) { |
| if (atom == NULL) { |
| ERROR("atom push: atom is NULL"); |
| return(-1); |
| } |
| if (ctxt->maxAtoms == 0) { |
| ctxt->maxAtoms = 4; |
| ctxt->atoms = (xmlRegAtomPtr *) xmlMalloc(ctxt->maxAtoms * |
| sizeof(xmlRegAtomPtr)); |
| if (ctxt->atoms == NULL) { |
| xmlRegexpErrMemory(ctxt, "pushing atom"); |
| ctxt->maxAtoms = 0; |
| return(-1); |
| } |
| } else if (ctxt->nbAtoms >= ctxt->maxAtoms) { |
| xmlRegAtomPtr *tmp; |
| ctxt->maxAtoms *= 2; |
| tmp = (xmlRegAtomPtr *) xmlRealloc(ctxt->atoms, ctxt->maxAtoms * |
| sizeof(xmlRegAtomPtr)); |
| if (tmp == NULL) { |
| xmlRegexpErrMemory(ctxt, "allocating counter"); |
| ctxt->maxAtoms /= 2; |
| return(-1); |
| } |
| ctxt->atoms = tmp; |
| } |
| atom->no = ctxt->nbAtoms; |
| ctxt->atoms[ctxt->nbAtoms++] = atom; |
| return(0); |
| } |
| |
| static void |
| xmlRegStateAddTransTo(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr target, |
| int from) { |
| if (target->maxTransTo == 0) { |
| target->maxTransTo = 8; |
| target->transTo = (int *) xmlMalloc(target->maxTransTo * |
| sizeof(int)); |
| if (target->transTo == NULL) { |
| xmlRegexpErrMemory(ctxt, "adding transition"); |
| target->maxTransTo = 0; |
| return; |
| } |
| } else if (target->nbTransTo >= target->maxTransTo) { |
| int *tmp; |
| target->maxTransTo *= 2; |
| tmp = (int *) xmlRealloc(target->transTo, target->maxTransTo * |
| sizeof(int)); |
| if (tmp == NULL) { |
| xmlRegexpErrMemory(ctxt, "adding transition"); |
| target->maxTransTo /= 2; |
| return; |
| } |
| target->transTo = tmp; |
| } |
| target->transTo[target->nbTransTo] = from; |
| target->nbTransTo++; |
| } |
| |
| static void |
| xmlRegStateAddTrans(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state, |
| xmlRegAtomPtr atom, xmlRegStatePtr target, |
| int counter, int count) { |
| |
| int nrtrans; |
| |
| if (state == NULL) { |
| ERROR("add state: state is NULL"); |
| return; |
| } |
| if (target == NULL) { |
| ERROR("add state: target is NULL"); |
| return; |
| } |
| /* |
| * Other routines follow the philosophy 'When in doubt, add a transition' |
| * so we check here whether such a transition is already present and, if |
| * so, silently ignore this request. |
| */ |
| |
| for (nrtrans = state->nbTrans - 1; nrtrans >= 0; nrtrans--) { |
| xmlRegTransPtr trans = &(state->trans[nrtrans]); |
| if ((trans->atom == atom) && |
| (trans->to == target->no) && |
| (trans->counter == counter) && |
| (trans->count == count)) { |
| #ifdef DEBUG_REGEXP_GRAPH |
| printf("Ignoring duplicate transition from %d to %d\n", |
| state->no, target->no); |
| #endif |
| return; |
| } |
| } |
| |
| if (state->maxTrans == 0) { |
| state->maxTrans = 8; |
| state->trans = (xmlRegTrans *) xmlMalloc(state->maxTrans * |
| sizeof(xmlRegTrans)); |
| if (state->trans == NULL) { |
| xmlRegexpErrMemory(ctxt, "adding transition"); |
| state->maxTrans = 0; |
| return; |
| } |
| } else if (state->nbTrans >= state->maxTrans) { |
| xmlRegTrans *tmp; |
| state->maxTrans *= 2; |
| tmp = (xmlRegTrans *) xmlRealloc(state->trans, state->maxTrans * |
| sizeof(xmlRegTrans)); |
| if (tmp == NULL) { |
| xmlRegexpErrMemory(ctxt, "adding transition"); |
| state->maxTrans /= 2; |
| return; |
| } |
| state->trans = tmp; |
| } |
| #ifdef DEBUG_REGEXP_GRAPH |
| printf("Add trans from %d to %d ", state->no, target->no); |
| if (count == REGEXP_ALL_COUNTER) |
| printf("all transition\n"); |
| else if (count >= 0) |
| printf("count based %d\n", count); |
| else if (counter >= 0) |
| printf("counted %d\n", counter); |
| else if (atom == NULL) |
| printf("epsilon transition\n"); |
| else if (atom != NULL) |
| xmlRegPrintAtom(stdout, atom); |
| #endif |
| |
| state->trans[state->nbTrans].atom = atom; |
| state->trans[state->nbTrans].to = target->no; |
| state->trans[state->nbTrans].counter = counter; |
| state->trans[state->nbTrans].count = count; |
| state->trans[state->nbTrans].nd = 0; |
| state->nbTrans++; |
| xmlRegStateAddTransTo(ctxt, target, state->no); |
| } |
| |
| static int |
| xmlRegStatePush(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state) { |
| if (state == NULL) return(-1); |
| if (ctxt->maxStates == 0) { |
| ctxt->maxStates = 4; |
| ctxt->states = (xmlRegStatePtr *) xmlMalloc(ctxt->maxStates * |
| sizeof(xmlRegStatePtr)); |
| if (ctxt->states == NULL) { |
| xmlRegexpErrMemory(ctxt, "adding state"); |
| ctxt->maxStates = 0; |
| return(-1); |
| } |
| } else if (ctxt->nbStates >= ctxt->maxStates) { |
| xmlRegStatePtr *tmp; |
| ctxt->maxStates *= 2; |
| tmp = (xmlRegStatePtr *) xmlRealloc(ctxt->states, ctxt->maxStates * |
| sizeof(xmlRegStatePtr)); |
| if (tmp == NULL) { |
| xmlRegexpErrMemory(ctxt, "adding state"); |
| ctxt->maxStates /= 2; |
| return(-1); |
| } |
| ctxt->states = tmp; |
| } |
| state->no = ctxt->nbStates; |
| ctxt->states[ctxt->nbStates++] = state; |
| return(0); |
| } |
| |
| /** |
| * xmlFAGenerateAllTransition: |
| * @ctxt: a regexp parser context |
| * @from: the from state |
| * @to: the target state or NULL for building a new one |
| * @lax: |
| * |
| */ |
| static void |
| xmlFAGenerateAllTransition(xmlRegParserCtxtPtr ctxt, |
| xmlRegStatePtr from, xmlRegStatePtr to, |
| int lax) { |
| if (to == NULL) { |
| to = xmlRegNewState(ctxt); |
| xmlRegStatePush(ctxt, to); |
| ctxt->state = to; |
| } |
| if (lax) |
| xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_LAX_COUNTER); |
| else |
| xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_COUNTER); |
| } |
| |
| /** |
| * xmlFAGenerateEpsilonTransition: |
| * @ctxt: a regexp parser context |
| * @from: the from state |
| * @to: the target state or NULL for building a new one |
| * |
| */ |
| static void |
| xmlFAGenerateEpsilonTransition(xmlRegParserCtxtPtr ctxt, |
| xmlRegStatePtr from, xmlRegStatePtr to) { |
| if (to == NULL) { |
| to = xmlRegNewState(ctxt); |
| xmlRegStatePush(ctxt, to); |
| ctxt->state = to; |
| } |
| xmlRegStateAddTrans(ctxt, from, NULL, to, -1, -1); |
| } |
| |
| /** |
| * xmlFAGenerateCountedEpsilonTransition: |
| * @ctxt: a regexp parser context |
| * @from: the from state |
| * @to: the target state or NULL for building a new one |
| * counter: the counter for that transition |
| * |
| */ |
| static void |
| xmlFAGenerateCountedEpsilonTransition(xmlRegParserCtxtPtr ctxt, |
| xmlRegStatePtr from, xmlRegStatePtr to, int counter) { |
| if (to == NULL) { |
| to = xmlRegNewState(ctxt); |
| xmlRegStatePush(ctxt, to); |
| ctxt->state = to; |
| } |
| xmlRegStateAddTrans(ctxt, from, NULL, to, counter, -1); |
| } |
| |
| /** |
| * xmlFAGenerateCountedTransition: |
| * @ctxt: a regexp parser context |
| * @from: the from state |
| * @to: the target state or NULL for building a new one |
| * counter: the counter for that transition |
| * |
| */ |
| static void |
| xmlFAGenerateCountedTransition(xmlRegParserCtxtPtr ctxt, |
| xmlRegStatePtr from, xmlRegStatePtr to, int counter) { |
| if (to == NULL) { |
| to = xmlRegNewState(ctxt); |
| xmlRegStatePush(ctxt, to); |
| ctxt->state = to; |
| } |
| xmlRegStateAddTrans(ctxt, from, NULL, to, -1, counter); |
| } |
| |
| /** |
| * xmlFAGenerateTransitions: |
| * @ctxt: a regexp parser context |
| * @from: the from state |
| * @to: the target state or NULL for building a new one |
| * @atom: the atom generating the transition |
| * |
| * Returns 0 if success and -1 in case of error. |
| */ |
| static int |
| xmlFAGenerateTransitions(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr from, |
| xmlRegStatePtr to, xmlRegAtomPtr atom) { |
| xmlRegStatePtr end; |
| |
| if (atom == NULL) { |
| ERROR("genrate transition: atom == NULL"); |
| return(-1); |
| } |
| if (atom->type == XML_REGEXP_SUBREG) { |
| /* |
| * this is a subexpression handling one should not need to |
| * create a new node except for XML_REGEXP_QUANT_RANGE. |
| */ |
| if (xmlRegAtomPush(ctxt, atom) < 0) { |
| return(-1); |
| } |
| if ((to != NULL) && (atom->stop != to) && |
| (atom->quant != XML_REGEXP_QUANT_RANGE)) { |
| /* |
| * Generate an epsilon transition to link to the target |
| */ |
| xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to); |
| #ifdef DV |
| } else if ((to == NULL) && (atom->quant != XML_REGEXP_QUANT_RANGE) && |
| (atom->quant != XML_REGEXP_QUANT_ONCE)) { |
| to = xmlRegNewState(ctxt); |
| xmlRegStatePush(ctxt, to); |
| ctxt->state = to; |
| xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to); |
| #endif |
| } |
| switch (atom->quant) { |
| case XML_REGEXP_QUANT_OPT: |
| atom->quant = XML_REGEXP_QUANT_ONCE; |
| /* |
| * transition done to the state after end of atom. |
| * 1. set transition from atom start to new state |
| * 2. set transition from atom end to this state. |
| */ |
| if (to == NULL) { |
| xmlFAGenerateEpsilonTransition(ctxt, atom->start, 0); |
| xmlFAGenerateEpsilonTransition(ctxt, atom->stop, |
| ctxt->state); |
| } else { |
| xmlFAGenerateEpsilonTransition(ctxt, atom->start, to); |
| } |
| break; |
| case XML_REGEXP_QUANT_MULT: |
| atom->quant = XML_REGEXP_QUANT_ONCE; |
| xmlFAGenerateEpsilonTransition(ctxt, atom->start, atom->stop); |
| xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start); |
| break; |
| case XML_REGEXP_QUANT_PLUS: |
| atom->quant = XML_REGEXP_QUANT_ONCE; |
| xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start); |
| break; |
| case XML_REGEXP_QUANT_RANGE: { |
| int counter; |
| xmlRegStatePtr inter, newstate; |
| |
| /* |
| * create the final state now if needed |
| */ |
| if (to != NULL) { |
| newstate = to; |
| } else { |
| newstate = xmlRegNewState(ctxt); |
| xmlRegStatePush(ctxt, newstate); |
| } |
| |
| /* |
| * The principle here is to use counted transition |
| * to avoid explosion in the number of states in the |
| * graph. This is clearly more complex but should not |
| * be exploitable at runtime. |
| */ |
| if ((atom->min == 0) && (atom->start0 == NULL)) { |
| xmlRegAtomPtr copy; |
| /* |
| * duplicate a transition based on atom to count next |
| * occurences after 1. We cannot loop to atom->start |
| * directly because we need an epsilon transition to |
| * newstate. |
| */ |
| /* ???? For some reason it seems we never reach that |
| case, I suppose this got optimized out before when |
| building the automata */ |
| copy = xmlRegCopyAtom(ctxt, atom); |
| if (copy == NULL) |
| return(-1); |
| copy->quant = XML_REGEXP_QUANT_ONCE; |
| copy->min = 0; |
| copy->max = 0; |
| |
| if (xmlFAGenerateTransitions(ctxt, atom->start, NULL, copy) |
| < 0) |
| return(-1); |
| inter = ctxt->state; |
| counter = xmlRegGetCounter(ctxt); |
| ctxt->counters[counter].min = atom->min - 1; |
| ctxt->counters[counter].max = atom->max - 1; |
| /* count the number of times we see it again */ |
| xmlFAGenerateCountedEpsilonTransition(ctxt, inter, |
| atom->stop, counter); |
| /* allow a way out based on the count */ |
| xmlFAGenerateCountedTransition(ctxt, inter, |
| newstate, counter); |
| /* and also allow a direct exit for 0 */ |
| xmlFAGenerateEpsilonTransition(ctxt, atom->start, |
| newstate); |
| } else { |
| /* |
| * either we need the atom at least once or there |
| * is an atom->start0 allowing to easilly plug the |
| * epsilon transition. |
| */ |
| counter = xmlRegGetCounter(ctxt); |
| ctxt->counters[counter].min = atom->min - 1; |
| ctxt->counters[counter].max = atom->max - 1; |
| /* count the number of times we see it again */ |
| xmlFAGenerateCountedEpsilonTransition(ctxt, atom->stop, |
| atom->start, counter); |
| /* allow a way out based on the count */ |
| xmlFAGenerateCountedTransition(ctxt, atom->stop, |
| newstate, counter); |
| /* and if needed allow a direct exit for 0 */ |
| if (atom->min == 0) |
| xmlFAGenerateEpsilonTransition(ctxt, atom->start0, |
| newstate); |
| |
| } |
| atom->min = 0; |
| atom->max = 0; |
| atom->quant = XML_REGEXP_QUANT_ONCE; |
| ctxt->state = newstate; |
| } |
| default: |
| break; |
| } |
| return(0); |
| } |
| if ((atom->min == 0) && (atom->max == 0) && |
| (atom->quant == XML_REGEXP_QUANT_RANGE)) { |
| /* |
| * we can discard the atom and generate an epsilon transition instead |
| */ |
| if (to == NULL) { |
| to = xmlRegNewState(ctxt); |
| if (to != NULL) |
| xmlRegStatePush(ctxt, to); |
| else { |
| return(-1); |
| } |
| } |
| xmlFAGenerateEpsilonTransition(ctxt, from, to); |
| ctxt->state = to; |
| xmlRegFreeAtom(atom); |
| return(0); |
| } |
| if (to == NULL) { |
| to = xmlRegNewState(ctxt); |
| if (to != NULL) |
| xmlRegStatePush(ctxt, to); |
| else { |
| return(-1); |
| } |
| } |
| end = to; |
| if ((atom->quant == XML_REGEXP_QUANT_MULT) || |
| (atom->quant == XML_REGEXP_QUANT_PLUS)) { |
| /* |
| * Do not pollute the target state by adding transitions from |
| * it as it is likely to be the shared target of multiple branches. |
| * So isolate with an epsilon transition. |
| */ |
| xmlRegStatePtr tmp; |
| |
| tmp = xmlRegNewState(ctxt); |
| if (tmp != NULL) |
| xmlRegStatePush(ctxt, tmp); |
| else { |
| return(-1); |
| } |
| xmlFAGenerateEpsilonTransition(ctxt, tmp, to); |
| to = tmp; |
| } |
| if (xmlRegAtomPush(ctxt, atom) < 0) { |
| return(-1); |
| } |
| xmlRegStateAddTrans(ctxt, from, atom, to, -1, -1); |
| ctxt->state = end; |
| switch (atom->quant) { |
| case XML_REGEXP_QUANT_OPT: |
| atom->quant = XML_REGEXP_QUANT_ONCE; |
| xmlFAGenerateEpsilonTransition(ctxt, from, to); |
| break; |
| case XML_REGEXP_QUANT_MULT: |
| atom->quant = XML_REGEXP_QUANT_ONCE; |
| xmlFAGenerateEpsilonTransition(ctxt, from, to); |
| xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1); |
| break; |
| case XML_REGEXP_QUANT_PLUS: |
| atom->quant = XML_REGEXP_QUANT_ONCE; |
| xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1); |
| break; |
| case XML_REGEXP_QUANT_RANGE: |
| #if DV_test |
| if (atom->min == 0) { |
| xmlFAGenerateEpsilonTransition(ctxt, from, to); |
| } |
| #endif |
| break; |
| default: |
| break; |
| } |
| return(0); |
| } |
| |
| /** |
| * xmlFAReduceEpsilonTransitions: |
| * @ctxt: a regexp parser context |
| * @fromnr: the from state |
| * @tonr: the to state |
| * @counter: should that transition be associated to a counted |
| * |
| */ |
| static void |
| xmlFAReduceEpsilonTransitions(xmlRegParserCtxtPtr ctxt, int fromnr, |
| int tonr, int counter) { |
| int transnr; |
| xmlRegStatePtr from; |
| xmlRegStatePtr to; |
| |
| #ifdef DEBUG_REGEXP_GRAPH |
| printf("xmlFAReduceEpsilonTransitions(%d, %d)\n", fromnr, tonr); |
| #endif |
| from = ctxt->states[fromnr]; |
| if (from == NULL) |
| return; |
| to = ctxt->states[tonr]; |
| if (to == NULL) |
| return; |
| if ((to->mark == XML_REGEXP_MARK_START) || |
| (to->mark == XML_REGEXP_MARK_VISITED)) |
| return; |
| |
| to->mark = XML_REGEXP_MARK_VISITED; |
| if (to->type == XML_REGEXP_FINAL_STATE) { |
| #ifdef DEBUG_REGEXP_GRAPH |
| printf("State %d is final, so %d becomes final\n", tonr, fromnr); |
| #endif |
| from->type = XML_REGEXP_FINAL_STATE; |
| } |
| for (transnr = 0;transnr < to->nbTrans;transnr++) { |
| if (to->trans[transnr].to < 0) |
| continue; |
| if (to->trans[transnr].atom == NULL) { |
| /* |
| * Don't remove counted transitions |
| * Don't loop either |
| */ |
| if (to->trans[transnr].to != fromnr) { |
| if (to->trans[transnr].count >= 0) { |
| int newto = to->trans[transnr].to; |
| |
| xmlRegStateAddTrans(ctxt, from, NULL, |
| ctxt->states[newto], |
| -1, to->trans[transnr].count); |
| } else { |
| #ifdef DEBUG_REGEXP_GRAPH |
| printf("Found epsilon trans %d from %d to %d\n", |
| transnr, tonr, to->trans[transnr].to); |
| #endif |
| if (to->trans[transnr].counter >= 0) { |
| xmlFAReduceEpsilonTransitions(ctxt, fromnr, |
| to->trans[transnr].to, |
| to->trans[transnr].counter); |
| } else { |
| xmlFAReduceEpsilonTransitions(ctxt, fromnr, |
| to->trans[transnr].to, |
| counter); |
| } |
| } |
| } |
| } else { |
| int newto = to->trans[transnr].to; |
| |
| if (to->trans[transnr].counter >= 0) { |
| xmlRegStateAddTrans(ctxt, from, to->trans[transnr].atom, |
| ctxt->states[newto], |
| to->trans[transnr].counter, -1); |
| } else { |
| xmlRegStateAddTrans(ctxt, from, to->trans[transnr].atom, |
| ctxt->states[newto], counter, -1); |
| } |
| } |
| } |
| to->mark = XML_REGEXP_MARK_NORMAL; |
| } |
| |
| /** |
| * xmlFAEliminateSimpleEpsilonTransitions: |
| * @ctxt: a regexp parser context |
| * |
| * Eliminating general epsilon transitions can get costly in the general |
| * algorithm due to the large amount of generated new transitions and |
| * associated comparisons. However for simple epsilon transition used just |
| * to separate building blocks when generating the automata this can be |
| * reduced to state elimination: |
| * - if there exists an epsilon from X to Y |
| * - if there is no other transition from X |
| * then X and Y are semantically equivalent and X can be eliminated |
| * If X is the start state then make Y the start state, else replace the |
| * target of all transitions to X by transitions to Y. |
| */ |
| static void |
| xmlFAEliminateSimpleEpsilonTransitions(xmlRegParserCtxtPtr ctxt) { |
| int statenr, i, j, newto; |
| xmlRegStatePtr state, tmp; |
| |
| for (statenr = 0;statenr < ctxt->nbStates;statenr++) { |
| state = ctxt->states[statenr]; |
| if (state == NULL) |
| continue; |
| if (state->nbTrans != 1) |
| continue; |
| if (state->type == XML_REGEXP_UNREACH_STATE) |
| continue; |
| /* is the only transition out a basic transition */ |
| if ((state->trans[0].atom == NULL) && |
| (state->trans[0].to >= 0) && |
| (state->trans[0].to != statenr) && |
| (state->trans[0].counter < 0) && |
| (state->trans[0].count < 0)) { |
| newto = state->trans[0].to; |
| |
| if (state->type == XML_REGEXP_START_STATE) { |
| #ifdef DEBUG_REGEXP_GRAPH |
| printf("Found simple epsilon trans from start %d to %d\n", |
| statenr, newto); |
| #endif |
| } else { |
| #ifdef DEBUG_REGEXP_GRAPH |
| printf("Found simple epsilon trans from %d to %d\n", |
| statenr, newto); |
| #endif |
| for (i = 0;i < state->nbTransTo;i++) { |
| tmp = ctxt->states[state->transTo[i]]; |
| for (j = 0;j < tmp->nbTrans;j++) { |
| if (tmp->trans[j].to == statenr) { |
| #ifdef DEBUG_REGEXP_GRAPH |
| printf("Changed transition %d on %d to go to %d\n", |
| j, tmp->no, newto); |
| #endif |
| tmp->trans[j].to = -1; |
| xmlRegStateAddTrans(ctxt, tmp, tmp->trans[j].atom, |
| ctxt->states[newto], |
| tmp->trans[j].counter, |
| tmp->trans[j].count); |
| } |
| } |
| } |
| if (state->type == XML_REGEXP_FINAL_STATE) |
| ctxt->states[newto]->type = XML_REGEXP_FINAL_STATE; |
| /* eliminate the transition completely */ |
| state->nbTrans = 0; |
| |
| state->type = XML_REGEXP_UNREACH_STATE; |
| |
| } |
| |
| } |
| } |
| } |
| /** |
| * xmlFAEliminateEpsilonTransitions: |
| * @ctxt: a regexp parser context |
| * |
| */ |
| static void |
| xmlFAEliminateEpsilonTransitions(xmlRegParserCtxtPtr ctxt) { |
| int statenr, transnr; |
| xmlRegStatePtr state; |
| int has_epsilon; |
| |
| if (ctxt->states == NULL) return; |
| |
| /* |
| * Eliminate simple epsilon transition and the associated unreachable |
| * states. |
| */ |
| xmlFAEliminateSimpleEpsilonTransitions(ctxt); |
| for (statenr = 0;statenr < ctxt->nbStates;statenr++) { |
| state = ctxt->states[statenr]; |
| if ((state != NULL) && (state->type == XML_REGEXP_UNREACH_STATE)) { |
| #ifdef DEBUG_REGEXP_GRAPH |
| printf("Removed unreachable state %d\n", statenr); |
| #endif |
| xmlRegFreeState(state); |
| ctxt->states[statenr] = NULL; |
| } |
| } |
| |
| has_epsilon = 0; |
| |
| /* |
| * Build the completed transitions bypassing the epsilons |
| * Use a marking algorithm to avoid loops |
| * Mark sink states too. |
| * Process from the latests states backward to the start when |
| * there is long cascading epsilon chains this minimize the |
| * recursions and transition compares when adding the new ones |
| */ |
| for (statenr = ctxt->nbStates - 1;statenr >= 0;statenr--) { |
| state = ctxt->states[statenr]; |
| if (state == NULL) |
| continue; |
| if ((state->nbTrans == 0) && |
| (state->type != XML_REGEXP_FINAL_STATE)) { |
| state->type = XML_REGEXP_SINK_STATE; |
| } |
| for (transnr = 0;transnr < state->nbTrans;transnr++) { |
| if ((state->trans[transnr].atom == NULL) && |
| (state->trans[transnr].to >= 0)) { |
| if (state->trans[transnr].to == statenr) { |
| state->trans[transnr].to = -1; |
| #ifdef DEBUG_REGEXP_GRAPH |
| printf("Removed loopback epsilon trans %d on %d\n", |
| transnr, statenr); |
| #endif |
| } else if (state->trans[transnr].count < 0) { |
| int newto = state->trans[transnr].to; |
| |
| #ifdef DEBUG_REGEXP_GRAPH |
| printf("Found epsilon trans %d from %d to %d\n", |
| transnr, statenr, newto); |
| #endif |
| has_epsilon = 1; |
| state->trans[transnr].to = -2; |
| state->mark = XML_REGEXP_MARK_START; |
| xmlFAReduceEpsilonTransitions(ctxt, statenr, |
| newto, state->trans[transnr].counter); |
| state->mark = XML_REGEXP_MARK_NORMAL; |
| #ifdef DEBUG_REGEXP_GRAPH |
| } else { |
| printf("Found counted transition %d on %d\n", |
| transnr, statenr); |
| #endif |
| } |
| } |
| } |
| } |
| /* |
| * Eliminate the epsilon transitions |
| */ |
| if (has_epsilon) { |
| for (statenr = 0;statenr < ctxt->nbStates;statenr++) { |
| state = ctxt->states[statenr]; |
| if (state == NULL) |
| continue; |
| for (transnr = 0;transnr < state->nbTrans;transnr++) { |
| xmlRegTransPtr trans = &(state->trans[transnr]); |
| if ((trans->atom == NULL) && |
| (trans->count < 0) && |
| (trans->to >= 0)) { |
| trans->to = -1; |
| } |
| } |
| } |
| } |
| |
| /* |
| * Use this pass to detect unreachable states too |
| */ |
| for (statenr = 0;statenr < ctxt->nbStates;statenr++) { |
| state = ctxt->states[statenr]; |
| if (state != NULL) |
| state->reached = XML_REGEXP_MARK_NORMAL; |
| } |
| state = ctxt->states[0]; |
| if (state != NULL) |
| state->reached = XML_REGEXP_MARK_START; |
| while (state != NULL) { |
| xmlRegStatePtr target = NULL; |
| state->reached = XML_REGEXP_MARK_VISITED; |
| /* |
| * Mark all states reachable from the current reachable state |
| */ |
| for (transnr = 0;transnr < state->nbTrans;transnr++) { |
| if ((state->trans[transnr].to >= 0) && |
| ((state->trans[transnr].atom != NULL) || |
| (state->trans[transnr].count >= 0))) { |
| int newto = state->trans[transnr].to; |
| |
| if (ctxt->states[newto] == NULL) |
| continue; |
| if (ctxt->states[newto]->reached == XML_REGEXP_MARK_NORMAL) { |
| ctxt->states[newto]->reached = XML_REGEXP_MARK_START; |
| target = ctxt->states[newto]; |
| } |
| } |
| } |
| |
| /* |
| * find the next accessible state not explored |
| */ |
| if (target == NULL) { |
| for (statenr = 1;statenr < ctxt->nbStates;statenr++) { |
| state = ctxt->states[statenr]; |
| if ((state != NULL) && (state->reached == |
| XML_REGEXP_MARK_START)) { |
| target = state; |
| break; |
| } |
| } |
| } |
| state = target; |
| } |
| for (statenr = 0;statenr < ctxt->nbStates;statenr++) { |
| state = ctxt->states[statenr]; |
| if ((state != NULL) && (state->reached == XML_REGEXP_MARK_NORMAL)) { |
| #ifdef DEBUG_REGEXP_GRAPH |
| printf("Removed unreachable state %d\n", statenr); |
| #endif |
| xmlRegFreeState(state); |
| ctxt->states[statenr] = NULL; |
| } |
| } |
| |
| } |
| |
| static int |
| xmlFACompareRanges(xmlRegRangePtr range1, xmlRegRangePtr range2) { |
| int ret = 0; |
| |
| if ((range1->type == XML_REGEXP_RANGES) || |
| (range2->type == XML_REGEXP_RANGES) || |
| (range2->type == XML_REGEXP_SUBREG) || |
| (range1->type == XML_REGEXP_SUBREG) || |
| (range1->type == XML_REGEXP_STRING) || |
| (range2->type == XML_REGEXP_STRING)) |
| return(-1); |
| |
| /* put them in order */ |
| if (range1->type > range2->type) { |
| xmlRegRangePtr tmp; |
| |
| tmp = range1; |
