| /* |
| * dict.c: dictionary of reusable strings, just used to avoid allocation |
| * and freeing operations. |
| * |
| * Copyright (C) 2003-2012 Daniel Veillard. |
| * |
| * Permission to use, copy, modify, and distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF |
| * MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND |
| * CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER. |
| * |
| * Author: daniel@veillard.com |
| */ |
| |
| #define IN_LIBXML |
| #include "libxml.h" |
| |
| #include <limits.h> |
| #ifdef HAVE_STDLIB_H |
| #include <stdlib.h> |
| #endif |
| #ifdef HAVE_TIME_H |
| #include <time.h> |
| #endif |
| |
| /* |
| * Following http://www.ocert.org/advisories/ocert-2011-003.html |
| * it seems that having hash randomization might be a good idea |
| * when using XML with untrusted data |
| * Note1: that it works correctly only if compiled with WITH_BIG_KEY |
| * which is the default. |
| * Note2: the fast function used for a small dict won't protect very |
| * well but since the attack is based on growing a very big hash |
| * list we will use the BigKey algo as soon as the hash size grows |
| * over MIN_DICT_SIZE so this actually works |
| */ |
| #if defined(HAVE_RAND) && defined(HAVE_SRAND) && defined(HAVE_TIME) |
| #define DICT_RANDOMIZATION |
| #endif |
| |
| #include <string.h> |
| #ifdef HAVE_STDINT_H |
| #include <stdint.h> |
| #else |
| #ifdef HAVE_INTTYPES_H |
| #include <inttypes.h> |
| #elif defined(_WIN32) |
| typedef unsigned __int32 uint32_t; |
| #endif |
| #endif |
| #include <libxml/tree.h> |
| #include <libxml/dict.h> |
| #include <libxml/xmlmemory.h> |
| #include <libxml/xmlerror.h> |
| #include <libxml/globals.h> |
| |
| /* #define DEBUG_GROW */ |
| /* #define DICT_DEBUG_PATTERNS */ |
| |
| #define MAX_HASH_LEN 3 |
| #define MIN_DICT_SIZE 128 |
| #define MAX_DICT_HASH 8 * 2048 |
| #define WITH_BIG_KEY |
| |
| #ifdef WITH_BIG_KEY |
| #define xmlDictComputeKey(dict, name, len) \ |
| (((dict)->size == MIN_DICT_SIZE) ? \ |
| xmlDictComputeFastKey(name, len, (dict)->seed) : \ |
| xmlDictComputeBigKey(name, len, (dict)->seed)) |
| |
| #define xmlDictComputeQKey(dict, prefix, plen, name, len) \ |
| (((prefix) == NULL) ? \ |
| (xmlDictComputeKey(dict, name, len)) : \ |
| (((dict)->size == MIN_DICT_SIZE) ? \ |
| xmlDictComputeFastQKey(prefix, plen, name, len, (dict)->seed) : \ |
| xmlDictComputeBigQKey(prefix, plen, name, len, (dict)->seed))) |
| |
| #else /* !WITH_BIG_KEY */ |
| #define xmlDictComputeKey(dict, name, len) \ |
| xmlDictComputeFastKey(name, len, (dict)->seed) |
| #define xmlDictComputeQKey(dict, prefix, plen, name, len) \ |
| xmlDictComputeFastQKey(prefix, plen, name, len, (dict)->seed) |
| #endif /* WITH_BIG_KEY */ |
| |
| /* |
| * An entry in the dictionary |
| */ |
| typedef struct _xmlDictEntry xmlDictEntry; |
| typedef xmlDictEntry *xmlDictEntryPtr; |
| struct _xmlDictEntry { |
| struct _xmlDictEntry *next; |
| const xmlChar *name; |
| unsigned int len; |
| int valid; |
| unsigned long okey; |
| }; |
| |
| typedef struct _xmlDictStrings xmlDictStrings; |
| typedef xmlDictStrings *xmlDictStringsPtr; |
| struct _xmlDictStrings { |
| xmlDictStringsPtr next; |
| xmlChar *free; |
| xmlChar *end; |
| size_t size; |
| size_t nbStrings; |
| xmlChar array[1]; |
| }; |
| /* |
| * The entire dictionary |
| */ |
| struct _xmlDict { |
| int ref_counter; |
| |
| struct _xmlDictEntry *dict; |
| size_t size; |
| unsigned int nbElems; |
| xmlDictStringsPtr strings; |
| |
| struct _xmlDict *subdict; |
| /* used for randomization */ |
| int seed; |
| /* used to impose a limit on size */ |
| size_t limit; |
| }; |
| |
| /* |
| * A mutex for modifying the reference counter for shared |