| range1 = range2; |
| range2 = tmp; |
| } |
| if ((range1->type == XML_REGEXP_ANYCHAR) || |
| (range2->type == XML_REGEXP_ANYCHAR)) { |
| ret = 1; |
| } else if ((range1->type == XML_REGEXP_EPSILON) || |
| (range2->type == XML_REGEXP_EPSILON)) { |
| return(0); |
| } else if (range1->type == range2->type) { |
| if (range1->type != XML_REGEXP_CHARVAL) |
| ret = 1; |
| else if ((range1->end < range2->start) || |
| (range2->end < range1->start)) |
| ret = 0; |
| else |
| ret = 1; |
| } else if (range1->type == XML_REGEXP_CHARVAL) { |
| int codepoint; |
| int neg = 0; |
| |
| /* |
| * just check all codepoints in the range for acceptance, |
| * this is usually way cheaper since done only once at |
| * compilation than testing over and over at runtime or |
| * pushing too many states when evaluating. |
| */ |
| if (((range1->neg == 0) && (range2->neg != 0)) || |
| ((range1->neg != 0) && (range2->neg == 0))) |
| neg = 1; |
| |
| for (codepoint = range1->start;codepoint <= range1->end ;codepoint++) { |
| ret = xmlRegCheckCharacterRange(range2->type, codepoint, |
| 0, range2->start, range2->end, |
| range2->blockName); |
| if (ret < 0) |
| return(-1); |
| if (((neg == 1) && (ret == 0)) || |
| ((neg == 0) && (ret == 1))) |
| return(1); |
| } |
| return(0); |
| } else if ((range1->type == XML_REGEXP_BLOCK_NAME) || |
| (range2->type == XML_REGEXP_BLOCK_NAME)) { |
| if (range1->type == range2->type) { |
| ret = xmlStrEqual(range1->blockName, range2->blockName); |
| } else { |
| /* |
| * comparing a block range with anything else is way |
| * too costly, and maintining the table is like too much |
| * memory too, so let's force the automata to save state |
| * here. |
| */ |
| return(1); |
| } |
| } else if ((range1->type < XML_REGEXP_LETTER) || |
| (range2->type < XML_REGEXP_LETTER)) { |
| if ((range1->type == XML_REGEXP_ANYSPACE) && |
| (range2->type == XML_REGEXP_NOTSPACE)) |
| ret = 0; |
| else if ((range1->type == XML_REGEXP_INITNAME) && |
| (range2->type == XML_REGEXP_NOTINITNAME)) |
| ret = 0; |
| else if ((range1->type == XML_REGEXP_NAMECHAR) && |
| (range2->type == XML_REGEXP_NOTNAMECHAR)) |
| ret = 0; |
| else if ((range1->type == XML_REGEXP_DECIMAL) && |
| (range2->type == XML_REGEXP_NOTDECIMAL)) |
| ret = 0; |
| else if ((range1->type == XML_REGEXP_REALCHAR) && |
| (range2->type == XML_REGEXP_NOTREALCHAR)) |
| ret = 0; |
| else { |
| /* same thing to limit complexity */ |
| return(1); |
| } |
| } else { |
| ret = 0; |
| /* range1->type < range2->type here */ |
| switch (range1->type) { |
| case XML_REGEXP_LETTER: |
| /* all disjoint except in the subgroups */ |
| if ((range2->type == XML_REGEXP_LETTER_UPPERCASE) || |
| (range2->type == XML_REGEXP_LETTER_LOWERCASE) || |
| (range2->type == XML_REGEXP_LETTER_TITLECASE) || |
| (range2->type == XML_REGEXP_LETTER_MODIFIER) || |
| (range2->type == XML_REGEXP_LETTER_OTHERS)) |
| ret = 1; |
| break; |
| case XML_REGEXP_MARK: |
| if ((range2->type == XML_REGEXP_MARK_NONSPACING) || |
| (range2->type == XML_REGEXP_MARK_SPACECOMBINING) || |
| (range2->type == XML_REGEXP_MARK_ENCLOSING)) |
| ret = 1; |
| break; |
| case XML_REGEXP_NUMBER: |
| if ((range2->type == XML_REGEXP_NUMBER_DECIMAL) || |
| (range2->type == XML_REGEXP_NUMBER_LETTER) || |
| (range2->type == XML_REGEXP_NUMBER_OTHERS)) |
| ret = 1; |
| break; |
| case XML_REGEXP_PUNCT: |
| if ((range2->type == XML_REGEXP_PUNCT_CONNECTOR) || |
| (range2->type == XML_REGEXP_PUNCT_DASH) || |
| (range2->type == XML_REGEXP_PUNCT_OPEN) || |
| (range2->type == XML_REGEXP_PUNCT_CLOSE) || |
| (range2->type == XML_REGEXP_PUNCT_INITQUOTE) || |
| (range2->type == XML_REGEXP_PUNCT_FINQUOTE) || |
| (range2->type == XML_REGEXP_PUNCT_OTHERS)) |
| ret = 1; |
| break; |
| case XML_REGEXP_SEPAR: |
| if ((range2->type == XML_REGEXP_SEPAR_SPACE) || |
| (range2->type == XML_REGEXP_SEPAR_LINE) || |
| (range2->type == XML_REGEXP_SEPAR_PARA)) |
| ret = 1; |
| break; |
| case XML_REGEXP_SYMBOL: |
| if ((range2->type == XML_REGEXP_SYMBOL_MATH) || |
| (range2->type == XML_REGEXP_SYMBOL_CURRENCY) || |
| (range2->type == XML_REGEXP_SYMBOL_MODIFIER) || |
| (range2->type == XML_REGEXP_SYMBOL_OTHERS)) |
| ret = 1; |
| break; |
| case XML_REGEXP_OTHER: |
| if ((range2->type == XML_REGEXP_OTHER_CONTROL) || |
| (range2->type == XML_REGEXP_OTHER_FORMAT) || |
| (range2->type == XML_REGEXP_OTHER_PRIVATE)) |
| ret = 1; |
| break; |
| default: |
| if ((range2->type >= XML_REGEXP_LETTER) && |
| (range2->type < XML_REGEXP_BLOCK_NAME)) |
| ret = 0; |
| else { |
| /* safety net ! */ |
| return(1); |
| } |
| } |
| } |
| if (((range1->neg == 0) && (range2->neg != 0)) || |
| ((range1->neg != 0) && (range2->neg == 0))) |
| ret = !ret; |
| return(ret); |
| } |
| |
| /** |
| * xmlFACompareAtomTypes: |
| * @type1: an atom type |
| * @type2: an atom type |
| * |
| * Compares two atoms type to check whether they intersect in some ways, |
| * this is used by xmlFACompareAtoms only |
| * |
| * Returns 1 if they may intersect and 0 otherwise |
| */ |
| static int |
| xmlFACompareAtomTypes(xmlRegAtomType type1, xmlRegAtomType type2) { |
| if ((type1 == XML_REGEXP_EPSILON) || |
| (type1 == XML_REGEXP_CHARVAL) || |
| (type1 == XML_REGEXP_RANGES) || |
| (type1 == XML_REGEXP_SUBREG) || |
| (type1 == XML_REGEXP_STRING) || |
| (type1 == XML_REGEXP_ANYCHAR)) |
| return(1); |
| if ((type2 == XML_REGEXP_EPSILON) || |
| (type2 == XML_REGEXP_CHARVAL) || |
| (type2 == XML_REGEXP_RANGES) || |
| (type2 == XML_REGEXP_SUBREG) || |
| (type2 == XML_REGEXP_STRING) || |
| (type2 == XML_REGEXP_ANYCHAR)) |
| return(1); |
| |
| if (type1 == type2) return(1); |
| |
| /* simplify subsequent compares by making sure type1 < type2 */ |
| if (type1 > type2) { |
| xmlRegAtomType tmp = type1; |
| type1 = type2; |
| type2 = tmp; |
| } |
| switch (type1) { |
| case XML_REGEXP_ANYSPACE: /* \s */ |
| /* can't be a letter, number, mark, pontuation, symbol */ |
| if ((type2 == XML_REGEXP_NOTSPACE) || |
| ((type2 >= XML_REGEXP_LETTER) && |
| (type2 <= XML_REGEXP_LETTER_OTHERS)) || |
| ((type2 >= XML_REGEXP_NUMBER) && |
| (type2 <= XML_REGEXP_NUMBER_OTHERS)) || |
| ((type2 >= XML_REGEXP_MARK) && |
| (type2 <= XML_REGEXP_MARK_ENCLOSING)) || |
| ((type2 >= XML_REGEXP_PUNCT) && |
| (type2 <= XML_REGEXP_PUNCT_OTHERS)) || |
| ((type2 >= XML_REGEXP_SYMBOL) && |
| (type2 <= XML_REGEXP_SYMBOL_OTHERS)) |
| ) return(0); |
| break; |
| case XML_REGEXP_NOTSPACE: /* \S */ |
| break; |
| case XML_REGEXP_INITNAME: /* \l */ |
| /* can't be a number, mark, separator, pontuation, symbol or other */ |
| if ((type2 == XML_REGEXP_NOTINITNAME) || |
| ((type2 >= XML_REGEXP_NUMBER) && |
| (type2 <= XML_REGEXP_NUMBER_OTHERS)) || |
| ((type2 >= XML_REGEXP_MARK) && |
| (type2 <= XML_REGEXP_MARK_ENCLOSING)) || |
| ((type2 >= XML_REGEXP_SEPAR) && |
| (type2 <= XML_REGEXP_SEPAR_PARA)) || |
| ((type2 >= XML_REGEXP_PUNCT) && |
| (type2 <= XML_REGEXP_PUNCT_OTHERS)) || |
| ((type2 >= XML_REGEXP_SYMBOL) && |
| (type2 <= XML_REGEXP_SYMBOL_OTHERS)) || |
| ((type2 >= XML_REGEXP_OTHER) && |
| (type2 <= XML_REGEXP_OTHER_NA)) |
| ) return(0); |
| break; |
| case XML_REGEXP_NOTINITNAME: /* \L */ |
| break; |
| case XML_REGEXP_NAMECHAR: /* \c */ |
| /* can't be a mark, separator, pontuation, symbol or other */ |
| if ((type2 == XML_REGEXP_NOTNAMECHAR) || |
| ((type2 >= XML_REGEXP_MARK) && |
| (type2 <= XML_REGEXP_MARK_ENCLOSING)) || |
| ((type2 >= XML_REGEXP_PUNCT) && |
| (type2 <= XML_REGEXP_PUNCT_OTHERS)) || |
| ((type2 >= XML_REGEXP_SEPAR) && |
| (type2 <= XML_REGEXP_SEPAR_PARA)) || |
| ((type2 >= XML_REGEXP_SYMBOL) && |
| (type2 <= XML_REGEXP_SYMBOL_OTHERS)) || |
| ((type2 >= XML_REGEXP_OTHER) && |
| (type2 <= XML_REGEXP_OTHER_NA)) |
| ) return(0); |
| break; |
| case XML_REGEXP_NOTNAMECHAR: /* \C */ |
| break; |
| case XML_REGEXP_DECIMAL: /* \d */ |
| /* can't be a letter, mark, separator, pontuation, symbol or other */ |
| if ((type2 == XML_REGEXP_NOTDECIMAL) || |
| (type2 == XML_REGEXP_REALCHAR) || |
| ((type2 >= XML_REGEXP_LETTER) && |
| (type2 <= XML_REGEXP_LETTER_OTHERS)) || |
| ((type2 >= XML_REGEXP_MARK) && |
| (type2 <= XML_REGEXP_MARK_ENCLOSING)) || |
| ((type2 >= XML_REGEXP_PUNCT) && |
| (type2 <= XML_REGEXP_PUNCT_OTHERS)) || |
| ((type2 >= XML_REGEXP_SEPAR) && |
| (type2 <= XML_REGEXP_SEPAR_PARA)) || |
| ((type2 >= XML_REGEXP_SYMBOL) && |
| (type2 <= XML_REGEXP_SYMBOL_OTHERS)) || |
| ((type2 >= XML_REGEXP_OTHER) && |
| (type2 <= XML_REGEXP_OTHER_NA)) |
| )return(0); |
| break; |
| case XML_REGEXP_NOTDECIMAL: /* \D */ |
| break; |
| case XML_REGEXP_REALCHAR: /* \w */ |
| /* can't be a mark, separator, pontuation, symbol or other */ |
| if ((type2 == XML_REGEXP_NOTDECIMAL) || |
| ((type2 >= XML_REGEXP_MARK) && |
| (type2 <= XML_REGEXP_MARK_ENCLOSING)) || |
| ((type2 >= XML_REGEXP_PUNCT) && |
| (type2 <= XML_REGEXP_PUNCT_OTHERS)) || |
| ((type2 >= XML_REGEXP_SEPAR) && |
| (type2 <= XML_REGEXP_SEPAR_PARA)) || |
| ((type2 >= XML_REGEXP_SYMBOL) && |
| (type2 <= XML_REGEXP_SYMBOL_OTHERS)) || |
| ((type2 >= XML_REGEXP_OTHER) && |
| (type2 <= XML_REGEXP_OTHER_NA)) |
| )return(0); |
| break; |
| case XML_REGEXP_NOTREALCHAR: /* \W */ |
| break; |
| /* |
| * at that point we know both type 1 and type2 are from |
| * character categories are ordered and are different, |
| * it becomes simple because this is a partition |
| */ |
| case XML_REGEXP_LETTER: |
| if (type2 <= XML_REGEXP_LETTER_OTHERS) |
| return(1); |
| return(0); |
| case XML_REGEXP_LETTER_UPPERCASE: |
| case XML_REGEXP_LETTER_LOWERCASE: |
| case XML_REGEXP_LETTER_TITLECASE: |
| case XML_REGEXP_LETTER_MODIFIER: |
| case XML_REGEXP_LETTER_OTHERS: |
| return(0); |
| case XML_REGEXP_MARK: |
| if (type2 <= XML_REGEXP_MARK_ENCLOSING) |
| return(1); |
| return(0); |
| case XML_REGEXP_MARK_NONSPACING: |
| case XML_REGEXP_MARK_SPACECOMBINING: |
| case XML_REGEXP_MARK_ENCLOSING: |
| return(0); |
| case XML_REGEXP_NUMBER: |
| if (type2 <= XML_REGEXP_NUMBER_OTHERS) |
| return(1); |
| return(0); |
| case XML_REGEXP_NUMBER_DECIMAL: |
| case XML_REGEXP_NUMBER_LETTER: |
| case XML_REGEXP_NUMBER_OTHERS: |
| return(0); |
| case XML_REGEXP_PUNCT: |
| if (type2 <= XML_REGEXP_PUNCT_OTHERS) |
| return(1); |
| return(0); |
| case XML_REGEXP_PUNCT_CONNECTOR: |
| case XML_REGEXP_PUNCT_DASH: |
| case XML_REGEXP_PUNCT_OPEN: |
| case XML_REGEXP_PUNCT_CLOSE: |
| case XML_REGEXP_PUNCT_INITQUOTE: |
| case XML_REGEXP_PUNCT_FINQUOTE: |
| case XML_REGEXP_PUNCT_OTHERS: |
| return(0); |
| case XML_REGEXP_SEPAR: |
| if (type2 <= XML_REGEXP_SEPAR_PARA) |
| return(1); |
| return(0); |
| case XML_REGEXP_SEPAR_SPACE: |
| case XML_REGEXP_SEPAR_LINE: |
| case XML_REGEXP_SEPAR_PARA: |
| return(0); |
| case XML_REGEXP_SYMBOL: |
| if (type2 <= XML_REGEXP_SYMBOL_OTHERS) |
| return(1); |
| return(0); |
| case XML_REGEXP_SYMBOL_MATH: |
| case XML_REGEXP_SYMBOL_CURRENCY: |
| case XML_REGEXP_SYMBOL_MODIFIER: |
| case XML_REGEXP_SYMBOL_OTHERS: |
| return(0); |
| case XML_REGEXP_OTHER: |
| if (type2 <= XML_REGEXP_OTHER_NA) |
| return(1); |
| return(0); |
| case XML_REGEXP_OTHER_CONTROL: |
| case XML_REGEXP_OTHER_FORMAT: |
| case XML_REGEXP_OTHER_PRIVATE: |
| case XML_REGEXP_OTHER_NA: |
| return(0); |
| default: |
| break; |
| } |
| return(1); |
| } |
| |
| /** |
| * xmlFAEqualAtoms: |
| * @atom1: an atom |
| * @atom2: an atom |
| * @deep: if not set only compare string pointers |
| * |
| * Compares two atoms to check whether they are the same exactly |
| * this is used to remove equivalent transitions |
| * |
| * Returns 1 if same and 0 otherwise |
| */ |
| static int |
| xmlFAEqualAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) { |
| int ret = 0; |
| |
| if (atom1 == atom2) |
| return(1); |
| if ((atom1 == NULL) || (atom2 == NULL)) |
| return(0); |
| |
| if (atom1->type != atom2->type) |
| return(0); |
| switch (atom1->type) { |
| case XML_REGEXP_EPSILON: |
| ret = 0; |
| break; |
| case XML_REGEXP_STRING: |
| if (!deep) |
| ret = (atom1->valuep == atom2->valuep); |
| else |
| ret = xmlStrEqual((xmlChar *)atom1->valuep, |
| (xmlChar *)atom2->valuep); |
| break; |
| case XML_REGEXP_CHARVAL: |
| ret = (atom1->codepoint == atom2->codepoint); |
| break; |
| case XML_REGEXP_RANGES: |
| /* too hard to do in the general case */ |
| ret = 0; |
| default: |
| break; |
| } |
| return(ret); |
| } |
| |
| /** |
| * xmlFACompareAtoms: |
| * @atom1: an atom |
| * @atom2: an atom |
| * @deep: if not set only compare string pointers |
| * |
| * Compares two atoms to check whether they intersect in some ways, |
| * this is used by xmlFAComputesDeterminism and xmlFARecurseDeterminism only |
| * |
| * Returns 1 if yes and 0 otherwise |
| */ |
| static int |
| xmlFACompareAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) { |
| int ret = 1; |
| |
| if (atom1 == atom2) |
| return(1); |
| if ((atom1 == NULL) || (atom2 == NULL)) |
| return(0); |
| |
| if ((atom1->type == XML_REGEXP_ANYCHAR) || |
| (atom2->type == XML_REGEXP_ANYCHAR)) |
| return(1); |
| |
| if (atom1->type > atom2->type) { |
| xmlRegAtomPtr tmp; |
| tmp = atom1; |
| atom1 = atom2; |
| atom2 = tmp; |
| } |
| if (atom1->type != atom2->type) { |
| ret = xmlFACompareAtomTypes(atom1->type, atom2->type); |
| /* if they can't intersect at the type level break now */ |
| if (ret == 0) |
| return(0); |
| } |
| switch (atom1->type) { |
| case XML_REGEXP_STRING: |
| if (!deep) |
| ret = (atom1->valuep != atom2->valuep); |
| else |
| ret = xmlRegStrEqualWildcard((xmlChar *)atom1->valuep, |
| (xmlChar *)atom2->valuep); |
| break; |
| case XML_REGEXP_EPSILON: |
| goto not_determinist; |
| case XML_REGEXP_CHARVAL: |
| if (atom2->type == XML_REGEXP_CHARVAL) { |
| ret = (atom1->codepoint == atom2->codepoint); |
| } else { |
| ret = xmlRegCheckCharacter(atom2, atom1->codepoint); |
| if (ret < 0) |
| ret = 1; |
| } |
| break; |
| case XML_REGEXP_RANGES: |
| if (atom2->type == XML_REGEXP_RANGES) { |
| int i, j, res; |
| xmlRegRangePtr r1, r2; |
| |
| /* |
| * need to check that none of the ranges eventually matches |
| */ |
| for (i = 0;i < atom1->nbRanges;i++) { |
| for (j = 0;j < atom2->nbRanges;j++) { |
| r1 = atom1->ranges[i]; |
| r2 = atom2->ranges[j]; |
| res = xmlFACompareRanges(r1, r2); |
| if (res == 1) { |
| ret = 1; |
| goto done; |
| } |
| } |
| } |
| ret = 0; |
| } |
| break; |
| default: |
| goto not_determinist; |
| } |
| done: |
| if (atom1->neg != atom2->neg) { |
| ret = !ret; |
| } |
| if (ret == 0) |
| return(0); |
| not_determinist: |
| return(1); |
| } |
| |
| /** |
| * xmlFARecurseDeterminism: |
| * @ctxt: a regexp parser context |
| * |
| * Check whether the associated regexp is determinist, |
| * should be called after xmlFAEliminateEpsilonTransitions() |
| * |
| */ |
| static int |
| xmlFARecurseDeterminism(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state, |
| int to, xmlRegAtomPtr atom) { |
| int ret = 1; |
| int res; |
| int transnr, nbTrans; |
| xmlRegTransPtr t1; |
| int deep = 1; |
| |
| if (state == NULL) |
| return(ret); |
| |
| if (ctxt->flags & AM_AUTOMATA_RNG) |
| deep = 0; |
| |
| /* |
| * don't recurse on transitions potentially added in the course of |
| * the elimination. |
| */ |
| nbTrans = state->nbTrans; |
| for (transnr = 0;transnr < nbTrans;transnr++) { |
| t1 = &(state->trans[transnr]); |
| /* |
| * check transitions conflicting with the one looked at |
| */ |
| if (t1->atom == NULL) { |
| if (t1->to < 0) |
| continue; |
| res = xmlFARecurseDeterminism(ctxt, ctxt->states[t1->to], |
| to, atom); |
| if (res == 0) { |
| ret = 0; |
| /* t1->nd = 1; */ |
| } |
| continue; |
| } |
| if (t1->to != to) |
| continue; |
| if (xmlFACompareAtoms(t1->atom, atom, deep)) { |
| ret = 0; |
| /* mark the transition as non-deterministic */ |
| t1->nd = 1; |
| } |
| } |
| return(ret); |
| } |
| |
| /** |
| * xmlFAComputesDeterminism: |
| * @ctxt: a regexp parser context |
| * |
| * Check whether the associated regexp is determinist, |
| * should be called after xmlFAEliminateEpsilonTransitions() |
| * |
| */ |
| static int |
| xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt) { |
| int statenr, transnr; |
| xmlRegStatePtr state; |
| xmlRegTransPtr t1, t2, last; |
| int i; |
| int ret = 1; |
| int deep = 1; |
| |
| #ifdef DEBUG_REGEXP_GRAPH |
| printf("xmlFAComputesDeterminism\n"); |
| xmlRegPrintCtxt(stdout, ctxt); |
| #endif |
| if (ctxt->determinist != -1) |
| return(ctxt->determinist); |
| |
| if (ctxt->flags & AM_AUTOMATA_RNG) |
| deep = 0; |
| |
| /* |
| * First cleanup the automata removing cancelled transitions |
| */ |
| for (statenr = 0;statenr < ctxt->nbStates;statenr++) { |
| state = ctxt->states[statenr]; |
| if (state == NULL) |
| continue; |
| if (state->nbTrans < 2) |
| continue; |
| for (transnr = 0;transnr < state->nbTrans;transnr++) { |
| t1 = &(state->trans[transnr]); |
| /* |
| * Determinism checks in case of counted or all transitions |
| * will have to be handled separately |
| */ |
| if (t1->atom == NULL) { |
| /* t1->nd = 1; */ |
| continue; |
| } |
| if (t1->to == -1) /* eliminated */ |
| continue; |
| for (i = 0;i < transnr;i++) { |
| t2 = &(state->trans[i]); |
| if (t2->to == -1) /* eliminated */ |
| continue; |
| if (t2->atom != NULL) { |
| if (t1->to == t2->to) { |
| /* |
| * Here we use deep because we want to keep the |
| * transitions which indicate a conflict |
| */ |
| if (xmlFAEqualAtoms(t1->atom, t2->atom, deep) && |
| (t1->counter == t2->counter) && |
| (t1->count == t2->count)) |
| t2->to = -1; /* eliminated */ |
| } |
| } |
| } |
| } |
| } |
| |
| /* |
| * Check for all states that there aren't 2 transitions |
| * with the same atom and a different target. |
| */ |
| for (statenr = 0;statenr < ctxt->nbStates;statenr++) { |
| state = ctxt->states[statenr]; |
| if (state == NULL) |
| continue; |
| if (state->nbTrans < 2) |
| continue; |
| last = NULL; |
| for (transnr = 0;transnr < state->nbTrans;transnr++) { |
| t1 = &(state->trans[transnr]); |
| /* |
| * Determinism checks in case of counted or all transitions |
| * will have to be handled separately |
| */ |
| if (t1->atom == NULL) { |
| continue; |
| } |
| if (t1->to == -1) /* eliminated */ |
| continue; |
| for (i = 0;i < transnr;i++) { |
| t2 = &(state->trans[i]); |
| if (t2->to == -1) /* eliminated */ |
| continue; |
| if (t2->atom != NULL) { |
| /* |
| * But here we don't use deep because we want to |
| * find transitions which indicate a conflict |
| */ |
| if (xmlFACompareAtoms(t1->atom, t2->atom, 1)) { |
| ret = 0; |
| /* mark the transitions as non-deterministic ones */ |
| t1->nd = 1; |
| t2->nd = 1; |
| last = t1; |
| } |
| } else if (t1->to != -1) { |
| /* |
| * do the closure in case of remaining specific |
| * epsilon transitions like choices or all |
| */ |
| ret = xmlFARecurseDeterminism(ctxt, ctxt->states[t1->to], |
| t2->to, t2->atom); |
| /* don't shortcut the computation so all non deterministic |
| transition get marked down |
| if (ret == 0) |
| return(0); |
| */ |
| if (ret == 0) { |
| t1->nd = 1; |
| /* t2->nd = 1; */ |
| last = t1; |
| } |
| } |
| } |
| /* don't shortcut the computation so all non deterministic |
| transition get marked down |
| if (ret == 0) |
| break; */ |
| } |
| |
| /* |
| * mark specifically the last non-deterministic transition |
| * from a state since there is no need to set-up rollback |
| * from it |
| */ |
| if (last != NULL) { |
| last->nd = 2; |
| } |
| |
| /* don't shortcut the computation so all non deterministic |
| transition get marked down |
| if (ret == 0) |
| break; */ |
| } |
| |
| ctxt->determinist = ret; |
| return(ret); |
| } |
| |
| /************************************************************************ |
| * * |
| * Routines to check input against transition atoms * |
| * * |
| ************************************************************************/ |
| |
| static int |
| xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint, int neg, |
| int start, int end, const xmlChar *blockName) { |
| int ret = 0; |
| |
| switch (type) { |
| case XML_REGEXP_STRING: |
| case XML_REGEXP_SUBREG: |
| case XML_REGEXP_RANGES: |
| case XML_REGEXP_EPSILON: |
| return(-1); |
| case XML_REGEXP_ANYCHAR: |
| ret = ((codepoint != '\n') && (codepoint != '\r')); |
| break; |
| case XML_REGEXP_CHARVAL: |
| ret = ((codepoint >= start) && (codepoint <= end)); |
| break; |
| case XML_REGEXP_NOTSPACE: |
| neg = !neg; |
| case XML_REGEXP_ANYSPACE: |
| ret = ((codepoint == '\n') || (codepoint == '\r') || |
| (codepoint == '\t') || (codepoint == ' ')); |
| break; |
| case XML_REGEXP_NOTINITNAME: |
| neg = !neg; |
| case XML_REGEXP_INITNAME: |
| ret = (IS_LETTER(codepoint) || |
| (codepoint == '_') || (codepoint == ':')); |
| break; |
| case XML_REGEXP_NOTNAMECHAR: |
| neg = !neg; |
| case XML_REGEXP_NAMECHAR: |
| ret = (IS_LETTER(codepoint) || IS_DIGIT(codepoint) || |
| (codepoint == '.') || (codepoint == '-') || |
| (codepoint == '_') || (codepoint == ':') || |
| IS_COMBINING(codepoint) || IS_EXTENDER(codepoint)); |
| break; |
| case XML_REGEXP_NOTDECIMAL: |
| neg = !neg; |
| case XML_REGEXP_DECIMAL: |
| ret = xmlUCSIsCatNd(codepoint); |
| break; |
| case XML_REGEXP_REALCHAR: |
| neg = !neg; |
| case XML_REGEXP_NOTREALCHAR: |
| ret = xmlUCSIsCatP(codepoint); |
| if (ret == 0) |
| ret = xmlUCSIsCatZ(codepoint); |
| if (ret == 0) |
| ret = xmlUCSIsCatC(codepoint); |
| break; |
| case XML_REGEXP_LETTER: |
| ret = xmlUCSIsCatL(codepoint); |
| break; |
| case XML_REGEXP_LETTER_UPPERCASE: |
| ret = xmlUCSIsCatLu(codepoint); |
| break; |
| case XML_REGEXP_LETTER_LOWERCASE: |
| ret = xmlUCSIsCatLl(codepoint); |
| break; |
| case XML_REGEXP_LETTER_TITLECASE: |
| ret = xmlUCSIsCatLt(codepoint); |
| break; |
| case XML_REGEXP_LETTER_MODIFIER: |
| ret = xmlUCSIsCatLm(codepoint); |
| break; |
| case XML_REGEXP_LETTER_OTHERS: |
| ret = xmlUCSIsCatLo(codepoint); |
| break; |
| case XML_REGEXP_MARK: |
| ret = xmlUCSIsCatM(codepoint); |
| break; |
| case XML_REGEXP_MARK_NONSPACING: |
| ret = xmlUCSIsCatMn(codepoint); |
| break; |
| case XML_REGEXP_MARK_SPACECOMBINING: |
| ret = xmlUCSIsCatMc(codepoint); |
| break; |
| case XML_REGEXP_MARK_ENCLOSING: |
| ret = xmlUCSIsCatMe(codepoint); |
| break; |
| case XML_REGEXP_NUMBER: |
| ret = xmlUCSIsCatN(codepoint); |
| break; |
| case XML_REGEXP_NUMBER_DECIMAL: |
| ret = xmlUCSIsCatNd(codepoint); |
| break; |
| case XML_REGEXP_NUMBER_LETTER: |
| ret = xmlUCSIsCatNl(codepoint); |
| break; |
| case XML_REGEXP_NUMBER_OTHERS: |
| ret = xmlUCSIsCatNo(codepoint); |
| break; |
| case XML_REGEXP_PUNCT: |
| ret = xmlUCSIsCatP(codepoint); |
| break; |
| case XML_REGEXP_PUNCT_CONNECTOR: |
| ret = xmlUCSIsCatPc(codepoint); |
| break; |
| case XML_REGEXP_PUNCT_DASH: |
| ret = xmlUCSIsCatPd(codepoint); |
| break; |
| case XML_REGEXP_PUNCT_OPEN: |
| ret = xmlUCSIsCatPs(codepoint); |
| break; |
| case XML_REGEXP_PUNCT_CLOSE: |
| ret = xmlUCSIsCatPe(codepoint); |
| break; |
| case XML_REGEXP_PUNCT_INITQUOTE: |
| ret = xmlUCSIsCatPi(codepoint); |
| break; |
| case XML_REGEXP_PUNCT_FINQUOTE: |
| ret = xmlUCSIsCatPf(codepoint); |
| break; |
| case XML_REGEXP_PUNCT_OTHERS: |
| ret = xmlUCSIsCatPo(codepoint); |
| break; |
| case XML_REGEXP_SEPAR: |
| ret = xmlUCSIsCatZ(codepoint); |
| break; |
| case XML_REGEXP_SEPAR_SPACE: |
| ret = xmlUCSIsCatZs(codepoint); |
| break; |
| case XML_REGEXP_SEPAR_LINE: |
| ret = xmlUCSIsCatZl(codepoint); |
| break; |
| case XML_REGEXP_SEPAR_PARA: |
| ret = xmlUCSIsCatZp(codepoint); |
| break; |
| case XML_REGEXP_SYMBOL: |
| ret = xmlUCSIsCatS(codepoint); |
| break; |
| case XML_REGEXP_SYMBOL_MATH: |
| ret = xmlUCSIsCatSm(codepoint); |
| break; |
| case XML_REGEXP_SYMBOL_CURRENCY: |
| ret = xmlUCSIsCatSc(codepoint); |
| break; |
| case XML_REGEXP_SYMBOL_MODIFIER: |
| ret = xmlUCSIsCatSk(codepoint); |
| break; |
| case XML_REGEXP_SYMBOL_OTHERS: |
| ret = xmlUCSIsCatSo(codepoint); |
| break; |
| case XML_REGEXP_OTHER: |
| ret = xmlUCSIsCatC(codepoint); |
| break; |
| case XML_REGEXP_OTHER_CONTROL: |
| ret = xmlUCSIsCatCc(codepoint); |
| break; |
| case XML_REGEXP_OTHER_FORMAT: |
| ret = xmlUCSIsCatCf(codepoint); |
| break; |
| case XML_REGEXP_OTHER_PRIVATE: |
| ret = xmlUCSIsCatCo(codepoint); |
| break; |
| case XML_REGEXP_OTHER_NA: |
| /* ret = xmlUCSIsCatCn(codepoint); */ |
| /* Seems it doesn't exist anymore in recent Unicode releases */ |
| ret = 0; |
| break; |
| case XML_REGEXP_BLOCK_NAME: |
| ret = xmlUCSIsBlock(codepoint, (const char *) blockName); |
| break; |
| } |
| if (neg) |
| return(!ret); |
| return(ret); |
| } |
| |
| static int |
| xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint) { |
| int i, ret = 0; |
| xmlRegRangePtr range; |
| |
| if ((atom == NULL) || (!IS_CHAR(codepoint))) |
| return(-1); |
| |
| switch (atom->type) { |
| case XML_REGEXP_SUBREG: |
| case XML_REGEXP_EPSILON: |
| return(-1); |
| case XML_REGEXP_CHARVAL: |
| return(codepoint == atom->codepoint); |
| case XML_REGEXP_RANGES: { |
| int accept = 0; |
| |
| for (i = 0;i < atom->nbRanges;i++) { |
| range = atom->ranges[i]; |
| if (range->neg == 2) { |
| ret = xmlRegCheckCharacterRange(range->type, codepoint, |
| 0, range->start, range->end, |
| range->blockName); |
| if (ret != 0) |
| return(0); /* excluded char */ |
| } else if (range->neg) { |
| ret = xmlRegCheckCharacterRange(range->type, codepoint, |
| 0, range->start, range->end, |
| range->blockName); |
| if (ret == 0) |
| accept = 1; |
| else |
| return(0); |
| } else { |
| ret = xmlRegCheckCharacterRange(range->type, codepoint, |
| 0, range->start, range->end, |
| range->blockName); |
| if (ret != 0) |
| accept = 1; /* might still be excluded */ |
| } |
| } |
| return(accept); |
| } |
| case XML_REGEXP_STRING: |
| printf("TODO: XML_REGEXP_STRING\n"); |
| return(-1); |
| case XML_REGEXP_ANYCHAR: |
| case XML_REGEXP_ANYSPACE: |
| case XML_REGEXP_NOTSPACE: |
| case XML_REGEXP_INITNAME: |
| case XML_REGEXP_NOTINITNAME: |
| case XML_REGEXP_NAMECHAR: |
| case XML_REGEXP_NOTNAMECHAR: |
| case XML_REGEXP_DECIMAL: |
| case XML_REGEXP_NOTDECIMAL: |
| case XML_REGEXP_REALCHAR: |
| case XML_REGEXP_NOTREALCHAR: |
| case XML_REGEXP_LETTER: |
| case XML_REGEXP_LETTER_UPPERCASE: |
| case XML_REGEXP_LETTER_LOWERCASE: |
| case XML_REGEXP_LETTER_TITLECASE: |
| case XML_REGEXP_LETTER_MODIFIER: |
| case XML_REGEXP_LETTER_OTHERS: |
| case XML_REGEXP_MARK: |
| case XML_REGEXP_MARK_NONSPACING: |
| case XML_REGEXP_MARK_SPACECOMBINING: |
| case XML_REGEXP_MARK_ENCLOSING: |
| case XML_REGEXP_NUMBER: |
| case XML_REGEXP_NUMBER_DECIMAL: |
| case XML_REGEXP_NUMBER_LETTER: |
| case XML_REGEXP_NUMBER_OTHERS: |
| case XML_REGEXP_PUNCT: |
| case XML_REGEXP_PUNCT_CONNECTOR: |
| case XML_REGEXP_PUNCT_DASH: |
| case XML_REGEXP_PUNCT_OPEN: |
| case XML_REGEXP_PUNCT_CLOSE: |
| case XML_REGEXP_PUNCT_INITQUOTE: |
| case XML_REGEXP_PUNCT_FINQUOTE: |
| case XML_REGEXP_PUNCT_OTHERS: |
| case XML_REGEXP_SEPAR: |
| case XML_REGEXP_SEPAR_SPACE: |
| case XML_REGEXP_SEPAR_LINE: |
| case XML_REGEXP_SEPAR_PARA: |
| case XML_REGEXP_SYMBOL: |
| case XML_REGEXP_SYMBOL_MATH: |
| case XML_REGEXP_SYMBOL_CURRENCY: |
| case XML_REGEXP_SYMBOL_MODIFIER: |
| case XML_REGEXP_SYMBOL_OTHERS: |
| case XML_REGEXP_OTHER: |
| case XML_REGEXP_OTHER_CONTROL: |
| case XML_REGEXP_OTHER_FORMAT: |
| case XML_REGEXP_OTHER_PRIVATE: |
| case XML_REGEXP_OTHER_NA: |
| case XML_REGEXP_BLOCK_NAME: |
| ret = xmlRegCheckCharacterRange(atom->type, codepoint, 0, 0, 0, |
| (const xmlChar *)atom->valuep); |
| if (atom->neg) |
| ret = !ret; |
| break; |
| } |
| return(ret); |
| } |
| |
| /************************************************************************ |
| * * |
| * Saving and restoring state of an execution context * |
| * * |
| ************************************************************************/ |
| |
| #ifdef DEBUG_REGEXP_EXEC |
| static void |
| xmlFARegDebugExec(xmlRegExecCtxtPtr exec) { |
| printf("state: %d:%d:idx %d", exec->state->no, exec->transno, exec->index); |
| if (exec->inputStack != NULL) { |
| int i; |
| printf(": "); |
| for (i = 0;(i < 3) && (i < exec->inputStackNr);i++) |
| printf("%s ", (const char *) |
| exec->inputStack[exec->inputStackNr - (i + 1)].value); |
| } else { |
| printf(": %s", &(exec->inputString[exec->index])); |
| } |
| printf("\n"); |
| } |
| #endif |
| |
| static void |
| xmlFARegExecSave(xmlRegExecCtxtPtr exec) { |
| #ifdef DEBUG_REGEXP_EXEC |
| printf("saving "); |
| exec->transno++; |
| xmlFARegDebugExec(exec); |
| exec->transno--; |
| #endif |
| #ifdef MAX_PUSH |
| if (exec->nbPush > MAX_PUSH) { |
| return; |
| } |
| exec->nbPush++; |
| #endif |
| |
| if (exec->maxRollbacks == 0) { |
| exec->maxRollbacks = 4; |
| exec->rollbacks = (xmlRegExecRollback *) xmlMalloc(exec->maxRollbacks * |
| sizeof(xmlRegExecRollback)); |
| if (exec->rollbacks == NULL) { |
| xmlRegexpErrMemory(NULL, "saving regexp"); |
| exec->maxRollbacks = 0; |
| return; |
| } |
| memset(exec->rollbacks, 0, |
| exec->maxRollbacks * sizeof(xmlRegExecRollback)); |
| } else if (exec->nbRollbacks >= exec->maxRollbacks) { |
| xmlRegExecRollback *tmp; |
| int len = exec->maxRollbacks; |
| |
| exec->maxRollbacks *= 2; |
| tmp = (xmlRegExecRollback *) xmlRealloc(exec->rollbacks, |
| exec->maxRollbacks * sizeof(xmlRegExecRollback)); |
| if (tmp == NULL) { |
| xmlRegexpErrMemory(NULL, "saving regexp"); |
| exec->maxRollbacks /= 2; |
| return; |
| } |
| exec->rollbacks = tmp; |
| tmp = &exec->rollbacks[len]; |
| memset(tmp, 0, (exec->maxRollbacks - len) * sizeof(xmlRegExecRollback)); |
| } |
| exec->rollbacks[exec->nbRollbacks].state = exec->state; |
| exec->rollbacks[exec->nbRollbacks].index = exec->index; |
| exec->rollbacks[exec->nbRollbacks].nextbranch = exec->transno + 1; |
| if (exec->comp->nbCounters > 0) { |
| if (exec->rollbacks[exec->nbRollbacks].counts == NULL) { |
| exec->rollbacks[exec->nbRollbacks].counts = (int *) |
| xmlMalloc(exec->comp->nbCounters * sizeof(int)); |
| if (exec->rollbacks[exec->nbRollbacks].counts == NULL) { |
| xmlRegexpErrMemory(NULL, "saving regexp"); |
| exec->status = -5; |
| return; |
| } |
| } |
| memcpy(exec->rollbacks[exec->nbRollbacks].counts, exec->counts, |
| exec->comp->nbCounters * sizeof(int)); |
| } |
| exec->nbRollbacks++; |
| } |
| |
| static void |
| xmlFARegExecRollBack(xmlRegExecCtxtPtr exec) { |
| if (exec->nbRollbacks <= 0) { |
| exec->status = -1; |
| #ifdef DEBUG_REGEXP_EXEC |
| printf("rollback failed on empty stack\n"); |
| #endif |
| return; |
| } |
| exec->nbRollbacks--; |
| exec->state = exec->rollbacks[exec->nbRollbacks].state; |
| exec->index = exec->rollbacks[exec->nbRollbacks].index; |
| exec->transno = exec->rollbacks[exec->nbRollbacks].nextbranch; |
| if (exec->comp->nbCounters > 0) { |
| if (exec->rollbacks[exec->nbRollbacks].counts == NULL) { |
| fprintf(stderr, "exec save: allocation failed"); |
| exec->status = -6; |
| return; |
| } |
| memcpy(exec->counts, exec->rollbacks[exec->nbRollbacks].counts, |
| exec->comp->nbCounters * sizeof(int)); |
| } |
| |
| #ifdef DEBUG_REGEXP_EXEC |
| printf("restored "); |
| xmlFARegDebugExec(exec); |
| #endif |
| } |
| |
| /************************************************************************ |
| * * |
| * Verifier, running an input against a compiled regexp * |
| * * |
| ************************************************************************/ |
| |
| static int |
| xmlFARegExec(xmlRegexpPtr comp, const xmlChar *content) { |
| xmlRegExecCtxt execval; |
| xmlRegExecCtxtPtr exec = &execval; |
| int ret, codepoint = 0, len, deter; |
| |
| exec->inputString = content; |
| exec->index = 0; |
| exec->nbPush = 0; |
| exec->determinist = 1; |
| exec->maxRollbacks = 0; |
| exec->nbRollbacks = 0; |
| exec->rollbacks = NULL; |
| exec->status = 0; |
| exec->comp = comp; |
| exec->state = comp->states[0]; |
| exec->transno = 0; |
| exec->transcount = 0; |
| exec->inputStack = NULL; |
| exec->inputStackMax = 0; |
| if (comp->nbCounters > 0) { |
| exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int)); |
| if (exec->counts == NULL) { |
| xmlRegexpErrMemory(NULL, "running regexp"); |
| return(-1); |
| } |
| memset(exec->counts, 0, comp->nbCounters * sizeof(int)); |
| } else |
| exec->counts = NULL; |
| while ((exec->status == 0) && |
| ((exec->inputString[exec->index] != 0) || |
| ((exec->state != NULL) && |
| (exec->state->type != XML_REGEXP_FINAL_STATE)))) { |
| xmlRegTransPtr trans; |
| xmlRegAtomPtr atom; |
| |
| /* |
| * If end of input on non-terminal state, rollback, however we may |
| * still have epsilon like transition for counted transitions |
| * on counters, in that case don't break too early. Additionally, |
| * if we are working on a range like "AB{0,2}", where B is not present, |
| * we don't want to break. |
| */ |
| len = 1; |
| if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL)) { |
| /* |
| * if there is a transition, we must check if |
| * atom allows minOccurs of 0 |
| */ |
| if (exec->transno < exec->state->nbTrans) { |
| trans = &exec->state->trans[exec->transno]; |
| if (trans->to >=0) { |
| atom = trans->atom; |
| if (!((atom->min == 0) && (atom->max > 0))) |
| goto rollback; |
| } |
| } else |
| goto rollback; |
| } |
| |
| exec->transcount = 0; |
| for (;exec->transno < exec->state->nbTrans;exec->transno++) { |
| trans = &exec->state->trans[exec->transno]; |
| if (trans->to < 0) |
| continue; |
| atom = trans->atom; |
| ret = 0; |
| deter = 1; |
| if (trans->count >= 0) { |
| int count; |
| xmlRegCounterPtr counter; |
| |
| if (exec->counts == NULL) { |
| exec->status = -1; |
| goto error; |
| } |
| /* |
| * A counted transition. |
| */ |
| |
| count = exec->counts[trans->count]; |
| counter = &exec->comp->counters[trans->count]; |
| #ifdef DEBUG_REGEXP_EXEC |
| printf("testing count %d: val %d, min %d, max %d\n", |
| trans->count, count, counter->min, counter->max); |
| #endif |
| ret = ((count >= counter->min) && (count <= counter->max)); |
| if ((ret) && (counter->min != counter->max)) |
| deter = 0; |
| } else if (atom == NULL) { |
| fprintf(stderr, "epsilon transition left at runtime\n"); |
| exec->status = -2; |
| break; |
| } else if (exec->inputString[exec->index] != 0) { |
| codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), len); |
| ret = xmlRegCheckCharacter(atom, codepoint); |
| if ((ret == 1) && (atom->min >= 0) && (atom->max > 0)) { |
| xmlRegStatePtr to = comp->states[trans->to]; |
| |
| /* |
| * this is a multiple input sequence |
| * If there is a counter associated increment it now. |
| * before potentially saving and rollback |
| * do not increment if the counter is already over the |
| * maximum limit in which case get to next transition |
| */ |
| if (trans->counter >= 0) { |
| xmlRegCounterPtr counter; |
| |
| if ((exec->counts == NULL) || |
| (exec->comp == NULL) || |
| (exec->comp->counters == NULL)) { |
| exec->status = -1; |
| goto error; |
| } |
| counter = &exec->comp->counters[trans->counter]; |
| if (exec->counts[trans->counter] >= counter->max) |
| continue; /* for loop on transitions */ |
| |
| #ifdef DEBUG_REGEXP_EXEC |
| printf("Increasing count %d\n", trans->counter); |
| #endif |
| exec->counts[trans->counter]++; |
| } |
| if (exec->state->nbTrans > exec->transno + 1) { |
| xmlFARegExecSave(exec); |
| } |
| exec->transcount = 1; |
| do { |
| /* |
| * Try to progress as much as possible on the input |
| */ |
| if (exec->transcount == atom->max) { |
| break; |
| } |
| exec->index += len; |
| /* |
| * End of input: stop here |
| */ |
| if (exec->inputString[exec->index] == 0) { |
| exec->index -= len; |
| break; |
| } |
| if (exec->transcount >= atom->min) { |
| int transno = exec->transno; |
| xmlRegStatePtr state = exec->state; |
| |
| /* |
| * The transition is acceptable save it |
| */ |
| exec->transno = -1; /* trick */ |
| exec->state = to; |
| xmlFARegExecSave(exec); |
| exec->transno = transno; |
| exec->state = state; |
| } |
| codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), |
| len); |
| ret = xmlRegCheckCharacter(atom, codepoint); |
| exec->transcount++; |
| } while (ret == 1); |
| if (exec->transcount < atom->min) |
| ret = 0; |
| |
| /* |
| * If the last check failed but one transition was found |
| * possible, rollback |
| */ |
| if (ret < 0) |
| ret = 0; |
| if (ret == 0) { |
| goto rollback; |
| } |
| if (trans->counter >= 0) { |
| if (exec->counts == NULL) { |
| exec->status = -1; |
| goto error; |
| } |
| #ifdef DEBUG_REGEXP_EXEC |
| printf("Decreasing count %d\n", trans->counter); |
| #endif |
| exec->counts[trans->counter]--; |
| } |
| } else if ((ret == 0) && (atom->min == 0) && (atom->max > 0)) { |
| /* |
| * we don't match on the codepoint, but minOccurs of 0 |
| * says that's ok. Setting len to 0 inhibits stepping |
| * over the codepoint. |
| */ |
| exec->transcount = 1; |
| len = 0; |
| ret = 1; |
| } |
| } else if ((atom->min == 0) && (atom->max > 0)) { |
| /* another spot to match when minOccurs is 0 */ |
| exec->transcount = 1; |
| len = 0; |
| ret = 1; |
| } |
| if (ret == 1) { |
| if ((trans->nd == 1) || |
| ((trans->count >= 0) && (deter == 0) && |
| (exec->state->nbTrans > exec->transno + 1))) { |
| #ifdef DEBUG_REGEXP_EXEC |
| if (trans->nd == 1) |
| printf("Saving on nd transition atom %d for %c at %d\n", |
| trans->atom->no, codepoint, exec->index); |
| else |
| printf("Saving on counted transition count %d for %c at %d\n", |
| trans->count, codepoint, exec->index); |
| #endif |
| xmlFARegExecSave(exec); |
| } |
| if (trans->counter >= 0) { |
| xmlRegCounterPtr counter; |
| |
| /* make sure we don't go over the counter maximum value */ |
| if ((exec->counts == NULL) || |
| (exec->comp == NULL) || |
| (exec->comp->counters == NULL)) { |
| exec->status = -1; |
| goto error; |
| } |
| counter = &exec->comp->counters[trans->counter]; |
| if (exec->counts[trans->counter] >= counter->max) |
| continue; /* for loop on transitions */ |
| #ifdef DEBUG_REGEXP_EXEC |
| printf("Increasing count %d\n", trans->counter); |
| #endif |
| exec->counts[trans->counter]++; |
| } |
| if ((trans->count >= 0) && |
| (trans->count < REGEXP_ALL_COUNTER)) { |
| if (exec->counts == NULL) { |
| exec->status = -1; |
| goto error; |
| } |
| #ifdef DEBUG_REGEXP_EXEC |
| printf("resetting count %d on transition\n", |
| trans->count); |
| #endif |
| exec->counts[trans->count] = 0; |
| } |
| #ifdef DEBUG_REGEXP_EXEC |
| printf("entering state %d\n", trans->to); |
| #endif |
| exec->state = comp->states[trans->to]; |
| exec->transno = 0; |
| if (trans->atom != NULL) { |
| exec->index += len; |
| } |
| goto progress; |
| } else if (ret < 0) { |
| exec->status = -4; |
| break; |
| } |
| } |
| if ((exec->transno != 0) || (exec->state->nbTrans == 0)) { |
| rollback: |
| /* |
| * Failed to find a way out |
| */ |
| exec->determinist = 0; |
| #ifdef DEBUG_REGEXP_EXEC |
| printf("rollback from state %d on %d:%c\n", exec->state->no, |
| codepoint,codepoint); |
| #endif |
| xmlFARegExecRollBack(exec); |
| } |
| progress: |
| continue; |
| } |
| error: |
| if (exec->rollbacks != NULL) { |
| if (exec->counts != NULL) { |
| int i; |
| |
| for (i = 0;i < exec->maxRollbacks;i++) |
| if (exec->rollbacks[i].counts != NULL) |
| xmlFree(exec->rollbacks[i].counts); |
| } |
| xmlFree(exec->rollbacks); |
| } |
| if (exec->counts != NULL) |
| xmlFree(exec->counts); |
| if (exec->status == 0) |
| return(1); |
| if (exec->status == -1) { |
| if (exec->nbPush > MAX_PUSH) |
| return(-1); |
| return(0); |
| } |
| return(exec->status); |
| } |
| |
| /************************************************************************ |
| * * |
| * Progressive interface to the verifier one atom at a time * |
| * * |
| ************************************************************************/ |
| #ifdef DEBUG_ERR |
| static void testerr(xmlRegExecCtxtPtr exec); |
| #endif |
| |
| /** |
| * xmlRegNewExecCtxt: |
| * @comp: a precompiled regular expression |
| * @callback: a callback function used for handling progresses in the |
| * automata matching phase |
| * @data: the context data associated to the callback in this context |
| * |
| * Build a context used for progressive evaluation of a regexp. |
| * |
| * Returns the new context |
| */ |
| xmlRegExecCtxtPtr |
| xmlRegNewExecCtxt(xmlRegexpPtr comp, xmlRegExecCallbacks callback, void *data) { |
| xmlRegExecCtxtPtr exec; |
| |
| if (comp == NULL) |
| return(NULL); |
| if ((comp->compact == NULL) && (comp->states == NULL)) |
| return(NULL); |
| exec = (xmlRegExecCtxtPtr) xmlMalloc(sizeof(xmlRegExecCtxt)); |
| if (exec == NULL) { |
| xmlRegexpErrMemory(NULL, "creating execution context"); |
| return(NULL); |
| } |
| memset(exec, 0, sizeof(xmlRegExecCtxt)); |
| exec->inputString = NULL; |
| exec->index = 0; |
| exec->determinist = 1; |
| exec->maxRollbacks = 0; |
| exec->nbRollbacks = 0; |
| exec->rollbacks = NULL; |
| exec->status = 0; |
| exec->comp = comp; |
| if (comp->compact == NULL) |
| exec->state = comp->states[0]; |
| exec->transno = 0; |
| exec->transcount = 0; |
| exec->callback = callback; |
| exec->data = data; |
| if (comp->nbCounters > 0) { |
| /* |
| * For error handling, exec->counts is allocated twice the size |
| * the second half is used to store the data in case of rollback |
| */ |
| exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int) |
| * 2); |
| if (exec->counts == NULL) { |
| xmlRegexpErrMemory(NULL, "creating execution context"); |
| xmlFree(exec); |
| return(NULL); |
| } |
| memset(exec->counts, 0, comp->nbCounters * sizeof(int) * 2); |
| exec->errCounts = &exec->counts[comp->nbCounters]; |
| } else { |
| exec->counts = NULL; |
| exec->errCounts = NULL; |
| } |
| exec->inputStackMax = 0; |
| exec->inputStackNr = 0; |
| exec->inputStack = NULL; |
| exec->errStateNo = -1; |
| exec->errString = NULL; |
| exec->nbPush = 0; |
| return(exec); |
| } |
| |
| /** |
| * xmlRegFreeExecCtxt: |
| * @exec: a regular expression evaulation context |
| * |
| * Free the structures associated to a regular expression evaulation context. |
| */ |
| void |
| xmlRegFreeExecCtxt(xmlRegExecCtxtPtr exec) { |
| if (exec == NULL) |
| return; |
| |
| if (exec->rollbacks != NULL) { |
| if (exec->counts != NULL) { |
| int i; |
| |
| for (i = 0;i < exec->maxRollbacks;i++) |
| if (exec->rollbacks[i].counts != NULL) |
| xmlFree(exec->rollbacks[i].counts); |
| } |
| xmlFree(exec->rollbacks); |
| } |
| if (exec->counts != NULL) |
| xmlFree(exec->counts); |
| if (exec->inputStack != NULL) { |
| int i; |
| |
| for (i = 0;i < exec->inputStackNr;i++) { |
| if (exec->inputStack[i].value != NULL) |
| xmlFree(exec->inputStack[i].value); |
| } |
| xmlFree(exec->inputStack); |
| } |
| if (exec->errString != NULL) |
| xmlFree(exec->errString); |
| xmlFree(exec); |
| } |
| |
| static void |
| xmlFARegExecSaveInputString(xmlRegExecCtxtPtr exec, const xmlChar *value, |
| void *data) { |
| #ifdef DEBUG_PUSH |
| printf("saving value: %d:%s\n", exec->inputStackNr, value); |
| #endif |
| if (exec->inputStackMax == 0) { |
| exec->inputStackMax = 4; |
| exec->inputStack = (xmlRegInputTokenPtr) |
| xmlMalloc(exec->inputStackMax * sizeof(xmlRegInputToken)); |
| if (exec->inputStack == NULL) { |
| xmlRegexpErrMemory(NULL, "pushing input string"); |
| exec->inputStackMax = 0; |
| return; |
| } |
| } else if (exec->inputStackNr + 1 >= exec->inputStackMax) { |
| xmlRegInputTokenPtr tmp; |
| |
| exec->inputStackMax *= 2; |
| tmp = (xmlRegInputTokenPtr) xmlRealloc(exec->inputStack, |
| exec->inputStackMax * sizeof(xmlRegInputToken)); |
| if (tmp == NULL) { |
| xmlRegexpErrMemory(NULL, "pushing input string"); |
| exec->inputStackMax /= 2; |
| return; |
| } |
| exec->inputStack = tmp; |
| } |
| exec->inputStack[exec->inputStackNr].value = xmlStrdup(value); |
| exec->inputStack[exec->inputStackNr].data = data; |
| exec->inputStackNr++; |
| exec->inputStack[exec->inputStackNr].value = NULL; |
| exec->inputStack[exec->inputStackNr].data = NULL; |
| } |
| |
| /** |
| * xmlRegStrEqualWildcard: |
| * @expStr: the string to be evaluated |
| * @valStr: the validation string |
| * |
| * Checks if both strings are equal or have the same content. "*" |
| * can be used as a wildcard in @valStr; "|" is used as a seperator of |
| * substrings in both @expStr and @valStr. |
| * |
| * Returns 1 if the comparison is satisfied and the number of substrings |
| * is equal, 0 otherwise. |
| */ |
| |
| static int |
| xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr) { |
| if (expStr == valStr) return(1); |
| if (expStr == NULL) return(0); |
| if (valStr == NULL) return(0); |
| do { |
| /* |
| * Eval if we have a wildcard for the current item. |
| */ |
| if (*expStr != *valStr) { |
| /* if one of them starts with a wildcard make valStr be it */ |
| if (*valStr == '*') { |
| const xmlChar *tmp; |
| |
| tmp = valStr; |
| valStr = expStr; |
| expStr = tmp; |
| } |
| if ((*valStr != 0) && (*expStr != 0) && (*expStr++ == '*')) { |
| do { |
| if (*valStr == XML_REG_STRING_SEPARATOR) |
| break; |
| valStr++; |
| } while (*valStr != 0); |
| continue; |
| } else |
| return(0); |
| } |
| expStr++; |
| valStr++; |
| } while (*valStr != 0); |
| if (*expStr != 0) |
| return (0); |
| else |
| return (1); |
| } |
| |
| /** |
| * xmlRegCompactPushString: |
| * @exec: a regexp execution context |
| * @comp: the precompiled exec with a compact table |
| * @value: a string token input |
| * @data: data associated to the token to reuse in callbacks |
| * |
| * Push one input token in the execution context |
| * |
| * Returns: 1 if the regexp reached a final state, 0 if non-final, and |
| * a negative value in case of error. |
| */ |
| static int |
| xmlRegCompactPushString(xmlRegExecCtxtPtr exec, |
| xmlRegexpPtr comp, |
| const xmlChar *value, |
| void *data) { |
| int state = exec->index; |
| int i, target; |
| |
| if ((comp == NULL) || (comp->compact == NULL) || (comp->stringMap == NULL)) |
| return(-1); |
| |
| if (value == NULL) { |
| /* |
| * are we at a final state ? |
| */ |
| if (comp->compact[state * (comp->nbstrings + 1)] == |
| XML_REGEXP_FINAL_STATE) |
| return(1); |
| return(0); |
| } |
| |
| #ifdef DEBUG_PUSH |
| printf("value pushed: %s\n", value); |
| #endif |
| |
| /* |
| * Examine all outside transitions from current state |
| */ |
| for (i = 0;i < comp->nbstrings;i++) { |
| target = comp->compact[state * (comp->nbstrings + 1) + i + 1]; |
| if ((target > 0) && (target <= comp->nbstates)) { |
| target--; /* to avoid 0 */ |
| if (xmlRegStrEqualWildcard(comp->stringMap[i], value)) { |
| exec->index = target; |
| if ((exec->callback != NULL) && (comp->transdata != NULL)) { |
| exec->callback(exec->data, value, |
| comp->transdata[state * comp->nbstrings + i], data); |
| } |
| #ifdef DEBUG_PUSH |
| printf("entering state %d\n", target); |
| #endif |
| if (comp->compact[target * (comp->nbstrings + 1)] == |
| XML_REGEXP_SINK_STATE) |
| goto error; |
| |
| if (comp->compact[target * (comp->nbstrings + 1)] == |
| XML_REGEXP_FINAL_STATE) |
| return(1); |
| return(0); |
| } |
| } |
| } |
| /* |
| * Failed to find an exit transition out from current state for the |
| * current token |
| */ |
| #ifdef DEBUG_PUSH |
| printf("failed to find a transition for %s on state %d\n", value, state); |
| #endif |
| error: |
| if (exec->errString != NULL) |
| xmlFree(exec->errString); |
| exec->errString = xmlStrdup(value); |