| * dictionaries. |
| */ |
| static xmlRMutexPtr xmlDictMutex = NULL; |
| |
| /* |
| * Whether the dictionary mutex was initialized. |
| */ |
| static int xmlDictInitialized = 0; |
| |
| #ifdef DICT_RANDOMIZATION |
| #ifdef HAVE_RAND_R |
| /* |
| * Internal data for random function, protected by xmlDictMutex |
| */ |
| static unsigned int rand_seed = 0; |
| #endif |
| #endif |
| |
| /** |
| * xmlInitializeDict: |
| * |
| * Do the dictionary mutex initialization. |
| * this function is deprecated |
| * |
| * Returns 0 if initialization was already done, and 1 if that |
| * call led to the initialization |
| */ |
| int xmlInitializeDict(void) { |
| return(0); |
| } |
| |
| /** |
| * __xmlInitializeDict: |
| * |
| * This function is not public |
| * Do the dictionary mutex initialization. |
| * this function is not thread safe, initialization should |
| * normally be done once at setup when called from xmlOnceInit() |
| * we may also land in this code if thread support is not compiled in |
| * |
| * Returns 0 if initialization was already done, and 1 if that |
| * call led to the initialization |
| */ |
| int __xmlInitializeDict(void) { |
| if (xmlDictInitialized) |
| return(1); |
| |
| if ((xmlDictMutex = xmlNewRMutex()) == NULL) |
| return(0); |
| xmlRMutexLock(xmlDictMutex); |
| |
| #ifdef DICT_RANDOMIZATION |
| #ifdef HAVE_RAND_R |
| rand_seed = time(NULL); |
| rand_r(& rand_seed); |
| #else |
| srand(time(NULL)); |
| #endif |
| #endif |
| xmlDictInitialized = 1; |
| xmlRMutexUnlock(xmlDictMutex); |
| return(1); |
| } |
| |
| #ifdef DICT_RANDOMIZATION |
| int __xmlRandom(void) { |
| int ret; |
| |
| if (xmlDictInitialized == 0) |
| __xmlInitializeDict(); |
| |
| xmlRMutexLock(xmlDictMutex); |
| #ifdef HAVE_RAND_R |
| ret = rand_r(& rand_seed); |
| #else |
| ret = rand(); |
| #endif |
| xmlRMutexUnlock(xmlDictMutex); |
| return(ret); |
| } |
| #endif |
| |
| /** |
| * xmlDictCleanup: |
| * |
| * Free the dictionary mutex. Do not call unless sure the library |
| * is not in use anymore ! |
| */ |
| void |
| xmlDictCleanup(void) { |
| if (!xmlDictInitialized) |
| return; |
| |
| xmlFreeRMutex(xmlDictMutex); |
| |
| xmlDictInitialized = 0; |
| } |
| |
| /* |
| * xmlDictAddString: |
| * @dict: the dictionary |
| * @name: the name of the userdata |
| * @len: the length of the name |
| * |
| * Add the string to the array[s] |
| * |
| * Returns the pointer of the local string, or NULL in case of error. |
| */ |
| static const xmlChar * |
| xmlDictAddString(xmlDictPtr dict, const xmlChar *name, unsigned int namelen) { |
| xmlDictStringsPtr pool; |
| const xmlChar *ret; |
| size_t size = 0; /* + sizeof(_xmlDictStrings) == 1024 */ |
| size_t limit = 0; |
| |
| #ifdef DICT_DEBUG_PATTERNS |
| fprintf(stderr, "-"); |
| #endif |
| pool = dict->strings; |
| while (pool != NULL) { |
| if (pool->end - pool->free > namelen) |
| goto found_pool; |
| if (pool->size > size) size = pool->size; |
| limit += pool->size; |
| pool = pool->next; |
| } |
| /* |
| * Not found, need to allocate |
| */ |
| if (pool == NULL) { |
| if ((dict->limit > 0) && (limit > dict->limit)) { |
| return(NULL); |
| } |
| |
| if (size == 0) size = 1000; |
| else size *= 4; /* exponential growth */ |
| if (size < 4 * namelen) |
| size = 4 * namelen; /* just in case ! */ |
| pool = (xmlDictStringsPtr) xmlMalloc(sizeof(xmlDictStrings) + size); |
| if (pool == NULL) |
| return(NULL); |
| pool->size = size; |
| pool->nbStrings = 0; |
| pool->free = &pool->array[0]; |
| pool->end = &pool->array[size]; |
| pool->next = dict->strings; |
| dict->strings = pool; |
| #ifdef DICT_DEBUG_PATTERNS |
| fprintf(stderr, "+"); |
| #endif |
| } |