| exec->errStateNo = state; |
| exec->status = -1; |
| #ifdef DEBUG_ERR |
| testerr(exec); |
| #endif |
| return(-1); |
| } |
| |
| /** |
| * xmlRegExecPushStringInternal: |
| * @exec: a regexp execution context or NULL to indicate the end |
| * @value: a string token input |
| * @data: data associated to the token to reuse in callbacks |
| * @compound: value was assembled from 2 strings |
| * |
| * Push one input token in the execution context |
| * |
| * Returns: 1 if the regexp reached a final state, 0 if non-final, and |
| * a negative value in case of error. |
| */ |
| static int |
| xmlRegExecPushStringInternal(xmlRegExecCtxtPtr exec, const xmlChar *value, |
| void *data, int compound) { |
| xmlRegTransPtr trans; |
| xmlRegAtomPtr atom; |
| int ret; |
| int final = 0; |
| int progress = 1; |
| |
| if (exec == NULL) |
| return(-1); |
| if (exec->comp == NULL) |
| return(-1); |
| if (exec->status != 0) |
| return(exec->status); |
| |
| if (exec->comp->compact != NULL) |
| return(xmlRegCompactPushString(exec, exec->comp, value, data)); |
| |
| if (value == NULL) { |
| if (exec->state->type == XML_REGEXP_FINAL_STATE) |
| return(1); |
| final = 1; |
| } |
| |
| #ifdef DEBUG_PUSH |
| printf("value pushed: %s\n", value); |
| #endif |
| /* |
| * If we have an active rollback stack push the new value there |
| * and get back to where we were left |
| */ |
| if ((value != NULL) && (exec->inputStackNr > 0)) { |
| xmlFARegExecSaveInputString(exec, value, data); |
| value = exec->inputStack[exec->index].value; |
| data = exec->inputStack[exec->index].data; |
| #ifdef DEBUG_PUSH |
| printf("value loaded: %s\n", value); |
| #endif |
| } |
| |
| while ((exec->status == 0) && |
| ((value != NULL) || |
| ((final == 1) && |
| (exec->state->type != XML_REGEXP_FINAL_STATE)))) { |
| |
| /* |
| * End of input on non-terminal state, rollback, however we may |
| * still have epsilon like transition for counted transitions |
| * on counters, in that case don't break too early. |
| */ |
| if ((value == NULL) && (exec->counts == NULL)) |
| goto rollback; |
| |
| exec->transcount = 0; |
| for (;exec->transno < exec->state->nbTrans;exec->transno++) { |
| trans = &exec->state->trans[exec->transno]; |
| if (trans->to < 0) |
| continue; |
| atom = trans->atom; |
| ret = 0; |
| if (trans->count == REGEXP_ALL_LAX_COUNTER) { |
| int i; |
| int count; |
| xmlRegTransPtr t; |
| xmlRegCounterPtr counter; |
| |
| ret = 0; |
| |
| #ifdef DEBUG_PUSH |
| printf("testing all lax %d\n", trans->count); |
| #endif |
| /* |
| * Check all counted transitions from the current state |
| */ |
| if ((value == NULL) && (final)) { |
| ret = 1; |
| } else if (value != NULL) { |
| for (i = 0;i < exec->state->nbTrans;i++) { |
| t = &exec->state->trans[i]; |
| if ((t->counter < 0) || (t == trans)) |
| continue; |
| counter = &exec->comp->counters[t->counter]; |
| count = exec->counts[t->counter]; |
| if ((count < counter->max) && |
| (t->atom != NULL) && |
| (xmlStrEqual(value, t->atom->valuep))) { |
| ret = 0; |
| break; |
| } |
| if ((count >= counter->min) && |
| (count < counter->max) && |
| (t->atom != NULL) && |
| (xmlStrEqual(value, t->atom->valuep))) { |
| ret = 1; |
| break; |
| } |
| } |
| } |
| } else if (trans->count == REGEXP_ALL_COUNTER) { |
| int i; |
| int count; |
| xmlRegTransPtr t; |
| xmlRegCounterPtr counter; |
| |
| ret = 1; |
| |
| #ifdef DEBUG_PUSH |
| printf("testing all %d\n", trans->count); |
| #endif |
| /* |
| * Check all counted transitions from the current state |
| */ |
| for (i = 0;i < exec->state->nbTrans;i++) { |
| t = &exec->state->trans[i]; |
| if ((t->counter < 0) || (t == trans)) |
| continue; |
| counter = &exec->comp->counters[t->counter]; |
| count = exec->counts[t->counter]; |
| if ((count < counter->min) || (count > counter->max)) { |
| ret = 0; |
| break; |
| } |
| } |
| } else if (trans->count >= 0) { |
| int count; |
| xmlRegCounterPtr counter; |
| |
| /* |
| * A counted transition. |
| */ |
| |
| count = exec->counts[trans->count]; |
| counter = &exec->comp->counters[trans->count]; |
| #ifdef DEBUG_PUSH |
| printf("testing count %d: val %d, min %d, max %d\n", |
| trans->count, count, counter->min, counter->max); |
| #endif |
| ret = ((count >= counter->min) && (count <= counter->max)); |
| } else if (atom == NULL) { |
| fprintf(stderr, "epsilon transition left at runtime\n"); |
| exec->status = -2; |
| break; |
| } else if (value != NULL) { |
| ret = xmlRegStrEqualWildcard(atom->valuep, value); |
| if (atom->neg) { |
| ret = !ret; |
| if (!compound) |
| ret = 0; |
| } |
| if ((ret == 1) && (trans->counter >= 0)) { |
| xmlRegCounterPtr counter; |
| int count; |
| |
| count = exec->counts[trans->counter]; |
| counter = &exec->comp->counters[trans->counter]; |
| if (count >= counter->max) |
| ret = 0; |
| } |
| |
| if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) { |
| xmlRegStatePtr to = exec->comp->states[trans->to]; |
| |
| /* |
| * this is a multiple input sequence |
| */ |
| if (exec->state->nbTrans > exec->transno + 1) { |
| if (exec->inputStackNr <= 0) { |
| xmlFARegExecSaveInputString(exec, value, data); |
| } |
| xmlFARegExecSave(exec); |
| } |
| exec->transcount = 1; |
| do { |
| /* |
| * Try to progress as much as possible on the input |
| */ |
| if (exec->transcount == atom->max) { |
| break; |
| } |
| exec->index++; |
| value = exec->inputStack[exec->index].value; |
| data = exec->inputStack[exec->index].data; |
| #ifdef DEBUG_PUSH |
| printf("value loaded: %s\n", value); |
| #endif |
| |
| /* |
| * End of input: stop here |
| */ |
| if (value == NULL) { |
| exec->index --; |
| break; |
| } |
| if (exec->transcount >= atom->min) { |
| int transno = exec->transno; |
| xmlRegStatePtr state = exec->state; |
| |
| /* |
| * The transition is acceptable save it |
| */ |
| exec->transno = -1; /* trick */ |
| exec->state = to; |
| if (exec->inputStackNr <= 0) { |
| xmlFARegExecSaveInputString(exec, value, data); |
| } |
| xmlFARegExecSave(exec); |
| exec->transno = transno; |
| exec->state = state; |
| } |
| ret = xmlStrEqual(value, atom->valuep); |
| exec->transcount++; |
| } while (ret == 1); |
| if (exec->transcount < atom->min) |
| ret = 0; |
| |
| /* |
| * If the last check failed but one transition was found |
| * possible, rollback |
| */ |
| if (ret < 0) |
| ret = 0; |
| if (ret == 0) { |
| goto rollback; |
| } |
| } |
| } |
| if (ret == 1) { |
| if ((exec->callback != NULL) && (atom != NULL) && |
| (data != NULL)) { |
| exec->callback(exec->data, atom->valuep, |
| atom->data, data); |
| } |
| if (exec->state->nbTrans > exec->transno + 1) { |
| if (exec->inputStackNr <= 0) { |
| xmlFARegExecSaveInputString(exec, value, data); |
| } |
| xmlFARegExecSave(exec); |
| } |
| if (trans->counter >= 0) { |
| #ifdef DEBUG_PUSH |
| printf("Increasing count %d\n", trans->counter); |
| #endif |
| exec->counts[trans->counter]++; |
| } |
| if ((trans->count >= 0) && |
| (trans->count < REGEXP_ALL_COUNTER)) { |
| #ifdef DEBUG_REGEXP_EXEC |
| printf("resetting count %d on transition\n", |
| trans->count); |
| #endif |
| exec->counts[trans->count] = 0; |
| } |
| #ifdef DEBUG_PUSH |
| printf("entering state %d\n", trans->to); |
| #endif |
| if ((exec->comp->states[trans->to] != NULL) && |
| (exec->comp->states[trans->to]->type == |
| XML_REGEXP_SINK_STATE)) { |
| /* |
| * entering a sink state, save the current state as error |
| * state. |
| */ |
| if (exec->errString != NULL) |
| xmlFree(exec->errString); |
| exec->errString = xmlStrdup(value); |
| exec->errState = exec->state; |
| memcpy(exec->errCounts, exec->counts, |
| exec->comp->nbCounters * sizeof(int)); |
| } |
| exec->state = exec->comp->states[trans->to]; |
| exec->transno = 0; |
| if (trans->atom != NULL) { |
| if (exec->inputStack != NULL) { |
| exec->index++; |
| if (exec->index < exec->inputStackNr) { |
| value = exec->inputStack[exec->index].value; |
| data = exec->inputStack[exec->index].data; |
| #ifdef DEBUG_PUSH |
| printf("value loaded: %s\n", value); |
| #endif |
| } else { |
| value = NULL; |
| data = NULL; |
| #ifdef DEBUG_PUSH |
| printf("end of input\n"); |
| #endif |
| } |
| } else { |
| value = NULL; |
| data = NULL; |
| #ifdef DEBUG_PUSH |
| printf("end of input\n"); |
| #endif |
| } |
| } |
| goto progress; |
| } else if (ret < 0) { |
| exec->status = -4; |
| break; |
| } |
| } |
| if ((exec->transno != 0) || (exec->state->nbTrans == 0)) { |
| rollback: |
| /* |
| * if we didn't yet rollback on the current input |
| * store the current state as the error state. |
| */ |
| if ((progress) && (exec->state != NULL) && |
| (exec->state->type != XML_REGEXP_SINK_STATE)) { |
| progress = 0; |
| if (exec->errString != NULL) |
| xmlFree(exec->errString); |
| exec->errString = xmlStrdup(value); |
| exec->errState = exec->state; |
| memcpy(exec->errCounts, exec->counts, |
| exec->comp->nbCounters * sizeof(int)); |
| } |
| |
| /* |
| * Failed to find a way out |
| */ |
| exec->determinist = 0; |
| xmlFARegExecRollBack(exec); |
| if (exec->status == 0) { |
| value = exec->inputStack[exec->index].value; |
| data = exec->inputStack[exec->index].data; |
| #ifdef DEBUG_PUSH |
| printf("value loaded: %s\n", value); |
| #endif |
| } |
| } |
| continue; |
| progress: |
| progress = 1; |
| continue; |
| } |
| if (exec->status == 0) { |
| return(exec->state->type == XML_REGEXP_FINAL_STATE); |
| } |
| #ifdef DEBUG_ERR |
| if (exec->status < 0) { |
| testerr(exec); |
| } |
| #endif |
| return(exec->status); |
| } |
| |
| /** |
| * xmlRegExecPushString: |
| * @exec: a regexp execution context or NULL to indicate the end |
| * @value: a string token input |
| * @data: data associated to the token to reuse in callbacks |
| * |
| * Push one input token in the execution context |
| * |
| * Returns: 1 if the regexp reached a final state, 0 if non-final, and |
| * a negative value in case of error. |
| */ |
| int |
| xmlRegExecPushString(xmlRegExecCtxtPtr exec, const xmlChar *value, |
| void *data) { |
| return(xmlRegExecPushStringInternal(exec, value, data, 0)); |
| } |
| |
| /** |
| * xmlRegExecPushString2: |
| * @exec: a regexp execution context or NULL to indicate the end |
| * @value: the first string token input |
| * @value2: the second string token input |
| * @data: data associated to the token to reuse in callbacks |
| * |
| * Push one input token in the execution context |
| * |
| * Returns: 1 if the regexp reached a final state, 0 if non-final, and |
| * a negative value in case of error. |
| */ |
| int |
| xmlRegExecPushString2(xmlRegExecCtxtPtr exec, const xmlChar *value, |
| const xmlChar *value2, void *data) { |
| xmlChar buf[150]; |
| int lenn, lenp, ret; |
| xmlChar *str; |
| |
| if (exec == NULL) |
| return(-1); |
| if (exec->comp == NULL) |
| return(-1); |
| if (exec->status != 0) |
| return(exec->status); |
| |
| if (value2 == NULL) |
| return(xmlRegExecPushString(exec, value, data)); |
| |
| lenn = strlen((char *) value2); |
| lenp = strlen((char *) value); |
| |
| if (150 < lenn + lenp + 2) { |
| str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2); |
| if (str == NULL) { |
| exec->status = -1; |
| return(-1); |
| } |
| } else { |
| str = buf; |
| } |
| memcpy(&str[0], value, lenp); |
| str[lenp] = XML_REG_STRING_SEPARATOR; |
| memcpy(&str[lenp + 1], value2, lenn); |
| str[lenn + lenp + 1] = 0; |
| |
| if (exec->comp->compact != NULL) |
| ret = xmlRegCompactPushString(exec, exec->comp, str, data); |
| else |
| ret = xmlRegExecPushStringInternal(exec, str, data, 1); |
| |
| if (str != buf) |
| xmlFree(str); |
| return(ret); |
| } |
| |
| /** |
| * xmlRegExecGetValues: |
| * @exec: a regexp execution context |
| * @err: error extraction or normal one |
| * @nbval: pointer to the number of accepted values IN/OUT |
| * @nbneg: return number of negative transitions |
| * @values: pointer to the array of acceptable values |
| * @terminal: return value if this was a terminal state |
| * |
| * Extract informations from the regexp execution, internal routine to |
| * implement xmlRegExecNextValues() and xmlRegExecErrInfo() |
| * |
| * Returns: 0 in case of success or -1 in case of error. |
| */ |
| static int |
| xmlRegExecGetValues(xmlRegExecCtxtPtr exec, int err, |
| int *nbval, int *nbneg, |
| xmlChar **values, int *terminal) { |
| int maxval; |
| int nb = 0; |
| |
| if ((exec == NULL) || (nbval == NULL) || (nbneg == NULL) || |
| (values == NULL) || (*nbval <= 0)) |
| return(-1); |
| |
| maxval = *nbval; |
| *nbval = 0; |
| *nbneg = 0; |
| if ((exec->comp != NULL) && (exec->comp->compact != NULL)) { |
| xmlRegexpPtr comp; |
| int target, i, state; |
| |
| comp = exec->comp; |
| |
| if (err) { |
| if (exec->errStateNo == -1) return(-1); |
| state = exec->errStateNo; |
| } else { |
| state = exec->index; |
| } |
| if (terminal != NULL) { |
| if (comp->compact[state * (comp->nbstrings + 1)] == |
| XML_REGEXP_FINAL_STATE) |
| *terminal = 1; |
| else |
| *terminal = 0; |
| } |
| for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) { |
| target = comp->compact[state * (comp->nbstrings + 1) + i + 1]; |
| if ((target > 0) && (target <= comp->nbstates) && |
| (comp->compact[(target - 1) * (comp->nbstrings + 1)] != |
| XML_REGEXP_SINK_STATE)) { |
| values[nb++] = comp->stringMap[i]; |
| (*nbval)++; |
| } |
| } |
| for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) { |
| target = comp->compact[state * (comp->nbstrings + 1) + i + 1]; |
| if ((target > 0) && (target <= comp->nbstates) && |
| (comp->compact[(target - 1) * (comp->nbstrings + 1)] == |
| XML_REGEXP_SINK_STATE)) { |
| values[nb++] = comp->stringMap[i]; |
| (*nbneg)++; |
| } |
| } |
| } else { |
| int transno; |
| xmlRegTransPtr trans; |
| xmlRegAtomPtr atom; |
| xmlRegStatePtr state; |
| |
| if (terminal != NULL) { |
| if (exec->state->type == XML_REGEXP_FINAL_STATE) |
| *terminal = 1; |
| else |
| *terminal = 0; |
| } |
| |
| if (err) { |
| if (exec->errState == NULL) return(-1); |
| state = exec->errState; |
| } else { |
| if (exec->state == NULL) return(-1); |
| state = exec->state; |
| } |
| for (transno = 0; |
| (transno < state->nbTrans) && (nb < maxval); |
| transno++) { |
| trans = &state->trans[transno]; |
| if (trans->to < 0) |
| continue; |
| atom = trans->atom; |
| if ((atom == NULL) || (atom->valuep == NULL)) |
| continue; |
| if (trans->count == REGEXP_ALL_LAX_COUNTER) { |
| /* this should not be reached but ... */ |
| TODO; |
| } else if (trans->count == REGEXP_ALL_COUNTER) { |
| /* this should not be reached but ... */ |
| TODO; |
| } else if (trans->counter >= 0) { |
| xmlRegCounterPtr counter = NULL; |
| int count; |
| |
| if (err) |
| count = exec->errCounts[trans->counter]; |
| else |
| count = exec->counts[trans->counter]; |
| if (exec->comp != NULL) |
| counter = &exec->comp->counters[trans->counter]; |
| if ((counter == NULL) || (count < counter->max)) { |
| if (atom->neg) |
| values[nb++] = (xmlChar *) atom->valuep2; |
| else |
| values[nb++] = (xmlChar *) atom->valuep; |
| (*nbval)++; |
| } |
| } else { |
| if ((exec->comp->states[trans->to] != NULL) && |
| (exec->comp->states[trans->to]->type != |
| XML_REGEXP_SINK_STATE)) { |
| if (atom->neg) |
| values[nb++] = (xmlChar *) atom->valuep2; |
| else |
| values[nb++] = (xmlChar *) atom->valuep; |
| (*nbval)++; |
| } |
| } |
| } |
| for (transno = 0; |
| (transno < state->nbTrans) && (nb < maxval); |
| transno++) { |
| trans = &state->trans[transno]; |
| if (trans->to < 0) |
| continue; |
| atom = trans->atom; |
| if ((atom == NULL) || (atom->valuep == NULL)) |
| continue; |
| if (trans->count == REGEXP_ALL_LAX_COUNTER) { |
| continue; |
| } else if (trans->count == REGEXP_ALL_COUNTER) { |
| continue; |
| } else if (trans->counter >= 0) { |
| continue; |
| } else { |
| if ((exec->comp->states[trans->to] != NULL) && |
| (exec->comp->states[trans->to]->type == |
| XML_REGEXP_SINK_STATE)) { |
| if (atom->neg) |
| values[nb++] = (xmlChar *) atom->valuep2; |
| else |
| values[nb++] = (xmlChar *) atom->valuep; |
| (*nbneg)++; |
| } |
| } |
| } |
| } |
| return(0); |
| } |
| |
| /** |
| * xmlRegExecNextValues: |
| * @exec: a regexp execution context |
| * @nbval: pointer to the number of accepted values IN/OUT |
| * @nbneg: return number of negative transitions |
| * @values: pointer to the array of acceptable values |
| * @terminal: return value if this was a terminal state |
| * |
| * Extract informations from the regexp execution, |
| * the parameter @values must point to an array of @nbval string pointers |
| * on return nbval will contain the number of possible strings in that |
| * state and the @values array will be updated with them. The string values |
| * returned will be freed with the @exec context and don't need to be |
| * deallocated. |
| * |
| * Returns: 0 in case of success or -1 in case of error. |
| */ |
| int |
| xmlRegExecNextValues(xmlRegExecCtxtPtr exec, int *nbval, int *nbneg, |
| xmlChar **values, int *terminal) { |
| return(xmlRegExecGetValues(exec, 0, nbval, nbneg, values, terminal)); |
| } |
| |
| /** |
| * xmlRegExecErrInfo: |
| * @exec: a regexp execution context generating an error |
| * @string: return value for the error string |
| * @nbval: pointer to the number of accepted values IN/OUT |
| * @nbneg: return number of negative transitions |
| * @values: pointer to the array of acceptable values |
| * @terminal: return value if this was a terminal state |
| * |
| * Extract error informations from the regexp execution, the parameter |
| * @string will be updated with the value pushed and not accepted, |
| * the parameter @values must point to an array of @nbval string pointers |
| * on return nbval will contain the number of possible strings in that |
| * state and the @values array will be updated with them. The string values |
| * returned will be freed with the @exec context and don't need to be |
| * deallocated. |
| * |
| * Returns: 0 in case of success or -1 in case of error. |
| */ |
| int |
| xmlRegExecErrInfo(xmlRegExecCtxtPtr exec, const xmlChar **string, |
| int *nbval, int *nbneg, xmlChar **values, int *terminal) { |
| if (exec == NULL) |
| return(-1); |
| if (string != NULL) { |
| if (exec->status != 0) |
| *string = exec->errString; |
| else |
| *string = NULL; |
| } |
| return(xmlRegExecGetValues(exec, 1, nbval, nbneg, values, terminal)); |
| } |
| |
| #ifdef DEBUG_ERR |
| static void testerr(xmlRegExecCtxtPtr exec) { |
| const xmlChar *string; |
| xmlChar *values[5]; |
| int nb = 5; |
| int nbneg; |
| int terminal; |
| xmlRegExecErrInfo(exec, &string, &nb, &nbneg, &values[0], &terminal); |
| } |
| #endif |
| |
| #if 0 |
| static int |
| xmlRegExecPushChar(xmlRegExecCtxtPtr exec, int UCS) { |
| xmlRegTransPtr trans; |
| xmlRegAtomPtr atom; |
| int ret; |
| int codepoint, len; |
| |
| if (exec == NULL) |
| return(-1); |
| if (exec->status != 0) |
| return(exec->status); |
| |
| while ((exec->status == 0) && |
| ((exec->inputString[exec->index] != 0) || |
| (exec->state->type != XML_REGEXP_FINAL_STATE))) { |
| |
| /* |
| * End of input on non-terminal state, rollback, however we may |
| * still have epsilon like transition for counted transitions |
| * on counters, in that case don't break too early. |
| */ |
| if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL)) |
| goto rollback; |
| |
| exec->transcount = 0; |
| for (;exec->transno < exec->state->nbTrans;exec->transno++) { |
| trans = &exec->state->trans[exec->transno]; |
| if (trans->to < 0) |
| continue; |
| atom = trans->atom; |
| ret = 0; |
| if (trans->count >= 0) { |
| int count; |
| xmlRegCounterPtr counter; |
| |
| /* |
| * A counted transition. |
| */ |
| |
| count = exec->counts[trans->count]; |
| counter = &exec->comp->counters[trans->count]; |
| #ifdef DEBUG_REGEXP_EXEC |
| printf("testing count %d: val %d, min %d, max %d\n", |
| trans->count, count, counter->min, counter->max); |
| #endif |
| ret = ((count >= counter->min) && (count <= counter->max)); |
| } else if (atom == NULL) { |
| fprintf(stderr, "epsilon transition left at runtime\n"); |
| exec->status = -2; |
| break; |
| } else if (exec->inputString[exec->index] != 0) { |
| codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), len); |
| ret = xmlRegCheckCharacter(atom, codepoint); |
| if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) { |
| xmlRegStatePtr to = exec->comp->states[trans->to]; |
| |
| /* |
| * this is a multiple input sequence |
| */ |
| if (exec->state->nbTrans > exec->transno + 1) { |
| xmlFARegExecSave(exec); |
| } |
| exec->transcount = 1; |
| do { |
| /* |
| * Try to progress as much as possible on the input |
| */ |
| if (exec->transcount == atom->max) { |
| break; |
| } |
| exec->index += len; |
| /* |
| * End of input: stop here |
| */ |
| if (exec->inputString[exec->index] == 0) { |
| exec->index -= len; |
| break; |
| } |
| if (exec->transcount >= atom->min) { |
| int transno = exec->transno; |
| xmlRegStatePtr state = exec->state; |
| |
| /* |
| * The transition is acceptable save it |
| */ |
| exec->transno = -1; /* trick */ |
| exec->state = to; |
| xmlFARegExecSave(exec); |
| exec->transno = transno; |
| exec->state = state; |
| } |
| codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), |
| len); |
| ret = xmlRegCheckCharacter(atom, codepoint); |
| exec->transcount++; |
| } while (ret == 1); |
| if (exec->transcount < atom->min) |
| ret = 0; |
| |
| /* |
| * If the last check failed but one transition was found |
| * possible, rollback |
| */ |
| if (ret < 0) |
| ret = 0; |
| if (ret == 0) { |
| goto rollback; |
| } |
| } |
| } |
| if (ret == 1) { |
| if (exec->state->nbTrans > exec->transno + 1) { |
| xmlFARegExecSave(exec); |
| } |
| /* |
| * restart count for expressions like this ((abc){2})* |
| */ |
| if (trans->count >= 0) { |
| #ifdef DEBUG_REGEXP_EXEC |
| printf("Reset count %d\n", trans->count); |
| #endif |
| exec->counts[trans->count] = 0; |
| } |
| if (trans->counter >= 0) { |
| #ifdef DEBUG_REGEXP_EXEC |
| printf("Increasing count %d\n", trans->counter); |
| #endif |
| exec->counts[trans->counter]++; |
| } |
| #ifdef DEBUG_REGEXP_EXEC |
| printf("entering state %d\n", trans->to); |
| #endif |
| exec->state = exec->comp->states[trans->to]; |
| exec->transno = 0; |
| if (trans->atom != NULL) { |
| exec->index += len; |
| } |
| goto progress; |
| } else if (ret < 0) { |
| exec->status = -4; |
| break; |
| } |
| } |
| if ((exec->transno != 0) || (exec->state->nbTrans == 0)) { |
| rollback: |
| /* |
| * Failed to find a way out |
| */ |
| exec->determinist = 0; |
| xmlFARegExecRollBack(exec); |
| } |
| progress: |
| continue; |
| } |
| } |
| #endif |
| /************************************************************************ |
| * * |
| * Parser for the Schemas Datatype Regular Expressions * |
| * http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#regexs * |
| * * |
| ************************************************************************/ |
| |
| /** |
| * xmlFAIsChar: |
| * @ctxt: a regexp parser context |
| * |
| * [10] Char ::= [^.\?*+()|#x5B#x5D] |
| */ |
| static int |
| xmlFAIsChar(xmlRegParserCtxtPtr ctxt) { |
| int cur; |
| int len; |
| |
| cur = CUR_SCHAR(ctxt->cur, len); |
| if ((cur == '.') || (cur == '\\') || (cur == '?') || |
| (cur == '*') || (cur == '+') || (cur == '(') || |
| (cur == ')') || (cur == '|') || (cur == 0x5B) || |
| (cur == 0x5D) || (cur == 0)) |
| return(-1); |
| return(cur); |
| } |
| |
| /** |
| * xmlFAParseCharProp: |
| * @ctxt: a regexp parser context |
| * |
| * [27] charProp ::= IsCategory | IsBlock |
| * [28] IsCategory ::= Letters | Marks | Numbers | Punctuation | |
| * Separators | Symbols | Others |
| * [29] Letters ::= 'L' [ultmo]? |
| * [30] Marks ::= 'M' [nce]? |
| * [31] Numbers ::= 'N' [dlo]? |
| * [32] Punctuation ::= 'P' [cdseifo]? |
| * [33] Separators ::= 'Z' [slp]? |
| * [34] Symbols ::= 'S' [mcko]? |
| * [35] Others ::= 'C' [cfon]? |
| * [36] IsBlock ::= 'Is' [a-zA-Z0-9#x2D]+ |
| */ |
| static void |
| xmlFAParseCharProp(xmlRegParserCtxtPtr ctxt) { |
| int cur; |
| xmlRegAtomType type = (xmlRegAtomType) 0; |
| xmlChar *blockName = NULL; |
| |
| cur = CUR; |
| if (cur == 'L') { |
| NEXT; |
| cur = CUR; |
| if (cur == 'u') { |
| NEXT; |
| type = XML_REGEXP_LETTER_UPPERCASE; |
| } else if (cur == 'l') { |
| NEXT; |
| type = XML_REGEXP_LETTER_LOWERCASE; |
| } else if (cur == 't') { |
| NEXT; |
| type = XML_REGEXP_LETTER_TITLECASE; |
| } else if (cur == 'm') { |
| NEXT; |
| type = XML_REGEXP_LETTER_MODIFIER; |
| } else if (cur == 'o') { |
| NEXT; |
| type = XML_REGEXP_LETTER_OTHERS; |
| } else { |
| type = XML_REGEXP_LETTER; |
| } |
| } else if (cur == 'M') { |
| NEXT; |
| cur = CUR; |
| if (cur == 'n') { |
| NEXT; |
| /* nonspacing */ |
| type = XML_REGEXP_MARK_NONSPACING; |
| } else if (cur == 'c') { |
| NEXT; |
| /* spacing combining */ |
| type = XML_REGEXP_MARK_SPACECOMBINING; |
| } else if (cur == 'e') { |
| NEXT; |
| /* enclosing */ |
| type = XML_REGEXP_MARK_ENCLOSING; |
| } else { |
| /* all marks */ |
| type = XML_REGEXP_MARK; |
| } |
| } else if (cur == 'N') { |
| NEXT; |
| cur = CUR; |
| if (cur == 'd') { |
| NEXT; |
| /* digital */ |
| type = XML_REGEXP_NUMBER_DECIMAL; |
| } else if (cur == 'l') { |
| NEXT; |
| /* letter */ |
| type = XML_REGEXP_NUMBER_LETTER; |
| } else if (cur == 'o') { |
| NEXT; |
| /* other */ |
| type = XML_REGEXP_NUMBER_OTHERS; |
| } else { |
| /* all numbers */ |
| type = XML_REGEXP_NUMBER; |
| } |
| } else if (cur == 'P') { |
| NEXT; |
| cur = CUR; |
| if (cur == 'c') { |
| NEXT; |
| /* connector */ |
| type = XML_REGEXP_PUNCT_CONNECTOR; |
| } else if (cur == 'd') { |
| NEXT; |
| /* dash */ |
| type = XML_REGEXP_PUNCT_DASH; |
| } else if (cur == 's') { |
| NEXT; |
| /* open */ |
| type = XML_REGEXP_PUNCT_OPEN; |
| } else if (cur == 'e') { |
| NEXT; |
| /* close */ |
| type = XML_REGEXP_PUNCT_CLOSE; |
| } else if (cur == 'i') { |
| NEXT; |
| /* initial quote */ |
| type = XML_REGEXP_PUNCT_INITQUOTE; |
| } else if (cur == 'f') { |
| NEXT; |
| /* final quote */ |
| type = XML_REGEXP_PUNCT_FINQUOTE; |
| } else if (cur == 'o') { |
| NEXT; |
| /* other */ |
| type = XML_REGEXP_PUNCT_OTHERS; |
| } else { |
| /* all punctuation */ |
| type = XML_REGEXP_PUNCT; |
| } |
| } else if (cur == 'Z') { |
| NEXT; |
| cur = CUR; |
| if (cur == 's') { |
| NEXT; |
| /* space */ |
| type = XML_REGEXP_SEPAR_SPACE; |
| } else if (cur == 'l') { |
| NEXT; |
| /* line */ |
| type = XML_REGEXP_SEPAR_LINE; |
| } else if (cur == 'p') { |
| NEXT; |
| /* paragraph */ |
| type = XML_REGEXP_SEPAR_PARA; |
| } else { |
| /* all separators */ |
| type = XML_REGEXP_SEPAR; |
| } |
| } else if (cur == 'S') { |
| NEXT; |
| cur = CUR; |
| if (cur == 'm') { |
| NEXT; |
| type = XML_REGEXP_SYMBOL_MATH; |
| /* math */ |
| } else if (cur == 'c') { |
| NEXT; |
| type = XML_REGEXP_SYMBOL_CURRENCY; |
| /* currency */ |
| } else if (cur == 'k') { |
| NEXT; |
| type = XML_REGEXP_SYMBOL_MODIFIER; |
| /* modifiers */ |
| } else if (cur == 'o') { |
| NEXT; |
| type = XML_REGEXP_SYMBOL_OTHERS; |
| /* other */ |
| } else { |
| /* all symbols */ |
| type = XML_REGEXP_SYMBOL; |
| } |
| } else if (cur == 'C') { |
| NEXT; |
| cur = CUR; |
| if (cur == 'c') { |
| NEXT; |
| /* control */ |
| type = XML_REGEXP_OTHER_CONTROL; |
| } else if (cur == 'f') { |
| NEXT; |
| /* format */ |
| type = XML_REGEXP_OTHER_FORMAT; |
| } else if (cur == 'o') { |
| NEXT; |
| /* private use */ |
| type = XML_REGEXP_OTHER_PRIVATE; |
| } else if (cur == 'n') { |
| NEXT; |
| /* not assigned */ |
| type = XML_REGEXP_OTHER_NA; |
| } else { |
| /* all others */ |
| type = XML_REGEXP_OTHER; |
| } |
| } else if (cur == 'I') { |
| const xmlChar *start; |
| NEXT; |
| cur = CUR; |
| if (cur != 's') { |
| ERROR("IsXXXX expected"); |
| return; |
| } |
| NEXT; |
| start = ctxt->cur; |
| cur = CUR; |
| if (((cur >= 'a') && (cur <= 'z')) || |
| ((cur >= 'A') && (cur <= 'Z')) || |
| ((cur >= '0') && (cur <= '9')) || |
| (cur == 0x2D)) { |
| NEXT; |
| cur = CUR; |
| while (((cur >= 'a') && (cur <= 'z')) || |
| ((cur >= 'A') && (cur <= 'Z')) || |
| ((cur >= '0') && (cur <= '9')) || |
| (cur == 0x2D)) { |
| NEXT; |
| cur = CUR; |
| } |
| } |
| type = XML_REGEXP_BLOCK_NAME; |
| blockName = xmlStrndup(start, ctxt->cur - start); |
| } else { |
| ERROR("Unknown char property"); |
| return; |
| } |
| if (ctxt->atom == NULL) { |
| ctxt->atom = xmlRegNewAtom(ctxt, type); |
| if (ctxt->atom != NULL) |
| ctxt->atom->valuep = blockName; |
| } else if (ctxt->atom->type == XML_REGEXP_RANGES) { |
| xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg, |
| type, 0, 0, blockName); |
| } |
| } |
| |
| /** |
| * xmlFAParseCharClassEsc: |
| * @ctxt: a regexp parser context |
| * |
| * [23] charClassEsc ::= ( SingleCharEsc | MultiCharEsc | catEsc | complEsc ) |
| * [24] SingleCharEsc ::= '\' [nrt\|.?*+(){}#x2D#x5B#x5D#x5E] |
| * [25] catEsc ::= '\p{' charProp '}' |
| * [26] complEsc ::= '\P{' charProp '}' |
| * [37] MultiCharEsc ::= '.' | ('\' [sSiIcCdDwW]) |
| */ |
| static void |
| xmlFAParseCharClassEsc(xmlRegParserCtxtPtr ctxt) { |
| int cur; |
| |
| if (CUR == '.') { |
| if (ctxt->atom == NULL) { |
| ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_ANYCHAR); |
| } else if (ctxt->atom->type == XML_REGEXP_RANGES) { |
| xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg, |
| XML_REGEXP_ANYCHAR, 0, 0, NULL); |
| } |
| NEXT; |
| return; |
| } |
| if (CUR != '\\') { |
| ERROR("Escaped sequence: expecting \\"); |
| return; |
| } |
| NEXT; |
| cur = CUR; |
| if (cur == 'p') { |
| NEXT; |
| if (CUR != '{') { |
| ERROR("Expecting '{'"); |
| return; |
| } |
| NEXT; |
| xmlFAParseCharProp(ctxt); |
| if (CUR != '}') { |
| ERROR("Expecting '}'"); |
| return; |
| } |
| NEXT; |
| } else if (cur == 'P') { |
| NEXT; |
| if (CUR != '{') { |
| ERROR("Expecting '{'"); |
| return; |
| } |
| NEXT; |
| xmlFAParseCharProp(ctxt); |
| ctxt->atom->neg = 1; |
| if (CUR != '}') { |
| ERROR("Expecting '}'"); |
| return; |
| } |
| NEXT; |
| } else if ((cur == 'n') || (cur == 'r') || (cur == 't') || (cur == '\\') || |
| (cur == '|') || (cur == '.') || (cur == '?') || (cur == '*') || |
| (cur == '+') || (cur == '(') || (cur == ')') || (cur == '{') || |
| (cur == '}') || (cur == 0x2D) || (cur == 0x5B) || (cur == 0x5D) || |
| (cur == 0x5E)) { |
| if (ctxt->atom == NULL) { |
| ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL); |
| if (ctxt->atom != NULL) { |
| switch (cur) { |
| case 'n': |
| ctxt->atom->codepoint = '\n'; |
| break; |
| case 'r': |
| ctxt->atom->codepoint = '\r'; |
| break; |
| case 't': |
| ctxt->atom->codepoint = '\t'; |
| break; |
| default: |
| ctxt->atom->codepoint = cur; |
| } |
| } |
| } else if (ctxt->atom->type == XML_REGEXP_RANGES) { |
| switch (cur) { |
| case 'n': |
| cur = '\n'; |
| break; |
| case 'r': |
| cur = '\r'; |
| break; |
| case 't': |
| cur = '\t'; |
| break; |
| } |
| xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg, |
| XML_REGEXP_CHARVAL, cur, cur, NULL); |
| } |
| NEXT; |
| } else if ((cur == 's') || (cur == 'S') || (cur == 'i') || (cur == 'I') || |
| (cur == 'c') || (cur == 'C') || (cur == 'd') || (cur == 'D') || |
| (cur == 'w') || (cur == 'W')) { |
| xmlRegAtomType type = XML_REGEXP_ANYSPACE; |
| |
| switch (cur) { |
| case 's': |
| type = XML_REGEXP_ANYSPACE; |
| break; |
| case 'S': |
| type = XML_REGEXP_NOTSPACE; |
| break; |
| case 'i': |
| type = XML_REGEXP_INITNAME; |
| break; |
| case 'I': |
| type = XML_REGEXP_NOTINITNAME; |
| break; |
| case 'c': |
| type = XML_REGEXP_NAMECHAR; |
| break; |
| case 'C': |
| type = XML_REGEXP_NOTNAMECHAR; |
| break; |
| case 'd': |
| type = XML_REGEXP_DECIMAL; |
| break; |
| case 'D': |
| type = XML_REGEXP_NOTDECIMAL; |
| break; |
| case 'w': |
| type = XML_REGEXP_REALCHAR; |
| break; |
| case 'W': |
| type = XML_REGEXP_NOTREALCHAR; |
| break; |
| } |
| NEXT; |
| if (ctxt->atom == NULL) { |
| ctxt->atom = xmlRegNewAtom(ctxt, type); |
| } else if (ctxt->atom->type == XML_REGEXP_RANGES) { |
| xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg, |
| type, 0, 0, NULL); |
| } |
| } else { |
| ERROR("Wrong escape sequence, misuse of character '\\'"); |
| } |
| } |
| |
| /** |
| * xmlFAParseCharRange: |
| * @ctxt: a regexp parser context |
| * |
| * [17] charRange ::= seRange | XmlCharRef | XmlCharIncDash |
| * [18] seRange ::= charOrEsc '-' charOrEsc |
| * [20] charOrEsc ::= XmlChar | SingleCharEsc |
| * [21] XmlChar ::= [^\#x2D#x5B#x5D] |
| * [22] XmlCharIncDash ::= [^\#x5B#x5D] |
| */ |
| static void |
| xmlFAParseCharRange(xmlRegParserCtxtPtr ctxt) { |
| int cur, len; |
| int start = -1; |
| int end = -1; |
| |
| if (CUR == '\0') { |
| ERROR("Expecting ']'"); |
| return; |
| } |
| |
| cur = CUR; |
| if (cur == '\\') { |
| NEXT; |
| cur = CUR; |
| switch (cur) { |
| case 'n': start = 0xA; break; |
| case 'r': start = 0xD; break; |
| case 't': start = 0x9; break; |
| case '\\': case '|': case '.': case '-': case '^': case '?': |
| case '*': case '+': case '{': case '}': case '(': case ')': |
| case '[': case ']': |
| start = cur; break; |
| default: |
| ERROR("Invalid escape value"); |
| return; |
| } |
| end = start; |
| len = 1; |
| } else if ((cur != 0x5B) && (cur != 0x5D)) { |
| end = start = CUR_SCHAR(ctxt->cur, len); |
| } else { |
| ERROR("Expecting a char range"); |
| return; |
| } |
| /* |
| * Since we are "inside" a range, we can assume ctxt->cur is past |
| * the start of ctxt->string, and PREV should be safe |
| */ |
| if ((start == '-') && (NXT(1) != ']') && (PREV != '[') && (PREV != '^')) { |
| NEXTL(len); |
| return; |
| } |
| NEXTL(len); |
| cur = CUR; |
| if ((cur != '-') || (NXT(1) == ']')) { |
| xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg, |
| XML_REGEXP_CHARVAL, start, end, NULL); |
| return; |
| } |
| NEXT; |
| cur = CUR; |
| if (cur == '\\') { |
| NEXT; |
| cur = CUR; |
| switch (cur) { |
| case 'n': end = 0xA; break; |
| case 'r': end = 0xD; break; |
| case 't': end = 0x9; break; |
| case '\\': case '|': case '.': case '-': case '^': case '?': |
| case '*': case '+': case '{': case '}': case '(': case ')': |
| case '[': case ']': |
| end = cur; break; |
| default: |
| ERROR("Invalid escape value"); |
| return; |
| } |
| len = 1; |
| } else if ((cur != 0x5B) && (cur != 0x5D)) { |
| end = CUR_SCHAR(ctxt->cur, len); |
| } else { |
| ERROR("Expecting the end of a char range"); |
| return; |
| } |
| NEXTL(len); |
| /* TODO check that the values are acceptable character ranges for XML */ |
| if (end < start) { |
| ERROR("End of range is before start of range"); |
| } else { |
| xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg, |
| XML_REGEXP_CHARVAL, start, end, NULL); |
| } |
| return; |
| } |
| |
| /** |
| * xmlFAParsePosCharGroup: |
| * @ctxt: a regexp parser context |
| * |
| * [14] posCharGroup ::= ( charRange | charClassEsc )+ |
| */ |
| static void |
| xmlFAParsePosCharGroup(xmlRegParserCtxtPtr ctxt) { |
| do { |
| if (CUR == '\\') { |
| xmlFAParseCharClassEsc(ctxt); |
| } else { |
| xmlFAParseCharRange(ctxt); |
| } |
| } while ((CUR != ']') && (CUR != '^') && (CUR != '-') && |
| (CUR != 0) && (ctxt->error == 0)); |
| } |
| |
| /** |
| * xmlFAParseCharGroup: |
| * @ctxt: a regexp parser context |
| * |
| * [13] charGroup ::= posCharGroup | negCharGroup | charClassSub |
| * [15] negCharGroup ::= '^' posCharGroup |
| * [16] charClassSub ::= ( posCharGroup | negCharGroup ) '-' charClassExpr |
| * [12] charClassExpr ::= '[' charGroup ']' |
| */ |
| static void |
| xmlFAParseCharGroup(xmlRegParserCtxtPtr ctxt) { |
| int n = ctxt->neg; |
| while ((CUR != ']') && (ctxt->error == 0)) { |
| if (CUR == '^') { |
| int neg = ctxt->neg; |
| |
| NEXT; |
| ctxt->neg = !ctxt->neg; |
| xmlFAParsePosCharGroup(ctxt); |
| ctxt->neg = neg; |
| } else if ((CUR == '-') && (NXT(1) == '[')) { |
| int neg = ctxt->neg; |
| ctxt->neg = 2; |
| NEXT; /* eat the '-' */ |
| NEXT; /* eat the '[' */ |
| xmlFAParseCharGroup(ctxt); |
| if (CUR == ']') { |
| NEXT; |
| } else { |
| ERROR("charClassExpr: ']' expected"); |
| break; |
| } |
| ctxt->neg = neg; |
| break; |
| } else if (CUR != ']') { |
| xmlFAParsePosCharGroup(ctxt); |
| } |
| } |
| ctxt->neg = n; |
| } |
| |
| /** |
| * xmlFAParseCharClass: |
| * @ctxt: a regexp parser context |
| * |
| * [11] charClass ::= charClassEsc | charClassExpr |
| * [12] charClassExpr ::= '[' charGroup ']' |
| */ |
| static void |
| xmlFAParseCharClass(xmlRegParserCtxtPtr ctxt) { |
| if (CUR == '[') { |
| NEXT; |
| ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_RANGES); |
| if (ctxt->atom == NULL) |
| return; |
| xmlFAParseCharGroup(ctxt); |
| if (CUR == ']') { |
| NEXT; |
| } else { |
| ERROR("xmlFAParseCharClass: ']' expected"); |
| } |
| } else { |
| xmlFAParseCharClassEsc(ctxt); |
| } |
| } |
| |
| /** |
| * xmlFAParseQuantExact: |
| * @ctxt: a regexp parser context |
| * |
| * [8] QuantExact ::= [0-9]+ |
| * |
| * Returns 0 if success or -1 in case of error |
| */ |
| static int |
| xmlFAParseQuantExact(xmlRegParserCtxtPtr ctxt) { |
| int ret = 0; |
| int ok = 0; |
| |
| while ((CUR >= '0') && (CUR <= '9')) { |
| ret = ret * 10 + (CUR - '0'); |
| ok = 1; |
| NEXT; |
| } |
| if (ok != 1) { |
| return(-1); |
| } |
| return(ret); |
| } |
| |
| /** |
| * xmlFAParseQuantifier: |
| * @ctxt: a regexp parser context |
| * |
| * [4] quantifier ::= [?*+] | ( '{' quantity '}' ) |
| * [5] quantity ::= quantRange | quantMin | QuantExact |
| * [6] quantRange ::= QuantExact ',' QuantExact |
| * [7] quantMin ::= QuantExact ',' |
| * [8] QuantExact ::= [0-9]+ |
| */ |
| static int |
| xmlFAParseQuantifier(xmlRegParserCtxtPtr ctxt) { |
| int cur; |
| |
| cur = CUR; |
| if ((cur == '?') || (cur == '*') || (cur == '+')) { |
| if (ctxt->atom != NULL) { |
| if (cur == '?') |
| ctxt->atom->quant = XML_REGEXP_QUANT_OPT; |
| else if (cur == '*') |
| ctxt->atom->quant = XML_REGEXP_QUANT_MULT; |
| else if (cur == '+') |
| ctxt->atom->quant = XML_REGEXP_QUANT_PLUS; |
| } |
| NEXT; |
| return(1); |
| } |
| if (cur == '{') { |
| int min = 0, max = 0; |
| |
| NEXT; |
| cur = xmlFAParseQuantExact(ctxt); |
| if (cur >= 0) |
| min = cur; |
| if (CUR == ',') { |
| NEXT; |
| if (CUR == '}') |
| max = INT_MAX; |
| else { |
| cur = xmlFAParseQuantExact(ctxt); |
| if (cur >= 0) |
| max = cur; |
| else { |
| ERROR("Improper quantifier"); |
| } |
| } |
| } |
| if (CUR == '}') { |
| NEXT; |
| } else { |
| ERROR("Unterminated quantifier"); |
| } |
| if (max == 0) |
| max = min; |
| if (ctxt->atom != NULL) { |
| ctxt->atom->quant = XML_REGEXP_QUANT_RANGE; |
| ctxt->atom->min = min; |
| ctxt->atom->max = max; |
| } |
| return(1); |
| } |
| return(0); |
| } |
| |
| /** |
| * xmlFAParseAtom: |
| * @ctxt: a regexp parser context |
| * |
| * [9] atom ::= Char | charClass | ( '(' regExp ')' ) |
| */ |
| static int |
| xmlFAParseAtom(xmlRegParserCtxtPtr ctxt) { |
| int codepoint, len; |
| |
| codepoint = xmlFAIsChar(ctxt); |
| if (codepoint > 0) { |
| ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL); |
| if (ctxt->atom == NULL) |
| return(-1); |
| codepoint = CUR_SCHAR(ctxt->cur, len); |
| ctxt->atom->codepoint = codepoint; |
| NEXTL(len); |
| return(1); |
| } else if (CUR == '|') { |
| return(0); |
| } else if (CUR == 0) { |
| return(0); |
| } else if (CUR == ')') { |
| return(0); |
| } else if (CUR == '(') { |
| xmlRegStatePtr start, oldend, start0; |
| |
| NEXT; |
| /* |
| * this extra Epsilon transition is needed if we count with 0 allowed |
| * unfortunately this can't be known at that point |
| */ |
| xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL); |
| start0 = ctxt->state; |
| xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL); |
| start = ctxt->state; |
| oldend = ctxt->end; |
| ctxt->end = NULL; |
| ctxt->atom = NULL; |
| xmlFAParseRegExp(ctxt, 0); |
| if (CUR == ')') { |
| NEXT; |
| } else { |
| ERROR("xmlFAParseAtom: expecting ')'"); |
| } |
| ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_SUBREG); |
| if (ctxt->atom == NULL) |
| return(-1); |
| ctxt->atom->start = start; |
| ctxt->atom->start0 = start0; |
| ctxt->atom->stop = ctxt->state; |
| ctxt->end = oldend; |
| return(1); |
| } else if ((CUR == '[') || (CUR == '\\') || (CUR == '.')) { |
| xmlFAParseCharClass(ctxt); |
| return(1); |
| } |
| return(0); |
| } |
| |
| /** |
| * xmlFAParsePiece: |
| * @ctxt: a regexp parser context |
| * |
| * [3] piece ::= atom quantifier? |
| */ |
| static int |
| xmlFAParsePiece(xmlRegParserCtxtPtr ctxt) { |
| int ret; |
| |
| ctxt->atom = NULL; |
| ret = xmlFAParseAtom(ctxt); |
| if (ret == 0) |
| return(0); |
| if (ctxt->atom == NULL) { |
| ERROR("internal: no atom generated"); |
| } |
| xmlFAParseQuantifier(ctxt); |
| return(1); |
| } |
| |
| /** |
| * xmlFAParseBranch: |
| * @ctxt: a regexp parser context |
| * @to: optional target to the end of the branch |
| * |
| * @to is used to optimize by removing duplicate path in automata |
| * in expressions like (a|b)(c|d) |
| * |
| * [2] branch ::= piece* |
| */ |
| static int |
| xmlFAParseBranch(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr to) { |
| xmlRegStatePtr previous; |
| int ret; |
| |
| previous = ctxt->state; |
| ret = xmlFAParsePiece(ctxt); |
| if (ret != 0) { |
| if (xmlFAGenerateTransitions(ctxt, previous, |
| (CUR=='|' || CUR==')') ? to : NULL, ctxt->atom) < 0) |
| return(-1); |
| previous = ctxt->state; |
| ctxt->atom = NULL; |
| } |
| while ((ret != 0) && (ctxt->error == 0)) { |
| ret = xmlFAParsePiece(ctxt); |
| if (ret != 0) { |
| if (xmlFAGenerateTransitions(ctxt, previous, |
| (CUR=='|' || CUR==')') ? to : NULL, ctxt->atom) < 0) |
| return(-1); |
| previous = ctxt->state; |
| ctxt->atom = NULL; |
| } |
| } |
| return(0); |
| } |
| |
| /** |
| * xmlFAParseRegExp: |
| * @ctxt: a regexp parser context |
| * @top: is this the top-level expression ? |
| * |
| * [1] regExp ::= branch ( '|' branch )* |
| */ |
| static void |
| xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top) { |
| xmlRegStatePtr start, end; |
| |
| /* if not top start should have been generated by an epsilon trans */ |
| start = ctxt->state; |
| ctxt->end = NULL; |
| xmlFAParseBranch(ctxt, NULL); |
| if (top) { |
| #ifdef DEBUG_REGEXP_GRAPH |
| printf("State %d is final\n", ctxt->state->no); |
| #endif |
| ctxt->state->type = XML_REGEXP_FINAL_STATE; |
| } |
| if (CUR != '|') { |
| ctxt->end = ctxt->state; |
| return; |
| } |
| end = ctxt->state; |
| while ((CUR == '|') && (ctxt->error == 0)) { |
| NEXT; |
| ctxt->state = start; |
| ctxt->end = NULL; |
| xmlFAParseBranch(ctxt, end); |
| } |
| if (!top) { |
| ctxt->state = end; |
| ctxt->end = end; |
| } |
| } |
| |
| /************************************************************************ |
| * * |
| * The basic API * |
| * * |
| ************************************************************************/ |
| |
| /** |
| * xmlRegexpPrint: |
| * @output: the file for the output debug |
| * @regexp: the compiled regexp |
| * |
| * Print the content of the compiled regular expression |
| */ |
| void |
| xmlRegexpPrint(FILE *output, xmlRegexpPtr regexp) { |
| int i; |
| |
| if (output == NULL) |
| return; |
| fprintf(output, " regexp: "); |
| if (regexp == NULL) { |
| fprintf(output, "NULL\n"); |
| return; |
| } |
| fprintf(output, "'%s' ", regexp->string); |
| fprintf(output, "\n"); |
| fprintf(output, "%d atoms:\n", regexp->nbAtoms); |
| for (i = 0;i < regexp->nbAtoms; i++) { |
| fprintf(output, " %02d ", i); |
| xmlRegPrintAtom(output, regexp->atoms[i]); |
| } |
| fprintf(output, "%d states:", regexp->nbStates); |
| fprintf(output, "\n"); |
| for (i = 0;i < regexp->nbStates; i++) { |
| xmlRegPrintState(output, regexp->states[i]); |
| } |
| fprintf(output, "%d counters:\n", regexp->nbCounters); |
| for (i = 0;i < regexp->nbCounters; i++) { |
| fprintf(output, " %d: min %d max %d\n", i, regexp->counters[i].min, |
| regexp->counters[i].max); |
| } |
| } |
| |
| /** |
| * xmlRegexpCompile: |
| * @regexp: a regular expression string |
| * |
| * Parses a regular expression conforming to XML Schemas Part 2 Datatype |
| * Appendix F and builds an automata suitable for testing strings against |
| * that regular expression |
| * |
| * Returns the compiled expression or NULL in case of error |
| */ |
| xmlRegexpPtr |
| xmlRegexpCompile(const xmlChar *regexp) { |
| xmlRegexpPtr ret; |
| xmlRegParserCtxtPtr ctxt; |
| |
| ctxt = xmlRegNewParserCtxt(regexp); |
| if (ctxt == NULL) |
| return(NULL); |
| |
| /* initialize the parser */ |
| ctxt->end = NULL; |
| ctxt->start = ctxt->state = xmlRegNewState(ctxt); |
| xmlRegStatePush(ctxt, ctxt->start); |
| |
| /* parse the expression building an automata */ |
| xmlFAParseRegExp(ctxt, 1); |
| if (CUR != 0) { |
| ERROR("xmlFAParseRegExp: extra characters"); |
| } |
| if (ctxt->error != 0) { |
| xmlRegFreeParserCtxt(ctxt); |
| return(NULL); |
| } |
| ctxt->end = ctxt->state; |
| ctxt->start->type = XML_REGEXP_START_STATE; |
| ctxt->end->type = XML_REGEXP_FINAL_STATE; |
| |
| /* remove the Epsilon except for counted transitions */ |
| xmlFAEliminateEpsilonTransitions(ctxt); |
| |
| |
| if (ctxt->error != 0) { |
| xmlRegFreeParserCtxt(ctxt); |
| return(NULL); |
| } |
| ret = xmlRegEpxFromParse(ctxt); |
| xmlRegFreeParserCtxt(ctxt); |
| return(ret); |
| } |
| |
| /** |
| * xmlRegexpExec: |
| * @comp: the compiled regular expression |
| * @content: the value to check against the regular expression |
| * |
| * Check if the regular expression generates the value |
| * |
| * Returns 1 if it matches, 0 if not and a negative value in case of error |
| */ |
| int |
| xmlRegexpExec(xmlRegexpPtr comp, const xmlChar *content) { |
| if ((comp == NULL) || (content == NULL)) |
| return(-1); |
| return(xmlFARegExec(comp, content)); |
| } |
| |
| /** |
| * xmlRegexpIsDeterminist: |
| * @comp: the compiled regular expression |
| * |
| * Check if the regular expression is determinist |
| * |
| * Returns 1 if it yes, 0 if not and a negative value in case of error |
| */ |
| int |
| xmlRegexpIsDeterminist(xmlRegexpPtr comp) { |
| xmlAutomataPtr am; |
| int ret; |
| |
| if (comp == NULL) |
| return(-1); |
| if (comp->determinist != -1) |
| return(comp->determinist); |
| |
| am = xmlNewAutomata(); |
| if (am->states != NULL) { |
| int i; |
| |
| for (i = 0;i < am->nbStates;i++) |
| xmlRegFreeState(am->states[i]); |
| xmlFree(am->states); |
| } |
| am->nbAtoms = comp->nbAtoms; |
| am->atoms = comp->atoms; |
| am->nbStates = comp->nbStates; |
| am->states = comp->states; |
| am->determinist = -1; |
| am->flags = comp->flags; |
| ret = xmlFAComputesDeterminism(am); |
| am->atoms = NULL; |
| am->states = NULL; |
| xmlFreeAutomata(am); |
| comp->determinist = ret; |
| return(ret); |
| } |
| |
| /** |
| * xmlRegFreeRegexp: |
| * @regexp: the regexp |
| * |
| * Free a regexp |
| */ |
| void |
| xmlRegFreeRegexp(xmlRegexpPtr regexp) { |
| int i; |
| if (regexp == NULL) |
| return; |
| |
| if (regexp->string != NULL) |
| xmlFree(regexp->string); |
| if (regexp->states != NULL) { |
| for (i = 0;i < regexp->nbStates;i++) |
| xmlRegFreeState(regexp->states[i]); |
| xmlFree(regexp->states); |
| } |
| if (regexp->atoms != NULL) { |
| for (i = 0;i < regexp->nbAtoms;i++) |
| xmlRegFreeAtom(regexp->atoms[i]); |
| xmlFree(regexp->atoms); |