| found_pool: |
| ret = pool->free; |
| memcpy(pool->free, name, namelen); |
| pool->free += namelen; |
| *(pool->free++) = 0; |
| pool->nbStrings++; |
| return(ret); |
| } |
| |
| /* |
| * xmlDictAddQString: |
| * @dict: the dictionary |
| * @prefix: the prefix of the userdata |
| * @plen: the prefix length |
| * @name: the name of the userdata |
| * @len: the length of the name |
| * |
| * Add the QName to the array[s] |
| * |
| * Returns the pointer of the local string, or NULL in case of error. |
| */ |
| static const xmlChar * |
| xmlDictAddQString(xmlDictPtr dict, const xmlChar *prefix, unsigned int plen, |
| const xmlChar *name, unsigned int namelen) |
| { |
| xmlDictStringsPtr pool; |
| const xmlChar *ret; |
| size_t size = 0; /* + sizeof(_xmlDictStrings) == 1024 */ |
| size_t limit = 0; |
| |
| if (prefix == NULL) return(xmlDictAddString(dict, name, namelen)); |
| |
| #ifdef DICT_DEBUG_PATTERNS |
| fprintf(stderr, "="); |
| #endif |
| pool = dict->strings; |
| while (pool != NULL) { |
| if (pool->end - pool->free > namelen + plen + 1) |
| goto found_pool; |
| if (pool->size > size) size = pool->size; |
| limit += pool->size; |
| pool = pool->next; |
| } |
| /* |
| * Not found, need to allocate |
| */ |
| if (pool == NULL) { |
| if ((dict->limit > 0) && (limit > dict->limit)) { |
| return(NULL); |
| } |
| |
| if (size == 0) size = 1000; |
| else size *= 4; /* exponential growth */ |
| if (size < 4 * (namelen + plen + 1)) |
| size = 4 * (namelen + plen + 1); /* just in case ! */ |
| pool = (xmlDictStringsPtr) xmlMalloc(sizeof(xmlDictStrings) + size); |
| if (pool == NULL) |
| return(NULL); |
| pool->size = size; |
| pool->nbStrings = 0; |
| pool->free = &pool->array[0]; |
| pool->end = &pool->array[size]; |
| pool->next = dict->strings; |
| dict->strings = pool; |
| #ifdef DICT_DEBUG_PATTERNS |
| fprintf(stderr, "+"); |
| #endif |
| } |
| found_pool: |
| ret = pool->free; |
| memcpy(pool->free, prefix, plen); |
| pool->free += plen; |
| *(pool->free++) = ':'; |
| memcpy(pool->free, name, namelen); |
| pool->free += namelen; |
| *(pool->free++) = 0; |
| pool->nbStrings++; |
| return(ret); |
| } |
| |
| #ifdef WITH_BIG_KEY |
| /* |
| * xmlDictComputeBigKey: |
| * |
| * Calculate a hash key using a good hash function that works well for |
| * larger hash table sizes. |
| * |
| * Hash function by "One-at-a-Time Hash" see |
| * http://burtleburtle.net/bob/hash/doobs.html |
| */ |
| |
| static uint32_t |
| xmlDictComputeBigKey(const xmlChar* data, int namelen, int seed) { |
| uint32_t hash; |
| int i; |
| |
| if (namelen <= 0 || data == NULL) return(0); |
| |
| hash = seed; |
| |
| for (i = 0;i < namelen; i++) { |
| hash += data[i]; |
| hash += (hash << 10); |
| hash ^= (hash >> 6); |
| } |
| hash += (hash << 3); |
| hash ^= (hash >> 11); |
| hash += (hash << 15); |
| |
| return hash; |
| } |
| |
| /* |
| * xmlDictComputeBigQKey: |
| * |
| * Calculate a hash key for two strings using a good hash function |
| * that works well for larger hash table sizes. |
| * |
| * Hash function by "One-at-a-Time Hash" see |
| * http://burtleburtle.net/bob/hash/doobs.html |
| * |
| * Neither of the two strings must be NULL. |
| */ |
| static unsigned long |
| xmlDictComputeBigQKey(const xmlChar *prefix, int plen, |
| const xmlChar *name, int len, int seed) |
| { |
| uint32_t hash; |
| int i; |
| |
| hash = seed; |
| |
| for (i = 0;i < plen; i++) { |
| hash += prefix[i]; |
| hash += (hash << 10); |
| hash ^= (hash >> 6); |
| } |
| hash += ':'; |
| hash += (hash << 10); |
| hash ^= (hash >> 6); |
| |
| for (i = 0;i < len; i++) { |
| hash += name[i]; |
| hash += (hash << 10); |
| hash ^= (hash >> 6); |
| } |
| hash += (hash << 3); |