| } |
| if (regexp->counters != NULL) |
| xmlFree(regexp->counters); |
| if (regexp->compact != NULL) |
| xmlFree(regexp->compact); |
| if (regexp->transdata != NULL) |
| xmlFree(regexp->transdata); |
| if (regexp->stringMap != NULL) { |
| for (i = 0; i < regexp->nbstrings;i++) |
| xmlFree(regexp->stringMap[i]); |
| xmlFree(regexp->stringMap); |
| } |
| |
| xmlFree(regexp); |
| } |
| |
| #ifdef LIBXML_AUTOMATA_ENABLED |
| /************************************************************************ |
| * * |
| * The Automata interface * |
| * * |
| ************************************************************************/ |
| |
| /** |
| * xmlNewAutomata: |
| * |
| * Create a new automata |
| * |
| * Returns the new object or NULL in case of failure |
| */ |
| xmlAutomataPtr |
| xmlNewAutomata(void) { |
| xmlAutomataPtr ctxt; |
| |
| ctxt = xmlRegNewParserCtxt(NULL); |
| if (ctxt == NULL) |
| return(NULL); |
| |
| /* initialize the parser */ |
| ctxt->end = NULL; |
| ctxt->start = ctxt->state = xmlRegNewState(ctxt); |
| if (ctxt->start == NULL) { |
| xmlFreeAutomata(ctxt); |
| return(NULL); |
| } |
| ctxt->start->type = XML_REGEXP_START_STATE; |
| if (xmlRegStatePush(ctxt, ctxt->start) < 0) { |
| xmlRegFreeState(ctxt->start); |
| xmlFreeAutomata(ctxt); |
| return(NULL); |
| } |
| ctxt->flags = 0; |
| |
| return(ctxt); |
| } |
| |
| /** |
| * xmlFreeAutomata: |
| * @am: an automata |
| * |
| * Free an automata |
| */ |
| void |
| xmlFreeAutomata(xmlAutomataPtr am) { |
| if (am == NULL) |
| return; |
| xmlRegFreeParserCtxt(am); |
| } |
| |
| /** |
| * xmlAutomataSetFlags: |
| * @am: an automata |
| * @flags: a set of internal flags |
| * |
| * Set some flags on the automata |
| */ |
| void |
| xmlAutomataSetFlags(xmlAutomataPtr am, int flags) { |
| if (am == NULL) |
| return; |
| am->flags |= flags; |
| } |
| |
| /** |
| * xmlAutomataGetInitState: |
| * @am: an automata |
| * |
| * Initial state lookup |
| * |
| * Returns the initial state of the automata |
| */ |
| xmlAutomataStatePtr |
| xmlAutomataGetInitState(xmlAutomataPtr am) { |
| if (am == NULL) |
| return(NULL); |
| return(am->start); |
| } |
| |
| /** |
| * xmlAutomataSetFinalState: |
| * @am: an automata |
| * @state: a state in this automata |
| * |
| * Makes that state a final state |
| * |
| * Returns 0 or -1 in case of error |
| */ |
| int |
| xmlAutomataSetFinalState(xmlAutomataPtr am, xmlAutomataStatePtr state) { |
| if ((am == NULL) || (state == NULL)) |
| return(-1); |
| state->type = XML_REGEXP_FINAL_STATE; |
| return(0); |
| } |
| |
| /** |
| * xmlAutomataNewTransition: |
| * @am: an automata |
| * @from: the starting point of the transition |
| * @to: the target point of the transition or NULL |
| * @token: the input string associated to that transition |
| * @data: data passed to the callback function if the transition is activated |
| * |
| * If @to is NULL, this creates first a new target state in the automata |
| * and then adds a transition from the @from state to the target state |
| * activated by the value of @token |
| * |
| * Returns the target state or NULL in case of error |
| */ |
| xmlAutomataStatePtr |
| xmlAutomataNewTransition(xmlAutomataPtr am, xmlAutomataStatePtr from, |
| xmlAutomataStatePtr to, const xmlChar *token, |
| void *data) { |
| xmlRegAtomPtr atom; |
| |
| if ((am == NULL) || (from == NULL) || (token == NULL)) |
| return(NULL); |
| atom = xmlRegNewAtom(am, XML_REGEXP_STRING); |
| if (atom == NULL) |
| return(NULL); |
| atom->data = data; |
| if (atom == NULL) |
| return(NULL); |
| atom->valuep = xmlStrdup(token); |
| |
| if (xmlFAGenerateTransitions(am, from, to, atom) < 0) { |
| xmlRegFreeAtom(atom); |
| return(NULL); |
| } |
| if (to == NULL) |
| return(am->state); |
| return(to); |
| } |
| |
| /** |
| * xmlAutomataNewTransition2: |
| * @am: an automata |
| * @from: the starting point of the transition |
| * @to: the target point of the transition or NULL |
| * @token: the first input string associated to that transition |
| * @token2: the second input string associated to that transition |
| * @data: data passed to the callback function if the transition is activated |
| * |
| * If @to is NULL, this creates first a new target state in the automata |
| * and then adds a transition from the @from state to the target state |
| * activated by the value of @token |
| * |
| * Returns the target state or NULL in case of error |
| */ |
| xmlAutomataStatePtr |
| xmlAutomataNewTransition2(xmlAutomataPtr am, xmlAutomataStatePtr from, |
| xmlAutomataStatePtr to, const xmlChar *token, |
| const xmlChar *token2, void *data) { |
| xmlRegAtomPtr atom; |
| |
| if ((am == NULL) || (from == NULL) || (token == NULL)) |
| return(NULL); |
| atom = xmlRegNewAtom(am, XML_REGEXP_STRING); |
| if (atom == NULL) |
| return(NULL); |
| atom->data = data; |
| if ((token2 == NULL) || (*token2 == 0)) { |
| atom->valuep = xmlStrdup(token); |
| } else { |
| int lenn, lenp; |
| xmlChar *str; |
| |
| lenn = strlen((char *) token2); |
| lenp = strlen((char *) token); |
| |
| str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2); |
| if (str == NULL) { |
| xmlRegFreeAtom(atom); |
| return(NULL); |
| } |
| memcpy(&str[0], token, lenp); |
| str[lenp] = '|'; |
| memcpy(&str[lenp + 1], token2, lenn); |
| str[lenn + lenp + 1] = 0; |
| |
| atom->valuep = str; |
| } |
| |
| if (xmlFAGenerateTransitions(am, from, to, atom) < 0) { |
| xmlRegFreeAtom(atom); |
| return(NULL); |
| } |
| if (to == NULL) |
| return(am->state); |
| return(to); |
| } |
| |
| /** |
| * xmlAutomataNewNegTrans: |
| * @am: an automata |
| * @from: the starting point of the transition |
| * @to: the target point of the transition or NULL |
| * @token: the first input string associated to that transition |
| * @token2: the second input string associated to that transition |
| * @data: data passed to the callback function if the transition is activated |
| * |
| * If @to is NULL, this creates first a new target state in the automata |
| * and then adds a transition from the @from state to the target state |
| * activated by any value except (@token,@token2) |
| * Note that if @token2 is not NULL, then (X, NULL) won't match to follow |
| # the semantic of XSD ##other |
| * |
| * Returns the target state or NULL in case of error |
| */ |
| xmlAutomataStatePtr |
| xmlAutomataNewNegTrans(xmlAutomataPtr am, xmlAutomataStatePtr from, |
| xmlAutomataStatePtr to, const xmlChar *token, |
| const xmlChar *token2, void *data) { |
| xmlRegAtomPtr atom; |
| xmlChar err_msg[200]; |
| |
| if ((am == NULL) || (from == NULL) || (token == NULL)) |
| return(NULL); |
| atom = xmlRegNewAtom(am, XML_REGEXP_STRING); |
| if (atom == NULL) |
| return(NULL); |
| atom->data = data; |
| atom->neg = 1; |
| if ((token2 == NULL) || (*token2 == 0)) { |
| atom->valuep = xmlStrdup(token); |
| } else { |
| int lenn, lenp; |
| xmlChar *str; |
| |
| lenn = strlen((char *) token2); |
| lenp = strlen((char *) token); |
| |
| str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2); |
| if (str == NULL) { |
| xmlRegFreeAtom(atom); |
| return(NULL); |
| } |
| memcpy(&str[0], token, lenp); |
| str[lenp] = '|'; |
| memcpy(&str[lenp + 1], token2, lenn); |
| str[lenn + lenp + 1] = 0; |
| |
| atom->valuep = str; |
| } |
| snprintf((char *) err_msg, 199, "not %s", (const char *) atom->valuep); |
| err_msg[199] = 0; |
| atom->valuep2 = xmlStrdup(err_msg); |
| |
| if (xmlFAGenerateTransitions(am, from, to, atom) < 0) { |
| xmlRegFreeAtom(atom); |
| return(NULL); |
| } |
| am->negs++; |
| if (to == NULL) |
| return(am->state); |
| return(to); |
| } |
| |
| /** |
| * xmlAutomataNewCountTrans2: |
| * @am: an automata |
| * @from: the starting point of the transition |
| * @to: the target point of the transition or NULL |
| * @token: the input string associated to that transition |
| * @token2: the second input string associated to that transition |
| * @min: the minimum successive occurences of token |
| * @max: the maximum successive occurences of token |
| * @data: data associated to the transition |
| * |
| * If @to is NULL, this creates first a new target state in the automata |
| * and then adds a transition from the @from state to the target state |
| * activated by a succession of input of value @token and @token2 and |
| * whose number is between @min and @max |
| * |
| * Returns the target state or NULL in case of error |
| */ |
| xmlAutomataStatePtr |
| xmlAutomataNewCountTrans2(xmlAutomataPtr am, xmlAutomataStatePtr from, |
| xmlAutomataStatePtr to, const xmlChar *token, |
| const xmlChar *token2, |
| int min, int max, void *data) { |
| xmlRegAtomPtr atom; |
| int counter; |
| |
| if ((am == NULL) || (from == NULL) || (token == NULL)) |
| return(NULL); |
| if (min < 0) |
| return(NULL); |
| if ((max < min) || (max < 1)) |
| return(NULL); |
| atom = xmlRegNewAtom(am, XML_REGEXP_STRING); |
| if (atom == NULL) |
| return(NULL); |
| if ((token2 == NULL) || (*token2 == 0)) { |
| atom->valuep = xmlStrdup(token); |
| } else { |
| int lenn, lenp; |
| xmlChar *str; |
| |
| lenn = strlen((char *) token2); |
| lenp = strlen((char *) token); |
| |
| str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2); |
| if (str == NULL) { |
| xmlRegFreeAtom(atom); |
| return(NULL); |
| } |
| memcpy(&str[0], token, lenp); |
| str[lenp] = '|'; |
| memcpy(&str[lenp + 1], token2, lenn); |
| str[lenn + lenp + 1] = 0; |
| |
| atom->valuep = str; |
| } |
| atom->data = data; |
| if (min == 0) |
| atom->min = 1; |
| else |
| atom->min = min; |
| atom->max = max; |
| |
| /* |
| * associate a counter to the transition. |
| */ |
| counter = xmlRegGetCounter(am); |
| am->counters[counter].min = min; |
| am->counters[counter].max = max; |
| |
| /* xmlFAGenerateTransitions(am, from, to, atom); */ |
| if (to == NULL) { |
| to = xmlRegNewState(am); |
| xmlRegStatePush(am, to); |
| } |
| xmlRegStateAddTrans(am, from, atom, to, counter, -1); |
| xmlRegAtomPush(am, atom); |
| am->state = to; |
| |
| if (to == NULL) |
| to = am->state; |
| if (to == NULL) |
| return(NULL); |
| if (min == 0) |
| xmlFAGenerateEpsilonTransition(am, from, to); |
| return(to); |
| } |
| |
| /** |
| * xmlAutomataNewCountTrans: |
| * @am: an automata |
| * @from: the starting point of the transition |
| * @to: the target point of the transition or NULL |
| * @token: the input string associated to that transition |
| * @min: the minimum successive occurences of token |
| * @max: the maximum successive occurences of token |
| * @data: data associated to the transition |
| * |
| * If @to is NULL, this creates first a new target state in the automata |
| * and then adds a transition from the @from state to the target state |
| * activated by a succession of input of value @token and whose number |
| * is between @min and @max |
| * |
| * Returns the target state or NULL in case of error |
| */ |
| xmlAutomataStatePtr |
| xmlAutomataNewCountTrans(xmlAutomataPtr am, xmlAutomataStatePtr from, |
| xmlAutomataStatePtr to, const xmlChar *token, |
| int min, int max, void *data) { |
| xmlRegAtomPtr atom; |
| int counter; |
| |
| if ((am == NULL) || (from == NULL) || (token == NULL)) |
| return(NULL); |
| if (min < 0) |
| return(NULL); |
| if ((max < min) || (max < 1)) |
| return(NULL); |
| atom = xmlRegNewAtom(am, XML_REGEXP_STRING); |
| if (atom == NULL) |
| return(NULL); |
| atom->valuep = xmlStrdup(token); |
| atom->data = data; |
| if (min == 0) |
| atom->min = 1; |
| else |
| atom->min = min; |
| atom->max = max; |
| |
| /* |
| * associate a counter to the transition. |
| */ |
| counter = xmlRegGetCounter(am); |
| am->counters[counter].min = min; |
| am->counters[counter].max = max; |
| |
| /* xmlFAGenerateTransitions(am, from, to, atom); */ |
| if (to == NULL) { |
| to = xmlRegNewState(am); |
| xmlRegStatePush(am, to); |
| } |
| xmlRegStateAddTrans(am, from, atom, to, counter, -1); |
| xmlRegAtomPush(am, atom); |
| am->state = to; |
| |
| if (to == NULL) |
| to = am->state; |
| if (to == NULL) |
| return(NULL); |
| if (min == 0) |
| xmlFAGenerateEpsilonTransition(am, from, to); |
| return(to); |
| } |
| |
| /** |
| * xmlAutomataNewOnceTrans2: |
| * @am: an automata |
| * @from: the starting point of the transition |
| * @to: the target point of the transition or NULL |
| * @token: the input string associated to that transition |
| * @token2: the second input string associated to that transition |
| * @min: the minimum successive occurences of token |
| * @max: the maximum successive occurences of token |
| * @data: data associated to the transition |
| * |
| * If @to is NULL, this creates first a new target state in the automata |
| * and then adds a transition from the @from state to the target state |
| * activated by a succession of input of value @token and @token2 and whose |
| * number is between @min and @max, moreover that transition can only be |
| * crossed once. |
| * |
| * Returns the target state or NULL in case of error |
| */ |
| xmlAutomataStatePtr |
| xmlAutomataNewOnceTrans2(xmlAutomataPtr am, xmlAutomataStatePtr from, |
| xmlAutomataStatePtr to, const xmlChar *token, |
| const xmlChar *token2, |
| int min, int max, void *data) { |
| xmlRegAtomPtr atom; |
| int counter; |
| |
| if ((am == NULL) || (from == NULL) || (token == NULL)) |
| return(NULL); |
| if (min < 1) |
| return(NULL); |
| if ((max < min) || (max < 1)) |
| return(NULL); |
| atom = xmlRegNewAtom(am, XML_REGEXP_STRING); |
| if (atom == NULL) |
| return(NULL); |
| if ((token2 == NULL) || (*token2 == 0)) { |
| atom->valuep = xmlStrdup(token); |
| } else { |
| int lenn, lenp; |
| xmlChar *str; |
| |
| lenn = strlen((char *) token2); |
| lenp = strlen((char *) token); |
| |
| str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2); |
| if (str == NULL) { |
| xmlRegFreeAtom(atom); |
| return(NULL); |
| } |
| memcpy(&str[0], token, lenp); |
| str[lenp] = '|'; |
| memcpy(&str[lenp + 1], token2, lenn); |
| str[lenn + lenp + 1] = 0; |
| |
| atom->valuep = str; |
| } |
| atom->data = data; |
| atom->quant = XML_REGEXP_QUANT_ONCEONLY; |
| atom->min = min; |
| atom->max = max; |
| /* |
| * associate a counter to the transition. |
| */ |
| counter = xmlRegGetCounter(am); |
| am->counters[counter].min = 1; |
| am->counters[counter].max = 1; |
| |
| /* xmlFAGenerateTransitions(am, from, to, atom); */ |
| if (to == NULL) { |
| to = xmlRegNewState(am); |
| xmlRegStatePush(am, to); |
| } |
| xmlRegStateAddTrans(am, from, atom, to, counter, -1); |
| xmlRegAtomPush(am, atom); |
| am->state = to; |
| return(to); |
| } |
| |
| |
| |
| /** |
| * xmlAutomataNewOnceTrans: |
| * @am: an automata |
| * @from: the starting point of the transition |
| * @to: the target point of the transition or NULL |
| * @token: the input string associated to that transition |
| * @min: the minimum successive occurences of token |
| * @max: the maximum successive occurences of token |
| * @data: data associated to the transition |
| * |
| * If @to is NULL, this creates first a new target state in the automata |
| * and then adds a transition from the @from state to the target state |
| * activated by a succession of input of value @token and whose number |
| * is between @min and @max, moreover that transition can only be crossed |
| * once. |
| * |
| * Returns the target state or NULL in case of error |
| */ |
| xmlAutomataStatePtr |
| xmlAutomataNewOnceTrans(xmlAutomataPtr am, xmlAutomataStatePtr from, |
| xmlAutomataStatePtr to, const xmlChar *token, |
| int min, int max, void *data) { |
| xmlRegAtomPtr atom; |
| int counter; |
| |
| if ((am == NULL) || (from == NULL) || (token == NULL)) |
| return(NULL); |
| if (min < 1) |
| return(NULL); |
| if ((max < min) || (max < 1)) |
| return(NULL); |
| atom = xmlRegNewAtom(am, XML_REGEXP_STRING); |
| if (atom == NULL) |
| return(NULL); |
| atom->valuep = xmlStrdup(token); |
| atom->data = data; |
| atom->quant = XML_REGEXP_QUANT_ONCEONLY; |
| atom->min = min; |
| atom->max = max; |
| /* |
| * associate a counter to the transition. |
| */ |
| counter = xmlRegGetCounter(am); |
| am->counters[counter].min = 1; |
| am->counters[counter].max = 1; |
| |
| /* xmlFAGenerateTransitions(am, from, to, atom); */ |
| if (to == NULL) { |
| to = xmlRegNewState(am); |
| xmlRegStatePush(am, to); |
| } |
| xmlRegStateAddTrans(am, from, atom, to, counter, -1); |
| xmlRegAtomPush(am, atom); |
| am->state = to; |
| return(to); |
| } |
| |
| /** |
| * xmlAutomataNewState: |
| * @am: an automata |
| * |
| * Create a new disconnected state in the automata |
| * |
| * Returns the new state or NULL in case of error |
| */ |
| xmlAutomataStatePtr |
| xmlAutomataNewState(xmlAutomataPtr am) { |
| xmlAutomataStatePtr to; |
| |
| if (am == NULL) |
| return(NULL); |
| to = xmlRegNewState(am); |
| xmlRegStatePush(am, to); |
| return(to); |
| } |
| |
| /** |
| * xmlAutomataNewEpsilon: |
| * @am: an automata |
| * @from: the starting point of the transition |
| * @to: the target point of the transition or NULL |
| * |
| * If @to is NULL, this creates first a new target state in the automata |
| * and then adds an epsilon transition from the @from state to the |
| * target state |
| * |
| * Returns the target state or NULL in case of error |
| */ |
| xmlAutomataStatePtr |
| xmlAutomataNewEpsilon(xmlAutomataPtr am, xmlAutomataStatePtr from, |
| xmlAutomataStatePtr to) { |
| if ((am == NULL) || (from == NULL)) |
| return(NULL); |
| xmlFAGenerateEpsilonTransition(am, from, to); |
| if (to == NULL) |
| return(am->state); |
| return(to); |
| } |
| |
| /** |
| * xmlAutomataNewAllTrans: |
| * @am: an automata |
| * @from: the starting point of the transition |
| * @to: the target point of the transition or NULL |
| * @lax: allow to transition if not all all transitions have been activated |
| * |
| * If @to is NULL, this creates first a new target state in the automata |
| * and then adds a an ALL transition from the @from state to the |
| * target state. That transition is an epsilon transition allowed only when |
| * all transitions from the @from node have been activated. |
| * |
| * Returns the target state or NULL in case of error |
| */ |
| xmlAutomataStatePtr |
| xmlAutomataNewAllTrans(xmlAutomataPtr am, xmlAutomataStatePtr from, |
| xmlAutomataStatePtr to, int lax) { |
| if ((am == NULL) || (from == NULL)) |
| return(NULL); |
| xmlFAGenerateAllTransition(am, from, to, lax); |
| if (to == NULL) |
| return(am->state); |
| return(to); |
| } |
| |
| /** |
| * xmlAutomataNewCounter: |
| * @am: an automata |
| * @min: the minimal value on the counter |
| * @max: the maximal value on the counter |
| * |
| * Create a new counter |
| * |
| * Returns the counter number or -1 in case of error |
| */ |
| int |
| xmlAutomataNewCounter(xmlAutomataPtr am, int min, int max) { |
| int ret; |
| |
| if (am == NULL) |
| return(-1); |
| |
| ret = xmlRegGetCounter(am); |
| if (ret < 0) |
| return(-1); |
| am->counters[ret].min = min; |
| am->counters[ret].max = max; |
| return(ret); |
| } |
| |
| /** |
| * xmlAutomataNewCountedTrans: |
| * @am: an automata |
| * @from: the starting point of the transition |
| * @to: the target point of the transition or NULL |
| * @counter: the counter associated to that transition |
| * |
| * If @to is NULL, this creates first a new target state in the automata |
| * and then adds an epsilon transition from the @from state to the target state |
| * which will increment the counter provided |
| * |
| * Returns the target state or NULL in case of error |
| */ |
| xmlAutomataStatePtr |
| xmlAutomataNewCountedTrans(xmlAutomataPtr am, xmlAutomataStatePtr from, |
| xmlAutomataStatePtr to, int counter) { |
| if ((am == NULL) || (from == NULL) || (counter < 0)) |
| return(NULL); |
| xmlFAGenerateCountedEpsilonTransition(am, from, to, counter); |
| if (to == NULL) |
| return(am->state); |
| return(to); |
| } |
| |
| /** |
| * xmlAutomataNewCounterTrans: |
| * @am: an automata |
| * @from: the starting point of the transition |
| * @to: the target point of the transition or NULL |
| * @counter: the counter associated to that transition |
| * |
| * If @to is NULL, this creates first a new target state in the automata |
| * and then adds an epsilon transition from the @from state to the target state |
| * which will be allowed only if the counter is within the right range. |
| * |
| * Returns the target state or NULL in case of error |
| */ |
| xmlAutomataStatePtr |
| xmlAutomataNewCounterTrans(xmlAutomataPtr am, xmlAutomataStatePtr from, |
| xmlAutomataStatePtr to, int counter) { |
| if ((am == NULL) || (from == NULL) || (counter < 0)) |
| return(NULL); |
| xmlFAGenerateCountedTransition(am, from, to, counter); |
| if (to == NULL) |
| return(am->state); |
| return(to); |
| } |
| |
| /** |
| * xmlAutomataCompile: |
| * @am: an automata |
| * |
| * Compile the automata into a Reg Exp ready for being executed. |
| * The automata should be free after this point. |
| * |
| * Returns the compiled regexp or NULL in case of error |
| */ |
| xmlRegexpPtr |
| xmlAutomataCompile(xmlAutomataPtr am) { |
| xmlRegexpPtr ret; |
| |
| if ((am == NULL) || (am->error != 0)) return(NULL); |
| xmlFAEliminateEpsilonTransitions(am); |
| /* xmlFAComputesDeterminism(am); */ |
| ret = xmlRegEpxFromParse(am); |
| |
| return(ret); |
| } |
| |
| /** |
| * xmlAutomataIsDeterminist: |
| * @am: an automata |
| * |
| * Checks if an automata is determinist. |
| * |
| * Returns 1 if true, 0 if not, and -1 in case of error |
| */ |
| int |
| xmlAutomataIsDeterminist(xmlAutomataPtr am) { |
| int ret; |
| |
| if (am == NULL) |
| return(-1); |
| |
| ret = xmlFAComputesDeterminism(am); |
| return(ret); |
| } |
| #endif /* LIBXML_AUTOMATA_ENABLED */ |
| |
| #ifdef LIBXML_EXPR_ENABLED |
| /************************************************************************ |
| * * |
| * Formal Expression handling code * |
| * * |
| ************************************************************************/ |
| /************************************************************************ |
| * * |
| * Expression handling context * |
| * * |
| ************************************************************************/ |
| |
| struct _xmlExpCtxt { |
| xmlDictPtr dict; |
| xmlExpNodePtr *table; |
| int size; |
| int nbElems; |
| int nb_nodes; |
| int maxNodes; |
| const char *expr; |
| const char *cur; |
| int nb_cons; |
| int tabSize; |
| }; |
| |
| /** |
| * xmlExpNewCtxt: |
| * @maxNodes: the maximum number of nodes |
| * @dict: optional dictionnary to use internally |
| * |
| * Creates a new context for manipulating expressions |
| * |
| * Returns the context or NULL in case of error |
| */ |
| xmlExpCtxtPtr |
| xmlExpNewCtxt(int maxNodes, xmlDictPtr dict) { |
| xmlExpCtxtPtr ret; |
| int size = 256; |
| |
| if (maxNodes <= 4096) |
| maxNodes = 4096; |
| |
| ret = (xmlExpCtxtPtr) xmlMalloc(sizeof(xmlExpCtxt)); |
| if (ret == NULL) |
| return(NULL); |
| memset(ret, 0, sizeof(xmlExpCtxt)); |
| ret->size = size; |
| ret->nbElems = 0; |
| ret->maxNodes = maxNodes; |
| ret->table = xmlMalloc(size * sizeof(xmlExpNodePtr)); |
| if (ret->table == NULL) { |
| xmlFree(ret); |
| return(NULL); |
| } |
| memset(ret->table, 0, size * sizeof(xmlExpNodePtr)); |
| if (dict == NULL) { |
| ret->dict = xmlDictCreate(); |
| if (ret->dict == NULL) { |
| xmlFree(ret->table); |
| xmlFree(ret); |
| return(NULL); |
| } |
| } else { |
| ret->dict = dict; |
| xmlDictReference(ret->dict); |
| } |
| return(ret); |
| } |
| |
| /** |
| * xmlExpFreeCtxt: |
| * @ctxt: an expression context |
| * |
| * Free an expression context |
| */ |
| void |
| xmlExpFreeCtxt(xmlExpCtxtPtr ctxt) { |
| if (ctxt == NULL) |
| return; |
| xmlDictFree(ctxt->dict); |
| if (ctxt->table != NULL) |
| xmlFree(ctxt->table); |
| xmlFree(ctxt); |
| } |
| |
| /************************************************************************ |
| * * |
| * Structure associated to an expression node * |
| * * |
| ************************************************************************/ |
| #define MAX_NODES 10000 |
| |
| /* #define DEBUG_DERIV */ |
| |
| /* |
| * TODO: |
| * - Wildcards |
| * - public API for creation |
| * |
| * Started |
| * - regression testing |
| * |
| * Done |
| * - split into module and test tool |
| * - memleaks |
| */ |
| |
| typedef enum { |
| XML_EXP_NILABLE = (1 << 0) |
| } xmlExpNodeInfo; |
| |
| #define IS_NILLABLE(node) ((node)->info & XML_EXP_NILABLE) |
| |
| struct _xmlExpNode { |
| unsigned char type;/* xmlExpNodeType */ |
| unsigned char info;/* OR of xmlExpNodeInfo */ |
| unsigned short key; /* the hash key */ |
| unsigned int ref; /* The number of references */ |
| int c_max; /* the maximum length it can consume */ |
| xmlExpNodePtr exp_left; |
| xmlExpNodePtr next;/* the next node in the hash table or free list */ |
| union { |
| struct { |
| int f_min; |
| int f_max; |
| } count; |
| struct { |
| xmlExpNodePtr f_right; |
| } children; |
| const xmlChar *f_str; |
| } field; |
| }; |
| |
| #define exp_min field.count.f_min |
| #define exp_max field.count.f_max |
| /* #define exp_left field.children.f_left */ |
| #define exp_right field.children.f_right |
| #define exp_str field.f_str |
| |
| static xmlExpNodePtr xmlExpNewNode(xmlExpCtxtPtr ctxt, xmlExpNodeType type); |
| static xmlExpNode forbiddenExpNode = { |
| XML_EXP_FORBID, 0, 0, 0, 0, NULL, NULL, {{ 0, 0}} |
| }; |
| xmlExpNodePtr forbiddenExp = &forbiddenExpNode; |
| static xmlExpNode emptyExpNode = { |
| XML_EXP_EMPTY, 1, 0, 0, 0, NULL, NULL, {{ 0, 0}} |
| }; |
| xmlExpNodePtr emptyExp = &emptyExpNode; |
| |
| /************************************************************************ |
| * * |
| * The custom hash table for unicity and canonicalization * |
| * of sub-expressions pointers * |
| * * |
| ************************************************************************/ |
| /* |
| * xmlExpHashNameComputeKey: |
| * Calculate the hash key for a token |
| */ |
| static unsigned short |
| xmlExpHashNameComputeKey(const xmlChar *name) { |
| unsigned short value = 0L; |
| char ch; |
| |
| if (name != NULL) { |
| value += 30 * (*name); |
| while ((ch = *name++) != 0) { |
| value = value ^ ((value << 5) + (value >> 3) + (unsigned long)ch); |
| } |
| } |
| return (value); |
| } |
| |
| /* |
| * xmlExpHashComputeKey: |
| * Calculate the hash key for a compound expression |
| */ |
| static unsigned short |
| xmlExpHashComputeKey(xmlExpNodeType type, xmlExpNodePtr left, |
| xmlExpNodePtr right) { |
| unsigned long value; |
| unsigned short ret; |
| |
| switch (type) { |
| case XML_EXP_SEQ: |
| value = left->key; |
| value += right->key; |
| value *= 3; |
| ret = (unsigned short) value; |
| break; |
| case XML_EXP_OR: |
| value = left->key; |
| value += right->key; |
| value *= 7; |
| ret = (unsigned short) value; |
| break; |
| case XML_EXP_COUNT: |
| value = left->key; |
| value += right->key; |
| ret = (unsigned short) value; |
| break; |
| default: |
| ret = 0; |
| } |
| return(ret); |
| } |
| |
| |
| static xmlExpNodePtr |
| xmlExpNewNode(xmlExpCtxtPtr ctxt, xmlExpNodeType type) { |
| xmlExpNodePtr ret; |
| |
| if (ctxt->nb_nodes >= MAX_NODES) |
| return(NULL); |
| ret = (xmlExpNodePtr) xmlMalloc(sizeof(xmlExpNode)); |
| if (ret == NULL) |
| return(NULL); |
| memset(ret, 0, sizeof(xmlExpNode)); |
| ret->type = type; |
| ret->next = NULL; |
| ctxt->nb_nodes++; |
| ctxt->nb_cons++; |
| return(ret); |
| } |
| |
| /** |
| * xmlExpHashGetEntry: |
| * @table: the hash table |
| * |
| * Get the unique entry from the hash table. The entry is created if |
| * needed. @left and @right are consumed, i.e. their ref count will |
| * be decremented by the operation. |
| * |
| * Returns the pointer or NULL in case of error |
| */ |
| static xmlExpNodePtr |
| xmlExpHashGetEntry(xmlExpCtxtPtr ctxt, xmlExpNodeType type, |
| xmlExpNodePtr left, xmlExpNodePtr right, |
| const xmlChar *name, int min, int max) { |
| unsigned short kbase, key; |
| xmlExpNodePtr entry; |
| xmlExpNodePtr insert; |
| |
| if (ctxt == NULL) |
| return(NULL); |
| |
| /* |
| * Check for duplicate and insertion location. |
| */ |
| if (type == XML_EXP_ATOM) { |
| kbase = xmlExpHashNameComputeKey(name); |
| } else if (type == XML_EXP_COUNT) { |
| /* COUNT reduction rule 1 */ |
| /* a{1} -> a */ |
| if (min == max) { |
| if (min == 1) { |
| return(left); |
| } |
| if (min == 0) { |
| xmlExpFree(ctxt, left); |
| return(emptyExp); |
| } |
| } |
| if (min < 0) { |
| xmlExpFree(ctxt, left); |
| return(forbiddenExp); |
| } |
| if (max == -1) |
| kbase = min + 79; |
| else |
| kbase = max - min; |
| kbase += left->key; |
| } else if (type == XML_EXP_OR) { |
| /* Forbid reduction rules */ |
| if (left->type == XML_EXP_FORBID) { |
| xmlExpFree(ctxt, left); |
| return(right); |
| } |
| if (right->type == XML_EXP_FORBID) { |
| xmlExpFree(ctxt, right); |
| return(left); |
| } |
| |
| /* OR reduction rule 1 */ |
| /* a | a reduced to a */ |
| if (left == right) { |
| left->ref--; |
| return(left); |
| } |
| /* OR canonicalization rule 1 */ |
| /* linearize (a | b) | c into a | (b | c) */ |
| if ((left->type == XML_EXP_OR) && (right->type != XML_EXP_OR)) { |
| xmlExpNodePtr tmp = left; |
| left = right; |
| right = tmp; |
| } |
| /* OR reduction rule 2 */ |
| /* a | (a | b) and b | (a | b) are reduced to a | b */ |
| if (right->type == XML_EXP_OR) { |
| if ((left == right->exp_left) || |
| (left == right->exp_right)) { |
| xmlExpFree(ctxt, left); |
| return(right); |
| } |
| } |
| /* OR canonicalization rule 2 */ |
| /* linearize (a | b) | c into a | (b | c) */ |
| if (left->type == XML_EXP_OR) { |
| xmlExpNodePtr tmp; |
| |
| /* OR canonicalization rule 2 */ |
| if ((left->exp_right->type != XML_EXP_OR) && |
| (left->exp_right->key < left->exp_left->key)) { |
| tmp = left->exp_right; |
| left->exp_right = left->exp_left; |
| left->exp_left = tmp; |
| } |
| left->exp_right->ref++; |
| tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left->exp_right, right, |
| NULL, 0, 0); |
| left->exp_left->ref++; |
| tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left->exp_left, tmp, |
| NULL, 0, 0); |
| |
| xmlExpFree(ctxt, left); |
| return(tmp); |
| } |
| if (right->type == XML_EXP_OR) { |
| /* Ordering in the tree */ |
| /* C | (A | B) -> A | (B | C) */ |
| if (left->key > right->exp_right->key) { |
| xmlExpNodePtr tmp; |
| right->exp_right->ref++; |
| tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_right, |
| left, NULL, 0, 0); |
| right->exp_left->ref++; |
| tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_left, |
| tmp, NULL, 0, 0); |
| xmlExpFree(ctxt, right); |
| return(tmp); |
| } |
| /* Ordering in the tree */ |
| /* B | (A | C) -> A | (B | C) */ |
| if (left->key > right->exp_left->key) { |
| xmlExpNodePtr tmp; |
| right->exp_right->ref++; |
| tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left, |
| right->exp_right, NULL, 0, 0); |
| right->exp_left->ref++; |
| tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_left, |
| tmp, NULL, 0, 0); |
| xmlExpFree(ctxt, right); |
| return(tmp); |
| } |
| } |
| /* we know both types are != XML_EXP_OR here */ |
| else if (left->key > right->key) { |
| xmlExpNodePtr tmp = left; |
| left = right; |
| right = tmp; |
| } |
| kbase = xmlExpHashComputeKey(type, left, right); |
| } else if (type == XML_EXP_SEQ) { |
| /* Forbid reduction rules */ |
| if (left->type == XML_EXP_FORBID) { |
| xmlExpFree(ctxt, right); |
| return(left); |
| } |
| if (right->type == XML_EXP_FORBID) { |
| xmlExpFree(ctxt, left); |
| return(right); |
| } |
| /* Empty reduction rules */ |
| if (right->type == XML_EXP_EMPTY) { |
| return(left); |
| } |
| if (left->type == XML_EXP_EMPTY) { |
| return(right); |
| } |
| kbase = xmlExpHashComputeKey(type, left, right); |
| } else |
| return(NULL); |
| |
| key = kbase % ctxt->size; |
| if (ctxt->table[key] != NULL) { |
| for (insert = ctxt->table[key]; insert != NULL; |
| insert = insert->next) { |
| if ((insert->key == kbase) && |
| (insert->type == type)) { |
| if (type == XML_EXP_ATOM) { |
| if (name == insert->exp_str) { |
| insert->ref++; |
| return(insert); |
| } |
| } else if (type == XML_EXP_COUNT) { |
| if ((insert->exp_min == min) && (insert->exp_max == max) && |
| (insert->exp_left == left)) { |
| insert->ref++; |
| left->ref--; |
| return(insert); |
| } |
| } else if ((insert->exp_left == left) && |
| (insert->exp_right == right)) { |
| insert->ref++; |
| left->ref--; |
| right->ref--; |
| return(insert); |
| } |
| } |
| } |
| } |
| |
| entry = xmlExpNewNode(ctxt, type); |
| if (entry == NULL) |
| return(NULL); |
| entry->key = kbase; |
| if (type == XML_EXP_ATOM) { |
| entry->exp_str = name; |
| entry->c_max = 1; |
| } else if (type == XML_EXP_COUNT) { |
| entry->exp_min = min; |
| entry->exp_max = max; |
| entry->exp_left = left; |
| if ((min == 0) || (IS_NILLABLE(left))) |
| entry->info |= XML_EXP_NILABLE; |
| if (max < 0) |
| entry->c_max = -1; |
| else |
| entry->c_max = max * entry->exp_left->c_max; |
| } else { |
| entry->exp_left = left; |
| entry->exp_right = right; |
| if (type == XML_EXP_OR) { |
| if ((IS_NILLABLE(left)) || (IS_NILLABLE(right))) |
| entry->info |= XML_EXP_NILABLE; |
| if ((entry->exp_left->c_max == -1) || |
| (entry->exp_right->c_max == -1)) |
| entry->c_max = -1; |
| else if (entry->exp_left->c_max > entry->exp_right->c_max) |
| entry->c_max = entry->exp_left->c_max; |
| else |
| entry->c_max = entry->exp_right->c_max; |
| } else { |
| if ((IS_NILLABLE(left)) && (IS_NILLABLE(right))) |
| entry->info |= XML_EXP_NILABLE; |
| if ((entry->exp_left->c_max == -1) || |
| (entry->exp_right->c_max == -1)) |
| entry->c_max = -1; |
| else |
| entry->c_max = entry->exp_left->c_max + entry->exp_right->c_max; |
| } |
| } |
| entry->ref = 1; |
| if (ctxt->table[key] != NULL) |
| entry->next = ctxt->table[key]; |
| |
| ctxt->table[key] = entry; |
| ctxt->nbElems++; |
| |
| return(entry); |
| } |
| |
| /** |
| * xmlExpFree: |
| * @ctxt: the expression context |
| * @exp: the expression |
| * |
| * Dereference the expression |
| */ |
| void |
| xmlExpFree(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp) { |
| if ((exp == NULL) || (exp == forbiddenExp) || (exp == emptyExp)) |
| return; |
| exp->ref--; |
| if (exp->ref == 0) { |
| unsigned short key; |
| |
| /* Unlink it first from the hash table */ |
| key = exp->key % ctxt->size; |
| if (ctxt->table[key] == exp) { |
| ctxt->table[key] = exp->next; |
| } else { |
| xmlExpNodePtr tmp; |
| |
| tmp = ctxt->table[key]; |
| while (tmp != NULL) { |
| if (tmp->next == exp) { |
| tmp->next = exp->next; |
| break; |
| } |
| tmp = tmp->next; |
| } |
| } |
| |
| if ((exp->type == XML_EXP_SEQ) || (exp->type == XML_EXP_OR)) { |
| xmlExpFree(ctxt, exp->exp_left); |
| xmlExpFree(ctxt, exp->exp_right); |
| } else if (exp->type == XML_EXP_COUNT) { |
| xmlExpFree(ctxt, exp->exp_left); |
| } |
| xmlFree(exp); |
| ctxt->nb_nodes--; |
| } |
| } |
| |
| /** |
| * xmlExpRef: |
| * @exp: the expression |
| * |
| * Increase the reference count of the expression |
| */ |
| void |
| xmlExpRef(xmlExpNodePtr exp) { |
| if (exp != NULL) |
| exp->ref++; |
| } |
| |
| /** |
| * xmlExpNewAtom: |
| * @ctxt: the expression context |
| * @name: the atom name |
| * @len: the atom name lenght in byte (or -1); |
| * |
| * Get the atom associated to this name from that context |
| * |
| * Returns the node or NULL in case of error |
| */ |
| xmlExpNodePtr |
| xmlExpNewAtom(xmlExpCtxtPtr ctxt, const xmlChar *name, int len) { |
| if ((ctxt == NULL) || (name == NULL)) |
| return(NULL); |
| name = xmlDictLookup(ctxt->dict, name, len); |
| if (name == NULL) |
| return(NULL); |
| return(xmlExpHashGetEntry(ctxt, XML_EXP_ATOM, NULL, NULL, name, 0, 0)); |
| } |
| |
| /** |
| * xmlExpNewOr: |
| * @ctxt: the expression context |
| * @left: left expression |
| * @right: right expression |
| * |
| * Get the atom associated to the choice @left | @right |
| * Note that @left and @right are consumed in the operation, to keep |
| * an handle on them use xmlExpRef() and use xmlExpFree() to release them, |
| * this is true even in case of failure (unless ctxt == NULL). |
| * |
| * Returns the node or NULL in case of error |
| */ |
| xmlExpNodePtr |
| xmlExpNewOr(xmlExpCtxtPtr ctxt, xmlExpNodePtr left, xmlExpNodePtr right) { |
| if (ctxt == NULL) |
| return(NULL); |
| if ((left == NULL) || (right == NULL)) { |
| xmlExpFree(ctxt, left); |
| xmlExpFree(ctxt, right); |
| return(NULL); |
| } |
| return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, left, right, NULL, 0, 0)); |
| } |
| |
| /** |
| * xmlExpNewSeq: |
| * @ctxt: the expression context |
| * @left: left expression |
| * @right: right expression |
| * |
| * Get the atom associated to the sequence @left , @right |
| * Note that @left and @right are consumed in the operation, to keep |
| * an handle on them use xmlExpRef() and use xmlExpFree() to release them, |
| * this is true even in case of failure (unless ctxt == NULL). |
| * |
| * Returns the node or NULL in case of error |
| */ |
| xmlExpNodePtr |
| xmlExpNewSeq(xmlExpCtxtPtr ctxt, xmlExpNodePtr left, xmlExpNodePtr right) { |
| if (ctxt == NULL) |
| return(NULL); |
| if ((left == NULL) || (right == NULL)) { |
| xmlExpFree(ctxt, left); |
| xmlExpFree(ctxt, right); |
| return(NULL); |
| } |
| return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, left, right, NULL, 0, 0)); |
| } |
| |
| /** |
| * xmlExpNewRange: |
| * @ctxt: the expression context |
| * @subset: the expression to be repeated |
| * @min: the lower bound for the repetition |
| * @max: the upper bound for the repetition, -1 means infinite |
| * |
| * Get the atom associated to the range (@subset){@min, @max} |
| * Note that @subset is consumed in the operation, to keep |
| * an handle on it use xmlExpRef() and use xmlExpFree() to release it, |
| * this is true even in case of failure (unless ctxt == NULL). |
| * |
| * Returns the node or NULL in case of error |
| */ |
| xmlExpNodePtr |
| xmlExpNewRange(xmlExpCtxtPtr ctxt, xmlExpNodePtr subset, int min, int max) { |
| if (ctxt == NULL) |
| return(NULL); |
| if ((subset == NULL) || (min < 0) || (max < -1) || |
| ((max >= 0) && (min > max))) { |
| xmlExpFree(ctxt, subset); |
| return(NULL); |
| } |
| return(xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, subset, |
| NULL, NULL, min, max)); |
| } |
| |
| /************************************************************************ |
| * * |
| * Public API for operations on expressions * |
| * * |
| ************************************************************************/ |
| |
| static int |
| xmlExpGetLanguageInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, |
| const xmlChar**list, int len, int nb) { |
| int tmp, tmp2; |
| tail: |
| switch (exp->type) { |
| case XML_EXP_EMPTY: |
| return(0); |
| case XML_EXP_ATOM: |
| for (tmp = 0;tmp < nb;tmp++) |
| if (list[tmp] == exp->exp_str) |
| return(0); |
| if (nb >= len) |
| return(-2); |
| list[nb] = exp->exp_str; |
| return(1); |
| case XML_EXP_COUNT: |
| exp = exp->exp_left; |
| goto tail; |
| case XML_EXP_SEQ: |
| case XML_EXP_OR: |
| tmp = xmlExpGetLanguageInt(ctxt, exp->exp_left, list, len, nb); |
| if (tmp < 0) |
| return(tmp); |
| tmp2 = xmlExpGetLanguageInt(ctxt, exp->exp_right, list, len, |
| nb + tmp); |
| if (tmp2 < 0) |
| return(tmp2); |
| return(tmp + tmp2); |
| } |
| return(-1); |
| } |
| |
| /** |
| * xmlExpGetLanguage: |
| * @ctxt: the expression context |
| * @exp: the expression |
| * @langList: where to store the tokens |
| * @len: the allocated lenght of @list |
| * |
| * Find all the strings used in @exp and store them in @list |
| * |
| * Returns the number of unique strings found, -1 in case of errors and |
| * -2 if there is more than @len strings |
| */ |
| int |
| xmlExpGetLanguage(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, |
| const xmlChar**langList, int len) { |
| if ((ctxt == NULL) || (exp == NULL) || (langList == NULL) || (len <= 0)) |
| return(-1); |
| return(xmlExpGetLanguageInt(ctxt, exp, langList, len, 0)); |
| } |
| |
| static int |
| xmlExpGetStartInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, |
| const xmlChar**list, int len, int nb) { |
| int tmp, tmp2; |
| tail: |
| switch (exp->type) { |
| case XML_EXP_FORBID: |
| return(0); |
| case XML_EXP_EMPTY: |
| return(0); |
| case XML_EXP_ATOM: |
| for (tmp = 0;tmp < nb;tmp++) |
| if (list[tmp] == exp->exp_str) |
| return(0); |
| if (nb >= len) |
| return(-2); |
| list[nb] = exp->exp_str; |
| return(1); |
| case XML_EXP_COUNT: |
| exp = exp->exp_left; |
| goto tail; |
| case XML_EXP_SEQ: |
| tmp = xmlExpGetStartInt(ctxt, exp->exp_left, list, len, nb); |
| if (tmp < 0) |
| return(tmp); |
| if (IS_NILLABLE(exp->exp_left)) { |
| tmp2 = xmlExpGetStartInt(ctxt, exp->exp_right, list, len, |
| nb + tmp); |
| if (tmp2 < 0) |
| return(tmp2); |
| tmp += tmp2; |
| } |
| return(tmp); |
| case XML_EXP_OR: |
| tmp = xmlExpGetStartInt(ctxt, exp->exp_left, list, len, nb); |
| if (tmp < 0) |
| return(tmp); |
| tmp2 = xmlExpGetStartInt(ctxt, exp->exp_right, list, len, |
| nb + tmp); |
| if (tmp2 < 0) |
| return(tmp2); |
| return(tmp + tmp2); |
| } |
| return(-1); |
| } |
| |
| /** |
| * xmlExpGetStart: |
| * @ctxt: the expression context |
| * @exp: the expression |
| * @tokList: where to store the tokens |
| * @len: the allocated lenght of @list |
| * |
| * Find all the strings that appears at the start of the languages |
| * accepted by @exp and store them in @list. E.g. for (a, b) | c |
| * it will return the list [a, c] |
| * |
| * Returns the number of unique strings found, -1 in case of errors and |
| * -2 if there is more than @len strings |
| */ |
| int |
| xmlExpGetStart(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, |
| const xmlChar**tokList, int len) { |
| if ((ctxt == NULL) || (exp == NULL) || (tokList == NULL) || (len <= 0)) |
| return(-1); |
| return(xmlExpGetStartInt(ctxt, exp, tokList, len, 0)); |
| } |
| |
| /** |
| * xmlExpIsNillable: |
| * @exp: the expression |
| * |
| * Finds if the expression is nillable, i.e. if it accepts the empty sequqnce |
| * |
| * Returns 1 if nillable, 0 if not and -1 in case of error |
| */ |
| int |
| xmlExpIsNillable(xmlExpNodePtr exp) { |
| if (exp == NULL) |
| return(-1); |
| return(IS_NILLABLE(exp) != 0); |
| } |
| |
| static xmlExpNodePtr |
| xmlExpStringDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, const xmlChar *str) |
| { |
| xmlExpNodePtr ret; |
| |
| switch (exp->type) { |
| case XML_EXP_EMPTY: |
| return(forbiddenExp); |
| case XML_EXP_FORBID: |
| return(forbiddenExp); |
| case XML_EXP_ATOM: |
| if (exp->exp_str == str) { |
| #ifdef DEBUG_DERIV |
| printf("deriv atom: equal => Empty\n"); |
| #endif |
| ret = emptyExp; |
| } else { |
| #ifdef DEBUG_DERIV |
| printf("deriv atom: mismatch => forbid\n"); |
| #endif |
| /* TODO wildcards here */ |
| ret = forbiddenExp; |
| } |
| return(ret); |
| case XML_EXP_OR: { |
| xmlExpNodePtr tmp; |
| |
| #ifdef DEBUG_DERIV |
| printf("deriv or: => or(derivs)\n"); |
| #endif |
| tmp = xmlExpStringDeriveInt(ctxt, exp->exp_left, str); |
| if (tmp == NULL) { |
| return(NULL); |
| } |
| ret = xmlExpStringDeriveInt(ctxt, exp->exp_right, str); |
| if (ret == NULL) { |
| xmlExpFree(ctxt, tmp); |
| return(NULL); |
| } |
| ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, tmp, ret, |
| NULL, 0, 0); |
| return(ret); |
| } |
| case XML_EXP_SEQ: |
| #ifdef DEBUG_DERIV |
| printf("deriv seq: starting with left\n"); |
| #endif |
| ret = xmlExpStringDeriveInt(ctxt, exp->exp_left, str); |
| if (ret == NULL) { |
| return(NULL); |
| } else if (ret == forbiddenExp) { |
| if (IS_NILLABLE(exp->exp_left)) { |
| #ifdef DEBUG_DERIV |
| printf("deriv seq: left failed but nillable\n"); |
| #endif |
| ret = xmlExpStringDeriveInt(ctxt, exp->exp_right, str); |
| } |
| } else { |
| #ifdef DEBUG_DERIV |
| printf("deriv seq: left match => sequence\n"); |
| #endif |
| exp->exp_right->ref++; |
| ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, exp->exp_right, |
| NULL, 0, 0); |
| } |
| return(ret); |
| case XML_EXP_COUNT: { |
| int min, max; |
| xmlExpNodePtr tmp; |
| |
| if (exp->exp_max == 0) |
| return(forbiddenExp); |
| ret = xmlExpStringDeriveInt(ctxt, exp->exp_left, str); |
| if (ret == NULL) |
| return(NULL); |
| if (ret == forbiddenExp) { |
| #ifdef DEBUG_DERIV |
| printf("deriv count: pattern mismatch => forbid\n"); |
| #endif |
| return(ret); |
| } |
| if (exp->exp_max == 1) |
| return(ret); |
| if (exp->exp_max < 0) /* unbounded */ |
| max = -1; |
| else |
| max = exp->exp_max - 1; |
| if (exp->exp_min > 0) |
| min = exp->exp_min - 1; |
| else |
| min = 0; |
| exp->exp_left->ref++; |
| tmp = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left, NULL, |
| NULL, min, max); |
| if (ret == emptyExp) { |
| #ifdef DEBUG_DERIV |
| printf("deriv count: match to empty => new count\n"); |
| #endif |
| return(tmp); |
| } |
| #ifdef DEBUG_DERIV |
| printf("deriv count: match => sequence with new count\n"); |
| #endif |
| return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, tmp, |
| NULL, 0, 0)); |
| } |
| } |
| return(NULL); |
| } |
| |
| /** |
| * xmlExpStringDerive: |
| * @ctxt: the expression context |
| * @exp: the expression |
| * @str: the string |
| * @len: the string len in bytes if available |
| * |
| * Do one step of Brzozowski derivation of the expression @exp with |
| * respect to the input string |
| * |
| * Returns the resulting expression or NULL in case of internal error |
| */ |
| xmlExpNodePtr |
| xmlExpStringDerive(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, |
| const xmlChar *str, int len) { |
| const xmlChar *input; |
| |
| if ((exp == NULL) || (ctxt == NULL) || (str == NULL)) { |
| return(NULL); |
| } |
| /* |
| * check the string is in the dictionnary, if yes use an interned |
| * copy, otherwise we know it's not an acceptable input |
| */ |
| input = xmlDictExists(ctxt->dict, str, len); |
| if (input == NULL) { |
| return(forbiddenExp); |
| } |
| return(xmlExpStringDeriveInt(ctxt, exp, input)); |
| } |
| |
| static int |
| xmlExpCheckCard(xmlExpNodePtr exp, xmlExpNodePtr sub) { |
| int ret = 1; |
| |
| if (sub->c_max == -1) { |
| if (exp->c_max != -1) |
| ret = 0; |
| } else if ((exp->c_max >= 0) && (exp->c_max < sub->c_max)) { |
| ret = 0; |
| } |
| #if 0 |
| if ((IS_NILLABLE(sub)) && (!IS_NILLABLE(exp))) |
| ret = 0; |
| #endif |
| return(ret); |
| } |
| |
| static xmlExpNodePtr xmlExpExpDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, |
| xmlExpNodePtr sub); |
| /** |
| * xmlExpDivide: |
| * @ctxt: the expressions context |
| * @exp: the englobing expression |
| * @sub: the subexpression |
| * @mult: the multiple expression |
| * @remain: the remain from the derivation of the multiple |
| * |
| * Check if exp is a multiple of sub, i.e. if there is a finite number n |
| * so that sub{n} subsume exp |
| * |
| * Returns the multiple value if successful, 0 if it is not a multiple |
| * and -1 in case of internel error. |
| */ |
| |
| static int |
| xmlExpDivide(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub, |
| xmlExpNodePtr *mult, xmlExpNodePtr *remain) { |
| int i; |
| xmlExpNodePtr tmp, tmp2; |
| |
| if (mult != NULL) *mult = NULL; |
| if (remain != NULL) *remain = NULL; |
| if (exp->c_max == -1) return(0); |
| if (IS_NILLABLE(exp) && (!IS_NILLABLE(sub))) return(0); |
| |
| for (i = 1;i <= exp->c_max;i++) { |
| sub->ref++; |
| tmp = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, |
| sub, NULL, NULL, i, i); |
| if (tmp == NULL) { |
| return(-1); |
| } |
| if (!xmlExpCheckCard(tmp, exp)) { |
| xmlExpFree(ctxt, tmp); |
| continue; |
| } |
| tmp2 = xmlExpExpDeriveInt(ctxt, tmp, exp); |
| if (tmp2 == NULL) { |
| xmlExpFree(ctxt, tmp); |
| return(-1); |
| } |
| if ((tmp2 != forbiddenExp) && (IS_NILLABLE(tmp2))) { |
| if (remain != NULL) |
| *remain = tmp2; |
| else |
| xmlExpFree(ctxt, tmp2); |
| if (mult != NULL) |
| *mult = tmp; |
| else |
| xmlExpFree(ctxt, tmp); |
| #ifdef DEBUG_DERIV |
| printf("Divide succeeded %d\n", i); |
| #endif |
| return(i); |
| } |
| xmlExpFree(ctxt, tmp); |
| xmlExpFree(ctxt, tmp2); |
| } |
| #ifdef DEBUG_DERIV |
| printf("Divide failed\n"); |
| #endif |
| return(0); |
| } |
| |
| /** |
| * xmlExpExpDeriveInt: |
| * @ctxt: the expressions context |
| * @exp: the englobing expression |
| * @sub: the subexpression |
| * |
| * Try to do a step of Brzozowski derivation but at a higher level |
| * the input being a subexpression. |
| * |
| * Returns the resulting expression or NULL in case of internal error |
| */ |
| static xmlExpNodePtr |
| xmlExpExpDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) { |
| xmlExpNodePtr ret, tmp, tmp2, tmp3; |
| const xmlChar **tab; |
| int len, i; |
| |
| /* |
| * In case of equality and if the expression can only consume a finite |
| * amount, then the derivation is empty |
| */ |
| if ((exp == sub) && (exp->c_max >= 0)) { |
| #ifdef DEBUG_DERIV |
| printf("Equal(exp, sub) and finite -> Empty\n"); |
| #endif |
| return(emptyExp); |
| } |
| /* |
| * decompose sub sequence first |
| */ |
| if (sub->type == XML_EXP_EMPTY) { |
| #ifdef DEBUG_DERIV |
| printf("Empty(sub) -> Empty\n"); |
| #endif |
| exp->ref++; |
| return(exp); |
| } |
| if (sub->type == XML_EXP_SEQ) { |
| #ifdef DEBUG_DERIV |
| printf("Seq(sub) -> decompose\n"); |
| #endif |
| tmp = xmlExpExpDeriveInt(ctxt, exp, sub->exp_left); |
| if (tmp == NULL) |
| return(NULL); |
| if (tmp == forbiddenExp) |
| return(tmp); |
| ret = xmlExpExpDeriveInt(ctxt, tmp, sub->exp_right); |
| xmlExpFree(ctxt, tmp); |
| return(ret); |
| } |
| if (sub->type == XML_EXP_OR) { |
| #ifdef DEBUG_DERIV |
| printf("Or(sub) -> decompose\n"); |
| #endif |
| tmp = xmlExpExpDeriveInt(ctxt, exp, sub->exp_left); |
| if (tmp == forbiddenExp) |
| return(tmp); |
| if (tmp == NULL) |
| return(NULL); |
| ret = xmlExpExpDeriveInt(ctxt, exp, sub->exp_right); |
| if ((ret == NULL) || (ret == forbiddenExp)) { |
| xmlExpFree(ctxt, tmp); |
| return(ret); |
| } |
| return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, tmp, ret, NULL, 0, 0)); |
| } |
| if (!xmlExpCheckCard(exp, sub)) { |
| #ifdef DEBUG_DERIV |
| printf("CheckCard(exp, sub) failed -> Forbid\n"); |
| #endif |
| return(forbiddenExp); |
| } |
| switch (exp->type) { |
| case XML_EXP_EMPTY: |
| if (sub == emptyExp) |
| return(emptyExp); |
| #ifdef DEBUG_DERIV |
| printf("Empty(exp) -> Forbid\n"); |
| #endif |
| return(forbiddenExp); |
| case XML_EXP_FORBID: |
| #ifdef DEBUG_DERIV |
| printf("Forbid(exp) -> Forbid\n"); |
| #endif |
| return(forbiddenExp); |
| case XML_EXP_ATOM: |
| if (sub->type == XML_EXP_ATOM) { |
| /* TODO: handle wildcards */ |
| if (exp->exp_str == sub->exp_str) { |
| #ifdef DEBUG_DERIV |
| printf("Atom match -> Empty\n"); |
| #endif |
| return(emptyExp); |
| } |
| #ifdef DEBUG_DERIV |
| printf("Atom mismatch -> Forbid\n"); |
| #endif |
| return(forbiddenExp); |
| } |
| if ((sub->type == XML_EXP_COUNT) && |
| (sub->exp_max == 1) && |
| (sub->exp_left->type == XML_EXP_ATOM)) { |
| /* TODO: handle wildcards */ |
| if (exp->exp_str == sub->exp_left->exp_str) { |
| #ifdef DEBUG_DERIV |
| printf("Atom match -> Empty\n"); |
| #endif |
| return(emptyExp); |
| } |
| #ifdef DEBUG_DERIV |
| printf("Atom mismatch -> Forbid\n"); |
| #endif |
| return(forbiddenExp); |
| } |
| #ifdef DEBUG_DERIV |
| printf("Compex exp vs Atom -> Forbid\n"); |
| #endif |
| return(forbiddenExp); |
| case XML_EXP_SEQ: |
| /* try to get the sequence consumed only if possible */ |
| if (xmlExpCheckCard(exp->exp_left, sub)) { |
| /* See if the sequence can be consumed directly */ |
| #ifdef DEBUG_DERIV |
| printf("Seq trying left only\n"); |
| #endif |
| ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub); |
| if ((ret != forbiddenExp) && (ret != NULL)) { |
| #ifdef DEBUG_DERIV |
| printf("Seq trying left only worked\n"); |
| #endif |
| /* |
| * TODO: assumption here that we are determinist |
| * i.e. we won't get to a nillable exp left |
| * subset which could be matched by the right |
| * part too. |
| * e.g.: (a | b)+,(a | c) and 'a+,a' |
| */ |
| exp->exp_right->ref++; |
| return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, |
| exp->exp_right, NULL, 0, 0)); |
| } |
| #ifdef DEBUG_DERIV |
| } else { |
| printf("Seq: left too short\n"); |
| #endif |
| } |
| /* Try instead to decompose */ |
| if (sub->type == XML_EXP_COUNT) { |
| int min, max; |
| |
| #ifdef DEBUG_DERIV |
| printf("Seq: sub is a count\n"); |
| #endif |
| ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub->exp_left); |
| if (ret == NULL) |
| return(NULL); |
| if (ret != forbiddenExp) { |
| #ifdef DEBUG_DERIV |
| printf("Seq , Count match on left\n"); |
| #endif |
| if (sub->exp_max < 0) |
| max = -1; |
| else |
| max = sub->exp_max -1; |
| if (sub->exp_min > 0) |
| min = sub->exp_min -1; |
| else |
| min = 0; |
| exp->exp_right->ref++; |
| tmp = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, |
| exp->exp_right, NULL, 0, 0); |
| if (tmp == NULL) |
| return(NULL); |
| |
| sub->exp_left->ref++; |
| tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, |
| sub->exp_left, NULL, NULL, min, max); |
| if (tmp2 == NULL) { |
| xmlExpFree(ctxt, tmp); |
| return(NULL); |
| } |
| ret = xmlExpExpDeriveInt(ctxt, tmp, tmp2); |
| xmlExpFree(ctxt, tmp); |
| xmlExpFree(ctxt, tmp2); |
| return(ret); |
| } |
| } |
| /* we made no progress on structured operations */ |
| break; |
| case XML_EXP_OR: |
| #ifdef DEBUG_DERIV |
| printf("Or , trying both side\n"); |
| #endif |
| ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub); |
| if (ret == NULL) |
| return(NULL); |
| tmp = xmlExpExpDeriveInt(ctxt, exp->exp_right, sub); |
| if (tmp == NULL) { |
| xmlExpFree(ctxt, ret); |
| return(NULL); |
| } |
| return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, tmp, NULL, 0, 0)); |
| case XML_EXP_COUNT: { |
| int min, max; |
| |
| if (sub->type == XML_EXP_COUNT) { |
| /* |
| * Try to see if the loop is completely subsumed |
| */ |
| tmp = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub->exp_left); |
| if (tmp == NULL) |
| return(NULL); |
| if (tmp == forbiddenExp) { |
| int mult; |
| |
| #ifdef DEBUG_DERIV |
| printf("Count, Count inner don't subsume\n"); |
| #endif |
| mult = xmlExpDivide(ctxt, sub->exp_left, exp->exp_left, |
| NULL, &tmp); |
| if (mult <= 0) { |
| #ifdef DEBUG_DERIV |
| printf("Count, Count not multiple => forbidden\n"); |
| #endif |
| return(forbiddenExp); |
| } |
| if (sub->exp_max == -1) { |
| max = -1; |
| if (exp->exp_max == -1) { |
| if (exp->exp_min <= sub->exp_min * mult) |
| min = 0; |
| else |
| min = exp->exp_min - sub->exp_min * mult; |
| } else { |
| #ifdef DEBUG_DERIV |
| printf("Count, Count finite can't subsume infinite\n"); |
| #endif |
| xmlExpFree(ctxt, tmp); |
| return(forbiddenExp); |
| } |
| } else { |
| if (exp->exp_max == -1) { |
| #ifdef DEBUG_DERIV |
| printf("Infinite loop consume mult finite loop\n"); |
| #endif |
| if (exp->exp_min > sub->exp_min * mult) { |
| max = -1; |
| min = exp->exp_min - sub->exp_min * mult; |
| } else { |
| max = -1; |
| min = 0; |
| } |
| } else { |
| if (exp->exp_max < sub->exp_max * mult) { |
| #ifdef DEBUG_DERIV |
| printf("loops max mult mismatch => forbidden\n"); |
| #endif |
| xmlExpFree(ctxt, tmp); |
| return(forbiddenExp); |
| } |
| if (sub->exp_max * mult > exp->exp_min) |
| min = 0; |
| else |
| min = exp->exp_min - sub->exp_max * mult; |
| max = exp->exp_max - sub->exp_max * mult; |
| } |
| } |
| } else if (!IS_NILLABLE(tmp)) { |
| /* |
| * TODO: loop here to try to grow if working on finite |
| * blocks. |
| */ |
| #ifdef DEBUG_DERIV |
| printf("Count, Count remain not nillable => forbidden\n"); |
| #endif |
| xmlExpFree(ctxt, tmp); |
| return(forbiddenExp); |
| } else if (sub->exp_max == -1) { |
| if (exp->exp_max == -1) { |
| if (exp->exp_min <= sub->exp_min) { |
| #ifdef DEBUG_DERIV |
| printf("Infinite loops Okay => COUNT(0,Inf)\n"); |
| #endif |
| max = -1; |
| min = 0; |
| } else { |
| #ifdef DEBUG_DERIV |
| printf("Infinite loops min => Count(X,Inf)\n"); |
| #endif |
| max = -1; |
| min = exp->exp_min - sub->exp_min; |
| } |
| } else if (exp->exp_min > sub->exp_min) { |
| #ifdef DEBUG_DERIV |
| printf("loops min mismatch 1 => forbidden ???\n"); |
| #endif |
| xmlExpFree(ctxt, tmp); |
| return(forbiddenExp); |
| } else { |
| max = -1; |
| min = 0; |
| } |
| } else { |
| if (exp->exp_max == -1) { |
| #ifdef DEBUG_DERIV |
| printf("Infinite loop consume finite loop\n"); |
| #endif |
| if (exp->exp_min > sub->exp_min) { |
| max = -1; |
| min = exp->exp_min - sub->exp_min; |
| } else { |
| max = -1; |
| min = 0; |
| } |
| } else { |
| if (exp->exp_max < sub->exp_max) { |
| #ifdef DEBUG_DERIV |
| printf("loops max mismatch => forbidden\n"); |
| #endif |
| xmlExpFree(ctxt, tmp); |
| return(forbiddenExp); |
| } |
| if (sub->exp_max > exp->exp_min) |
| min = 0; |
| else |
| min = exp->exp_min - sub->exp_max; |
| max = exp->exp_max - sub->exp_max; |
| } |
| } |
| #ifdef DEBUG_DERIV |
| printf("loops match => SEQ(COUNT())\n"); |
| #endif |
| exp->exp_left->ref++; |
| tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left, |
| NULL, NULL, min, max); |
| if (tmp2 == NULL) { |
| return(NULL); |
| } |
| ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, tmp, tmp2, |
| NULL, 0, 0); |
| return(ret); |
| } |
| tmp = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub); |
| if (tmp == NULL) |
| return(NULL); |
| if (tmp == forbiddenExp) { |
| #ifdef DEBUG_DERIV |
| printf("loop mismatch => forbidden\n"); |
| #endif |
| return(forbiddenExp); |
| } |
| if (exp->exp_min > 0) |
| min = exp->exp_min - 1; |
| else |
| min = 0; |
| if (exp->exp_max < 0) |
| max = -1; |
| else |
| max = exp->exp_max - 1; |
| |
| #ifdef DEBUG_DERIV |
| printf("loop match => SEQ(COUNT())\n"); |
| #endif |
| exp->exp_left->ref++; |
| tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left, |
| NULL, NULL, min, max); |
| if (tmp2 == NULL) |
| return(NULL); |
| ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, tmp, tmp2, |
| NULL, 0, 0); |
| return(ret); |
| } |
| } |
| |
| #ifdef DEBUG_DERIV |
| printf("Fallback to derivative\n"); |
| #endif |
| if (IS_NILLABLE(sub)) { |
| if (!(IS_NILLABLE(exp))) |
| return(forbiddenExp); |
| else |
| ret = emptyExp; |
| } else |
| ret = NULL; |
| /* |
| * here the structured derivation made no progress so |
| * we use the default token based derivation to force one more step |
| */ |
| if (ctxt->tabSize == 0) |
| ctxt->tabSize = 40; |
| |
| tab = (const xmlChar **) xmlMalloc(ctxt->tabSize * |
| sizeof(const xmlChar *)); |
| if (tab == NULL) { |
| return(NULL); |
| } |
| |
| /* |
| * collect all the strings accepted by the subexpression on input |
| */ |
| len = xmlExpGetStartInt(ctxt, sub, tab, ctxt->tabSize, 0); |
| while (len < 0) { |
| const xmlChar **temp; |
| temp = (const xmlChar **) xmlRealloc((xmlChar **) tab, ctxt->tabSize * 2 * |
| sizeof(const xmlChar *)); |
| if (temp == NULL) { |
| xmlFree((xmlChar **) tab); |
| return(NULL); |
| } |
| tab = temp; |
| ctxt->tabSize *= 2; |
| len = xmlExpGetStartInt(ctxt, sub, tab, ctxt->tabSize, 0); |
| } |
| for (i = 0;i < len;i++) { |
| tmp = xmlExpStringDeriveInt(ctxt, exp, tab[i]); |
| if ((tmp == NULL) || (tmp == forbiddenExp)) { |
| xmlExpFree(ctxt, ret); |
| xmlFree((xmlChar **) tab); |
| return(tmp); |
| } |
| tmp2 = xmlExpStringDeriveInt(ctxt, sub, tab[i]); |
| if ((tmp2 == NULL) || (tmp2 == forbiddenExp)) { |
| xmlExpFree(ctxt, tmp); |
| xmlExpFree(ctxt, ret); |
| xmlFree((xmlChar **) tab); |
| return(tmp); |
| } |
| tmp3 = xmlExpExpDeriveInt(ctxt, tmp, tmp2); |
| xmlExpFree(ctxt, tmp); |
| xmlExpFree(ctxt, tmp2); |
| |
| if ((tmp3 == NULL) || (tmp3 == forbiddenExp)) { |
| xmlExpFree(ctxt, ret); |
| xmlFree((xmlChar **) tab); |
| return(tmp3); |
| } |
| |
| if (ret == NULL) |
| ret = tmp3; |
| else { |
| ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, tmp3, NULL, 0, 0); |
| if (ret == NULL) { |
| xmlFree((xmlChar **) tab); |
| return(NULL); |
| } |
| } |
| } |
| xmlFree((xmlChar **) tab); |
| return(ret); |
| } |
| |
| /** |
| * xmlExpExpDerive: |
| * @ctxt: the expressions context |
| * @exp: the englobing expression |
| * @sub: the subexpression |
| * |
| * Evaluates the expression resulting from @exp consuming a sub expression @sub |
| * Based on algebraic derivation and sometimes direct Brzozowski derivation |
| * it usually tatkes less than linear time and can handle expressions generating |
| * infinite languages. |
| * |
| * Returns the resulting expression or NULL in case of internal error, the |
| * result must be freed |
| */ |
| xmlExpNodePtr |
| xmlExpExpDerive(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) { |
| if ((exp == NULL) || (ctxt == NULL) || (sub == NULL)) |
| return(NULL); |
| |
| /* |
| * O(1) speedups |
| */ |
| if (IS_NILLABLE(sub) && (!IS_NILLABLE(exp))) { |
| #ifdef DEBUG_DERIV |
| printf("Sub nillable and not exp : can't subsume\n"); |
| #endif |
| return(forbiddenExp); |
| } |
| if (xmlExpCheckCard(exp, sub) == 0) { |
| #ifdef DEBUG_DERIV |
| printf("sub generate longuer sequances than exp : can't subsume\n"); |
| #endif |
| return(forbiddenExp); |
| } |
| return(xmlExpExpDeriveInt(ctxt, exp, sub)); |
| } |
| |
| /** |
| * xmlExpSubsume: |
| * @ctxt: the expressions context |
| * @exp: the englobing expression |
| * @sub: the subexpression |
| * |
| * Check whether @exp accepts all the languages accexpted by @sub |
| * the input being a subexpression. |
| * |
| * Returns 1 if true 0 if false and -1 in case of failure. |
| */ |
| int |
| xmlExpSubsume(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) { |
| xmlExpNodePtr tmp; |
| |
| if ((exp == NULL) || (ctxt == NULL) || (sub == NULL)) |
| return(-1); |
| |
| /* |
| * TODO: speedup by checking the language of sub is a subset of the |
| * language of exp |
| */ |
| /* |
| * O(1) speedups |
| */ |
| if (IS_NILLABLE(sub) && (!IS_NILLABLE(exp))) { |
| #ifdef DEBUG_DERIV |
| printf("Sub nillable and not exp : can't subsume\n"); |
| #endif |
| return(0); |
| } |
| if (xmlExpCheckCard(exp, sub) == 0) { |
| #ifdef DEBUG_DERIV |
| printf("sub generate longuer sequances than exp : can't subsume\n"); |
| #endif |
| return(0); |
| } |
| tmp = xmlExpExpDeriveInt(ctxt, exp, sub); |
| #ifdef DEBUG_DERIV |
| printf("Result derivation :\n"); |
| PRINT_EXP(tmp); |
| #endif |
| if (tmp == NULL) |
| return(-1); |
| if (tmp == forbiddenExp) |
| return(0); |
| if (tmp == emptyExp) |
| return(1); |
| if ((tmp != NULL) && (IS_NILLABLE(tmp))) { |
| xmlExpFree(ctxt, tmp); |
| return(1); |
| } |
| xmlExpFree(ctxt, tmp); |
| return(0); |
| } |
| |
| /************************************************************************ |
| * * |
| * Parsing expression * |
| * * |
| ************************************************************************/ |
| |
| static xmlExpNodePtr xmlExpParseExpr(xmlExpCtxtPtr ctxt); |
| |
| #undef CUR |
| #define CUR (*ctxt->cur) |
| #undef NEXT |
| #define NEXT ctxt->cur++; |
| #undef IS_BLANK |
| #define IS_BLANK(c) ((c == ' ') || (c == '\n') || (c == '\r') || (c == '\t')) |
| #define SKIP_BLANKS while (IS_BLANK(*ctxt->cur)) ctxt->cur++; |
| |
| static int |
| xmlExpParseNumber(xmlExpCtxtPtr ctxt) { |
| int ret = 0; |
| |
| SKIP_BLANKS |
| if (CUR == '*') { |
| NEXT |
| return(-1); |
| } |
| if ((CUR < '0') || (CUR > '9')) |
| return(-1); |
| while ((CUR >= '0') && (CUR <= '9')) { |
| ret = ret * 10 + (CUR - '0'); |
| NEXT |
| } |
| return(ret); |
| } |
| |
| static xmlExpNodePtr |
| xmlExpParseOr(xmlExpCtxtPtr ctxt) { |
| const char *base; |
| xmlExpNodePtr ret; |
| const xmlChar *val; |
| |
| SKIP_BLANKS |
| base = ctxt->cur; |
| if (*ctxt->cur == '(') { |
| NEXT |
| ret = xmlExpParseExpr(ctxt); |
| SKIP_BLANKS |
| if (*ctxt->cur != ')') { |
| fprintf(stderr, "unbalanced '(' : %s\n", base); |
| xmlExpFree(ctxt, ret); |
| return(NULL); |
| } |
| NEXT; |
| SKIP_BLANKS |
| goto parse_quantifier; |
| } |
| while ((CUR != 0) && (!(IS_BLANK(CUR))) && (CUR != '(') && |
| (CUR != ')') && (CUR != '|') && (CUR != ',') && (CUR != '{') && |
| (CUR != '*') && (CUR != '+') && (CUR != '?') && (CUR != '}')) |
| NEXT; |
| val = xmlDictLookup(ctxt->dict, BAD_CAST base, ctxt->cur - base); |
| if (val == NULL) |
| return(NULL); |
| ret = xmlExpHashGetEntry(ctxt, XML_EXP_ATOM, NULL, NULL, val, 0, 0); |
| if (ret == NULL) |
| return(NULL); |
| SKIP_BLANKS |
| parse_quantifier: |
| if (CUR == '{') { |
| int min, max; |
| |
| NEXT |
| min = xmlExpParseNumber(ctxt); |
| if (min < 0) { |
| xmlExpFree(ctxt, ret); |
| return(NULL); |
| } |
| SKIP_BLANKS |
| if (CUR == ',') { |
| NEXT |
| max = xmlExpParseNumber(ctxt); |
| SKIP_BLANKS |
| } else |
| max = min; |
| if (CUR != '}') { |
| xmlExpFree(ctxt, ret); |
| return(NULL); |
| } |
| NEXT |
| ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL, |
| min, max); |
| SKIP_BLANKS |
| } else if (CUR == '?') { |
| NEXT |
| ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL, |
| 0, 1); |
| SKIP_BLANKS |
| } else if (CUR == '+') { |
| NEXT |
| ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL, |
| 1, -1); |
| SKIP_BLANKS |
| } else if (CUR == '*') { |
| NEXT |
| ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL, |
| 0, -1); |
| SKIP_BLANKS |
| } |
| return(ret); |
| } |
| |
| |
| static xmlExpNodePtr |
| xmlExpParseSeq(xmlExpCtxtPtr ctxt) { |
| xmlExpNodePtr ret, right; |
| |
| ret = xmlExpParseOr(ctxt); |
| SKIP_BLANKS |
| while (CUR == '|') { |
| NEXT |
| right = xmlExpParseOr(ctxt); |
| if (right == NULL) { |
| xmlExpFree(ctxt, ret); |
| return(NULL); |
| } |
| ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, right, NULL, 0, 0); |
| if (ret == NULL) |
| return(NULL); |
| } |
| return(ret); |
| } |
| |
| static xmlExpNodePtr |
| xmlExpParseExpr(xmlExpCtxtPtr ctxt) { |
| xmlExpNodePtr ret, right; |
| |
| ret = xmlExpParseSeq(ctxt); |
| SKIP_BLANKS |
| while (CUR == ',') { |
| NEXT |
| right = xmlExpParseSeq(ctxt); |
| if (right == NULL) { |
| xmlExpFree(ctxt, ret); |
| return(NULL); |
| } |
| ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, right, NULL, 0, 0); |
| if (ret == NULL) |
| return(NULL); |
| } |
| return(ret); |
| } |
| |
| /** |
| * xmlExpParse: |
| * @ctxt: the expressions context |
| * @expr: the 0 terminated string |
| * |
| * Minimal parser for regexps, it understand the following constructs |
| * - string terminals |
| * - choice operator | |
| * - sequence operator , |
| * - subexpressions (...) |
| * - usual cardinality operators + * and ? |
| * - finite sequences { min, max } |
| * - infinite sequences { min, * } |
| * There is minimal checkings made especially no checking on strings values |
| * |
| * Returns a new expression or NULL in case of failure |
| */ |
| xmlExpNodePtr |
| xmlExpParse(xmlExpCtxtPtr ctxt, const char *expr) { |
| xmlExpNodePtr ret; |
| |
| ctxt->expr = expr; |
| ctxt->cur = expr; |
| |
| ret = xmlExpParseExpr(ctxt); |
| SKIP_BLANKS |
| if (*ctxt->cur != 0) { |
| xmlExpFree(ctxt, ret); |
| return(NULL); |
| } |
| return(ret); |
| } |
| |
| static void |
| xmlExpDumpInt(xmlBufferPtr buf, xmlExpNodePtr expr, int glob) { |
| xmlExpNodePtr c; |
| |
| if (expr == NULL) return; |
| if (glob) xmlBufferWriteChar(buf, "("); |
| switch (expr->type) { |
| case XML_EXP_EMPTY: |
| xmlBufferWriteChar(buf, "empty"); |
| break; |
| case XML_EXP_FORBID: |
| xmlBufferWriteChar(buf, "forbidden"); |
| break; |
| case XML_EXP_ATOM: |
| xmlBufferWriteCHAR(buf, expr->exp_str); |
| break; |
| case XML_EXP_SEQ: |
| c = expr->exp_left; |
| if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR)) |
| xmlExpDumpInt(buf, c, 1); |
| else |
| xmlExpDumpInt(buf, c, 0); |
| xmlBufferWriteChar(buf, " , "); |
| c = expr->exp_right; |
| if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR)) |
| xmlExpDumpInt(buf, c, 1); |
| else |
| xmlExpDumpInt(buf, c, 0); |
| break; |
| case XML_EXP_OR: |
| c = expr->exp_left; |
| if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR)) |
| xmlExpDumpInt(buf, c, 1); |
| else |
| xmlExpDumpInt(buf, c, 0); |
| xmlBufferWriteChar(buf, " | "); |
| c = expr->exp_right; |
| if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR)) |
| xmlExpDumpInt(buf, c, 1); |
| else |
| xmlExpDumpInt(buf, c, 0); |
| break; |
| case XML_EXP_COUNT: { |
| char rep[40]; |
| |
| c = expr->exp_left; |
| if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR)) |
| xmlExpDumpInt(buf, c, 1); |
| else |
| xmlExpDumpInt(buf, c, 0); |
| if ((expr->exp_min == 0) && (expr->exp_max == 1)) { |
| rep[0] = '?'; |
| rep[1] = 0; |
| } else if ((expr->exp_min == 0) && (expr->exp_max == -1)) { |
| rep[0] = '*'; |
| rep[1] = 0; |
| } else if ((expr->exp_min == 1) && (expr->exp_max == -1)) { |
| rep[0] = '+'; |
| rep[1] = 0; |
| } else if (expr->exp_max == expr->exp_min) { |
| snprintf(rep, 39, "{%d}", expr->exp_min); |
| } else if (expr->exp_max < 0) { |
| snprintf(rep, 39, "{%d,inf}", expr->exp_min); |
| } else { |
| snprintf(rep, 39, "{%d,%d}", expr->exp_min, expr->exp_max); |
| } |
| rep[39] = 0; |
| xmlBufferWriteChar(buf, rep); |
| break; |
| } |
| default: |
| fprintf(stderr, "Error in tree\n"); |
| } |
| if (glob) |
| xmlBufferWriteChar(buf, ")"); |
| } |
| /** |
| * xmlExpDump: |
| * @buf: a buffer to receive the output |
| * @expr: the compiled expression |
| * |
| * Serialize the expression as compiled to the buffer |
| */ |
| void |
| xmlExpDump(xmlBufferPtr buf, xmlExpNodePtr expr) { |
| if ((buf == NULL) || (expr == NULL)) |
| return; |
| xmlExpDumpInt(buf, expr, 0); |
| } |
| |
| /** |
| * xmlExpMaxToken: |
| * @expr: a compiled expression |
| * |
| * Indicate the maximum number of input a expression can accept |
| * |
| * Returns the maximum length or -1 in case of error |
| */ |
| int |
| xmlExpMaxToken(xmlExpNodePtr expr) { |
| if (expr == NULL) |
| return(-1); |
| return(expr->c_max); |
| } |
| |
| /** |
| * xmlExpCtxtNbNodes: |
| * @ctxt: an expression context |
| * |
| * Debugging facility provides the number of allocated nodes at a that point |
| * |
| * Returns the number of nodes in use or -1 in case of error |
| */ |
| int |
| xmlExpCtxtNbNodes(xmlExpCtxtPtr ctxt) { |
| if (ctxt == NULL) |
| return(-1); |
| return(ctxt->nb_nodes); |
| } |
| |
| /** |
| * xmlExpCtxtNbCons: |
| * @ctxt: an expression context |
| * |
| * Debugging facility provides the number of allocated nodes over lifetime |
| * |
| * Returns the number of nodes ever allocated or -1 in case of error |
| */ |
| int |
| xmlExpCtxtNbCons(xmlExpCtxtPtr ctxt) { |
| if (ctxt == NULL) |
| return(-1); |
| return(ctxt->nb_cons); |
| } |
| |
| #endif /* LIBXML_EXPR_ENABLED */ |
| #define bottom_xmlregexp |
| #include "elfgcchack.h" |
| #endif /* LIBXML_REGEXP_ENABLED */ |