| hash ^= (hash >> 11); |
| hash += (hash << 15); |
| |
| return hash; |
| } |
| #endif /* WITH_BIG_KEY */ |
| |
| /* |
| * xmlDictComputeFastKey: |
| * |
| * Calculate a hash key using a fast hash function that works well |
| * for low hash table fill. |
| */ |
| static unsigned long |
| xmlDictComputeFastKey(const xmlChar *name, int namelen, int seed) { |
| unsigned long value = seed; |
| |
| if (name == NULL) return(0); |
| value = *name; |
| value <<= 5; |
| if (namelen > 10) { |
| value += name[namelen - 1]; |
| namelen = 10; |
| } |
| switch (namelen) { |
| case 10: value += name[9]; |
| case 9: value += name[8]; |
| case 8: value += name[7]; |
| case 7: value += name[6]; |
| case 6: value += name[5]; |
| case 5: value += name[4]; |
| case 4: value += name[3]; |
| case 3: value += name[2]; |
| case 2: value += name[1]; |
| default: break; |
| } |
| return(value); |
| } |
| |
| /* |
| * xmlDictComputeFastQKey: |
| * |
| * Calculate a hash key for two strings using a fast hash function |
| * that works well for low hash table fill. |
| * |
| * Neither of the two strings must be NULL. |
| */ |
| static unsigned long |
| xmlDictComputeFastQKey(const xmlChar *prefix, int plen, |
| const xmlChar *name, int len, int seed) |
| { |
| unsigned long value = (unsigned long) seed; |
| |
| if (plen == 0) |
| value += 30 * (unsigned long) ':'; |
| else |
| value += 30 * (*prefix); |
| |
| if (len > 10) { |
| int offset = len - (plen + 1 + 1); |
| if (offset < 0) |
| offset = len - (10 + 1); |
| value += name[offset]; |
| len = 10; |
| if (plen > 10) |
| plen = 10; |
| } |
| switch (plen) { |
| case 10: value += prefix[9]; |
| case 9: value += prefix[8]; |
| case 8: value += prefix[7]; |
| case 7: value += prefix[6]; |
| case 6: value += prefix[5]; |
| case 5: value += prefix[4]; |
| case 4: value += prefix[3]; |
| case 3: value += prefix[2]; |
| case 2: value += prefix[1]; |
| case 1: value += prefix[0]; |
| default: break; |
| } |
| len -= plen; |
| if (len > 0) { |
| value += (unsigned long) ':'; |
| len--; |
| } |
| switch (len) { |
| case 10: value += name[9]; |
| case 9: value += name[8]; |
| case 8: value += name[7]; |
| case 7: value += name[6]; |
| case 6: value += name[5]; |
| case 5: value += name[4]; |
| case 4: value += name[3]; |
| case 3: value += name[2]; |
| case 2: value += name[1]; |
| case 1: value += name[0]; |
| default: break; |
| } |
| return(value); |
| } |
| |
| /** |
| * xmlDictCreate: |
| * |
| * Create a new dictionary |
| * |
| * Returns the newly created dictionary, or NULL if an error occurred. |
| */ |
| xmlDictPtr |
| xmlDictCreate(void) { |
| xmlDictPtr dict; |
| |
| if (!xmlDictInitialized) |
| if (!__xmlInitializeDict()) |
| return(NULL); |
| |
| #ifdef DICT_DEBUG_PATTERNS |
| fprintf(stderr, "C"); |
| #endif |
| |
| dict = xmlMalloc(sizeof(xmlDict)); |
| if (dict) { |
| dict->ref_counter = 1; |
| dict->limit = 0; |
| |
| dict->size = MIN_DICT_SIZE; |
| dict->nbElems = 0; |
| dict->dict = xmlMalloc(MIN_DICT_SIZE * sizeof(xmlDictEntry)); |
| dict->strings = NULL; |
| dict->subdict = NULL; |
| if (dict->dict) { |
| memset(dict->dict, 0, MIN_DICT_SIZE * sizeof(xmlDictEntry)); |
| #ifdef DICT_RANDOMIZATION |
| dict->seed = __xmlRandom(); |
| #else |
| dict->seed = 0; |
| #endif |
| return(dict); |
| } |
| xmlFree(dict); |
| } |
| return(NULL); |
| } |
| |
| /** |
| * xmlDictCreateSub: |
| * @sub: an existing dictionary |
| * |
| * Create a new dictionary, inheriting strings from the read-only |
| * dictionary @sub. On lookup, strings are first searched in the |
| * new dictionary, then in @sub, and if not found are created in the |
| * new dictionary. |
| * |
| * Returns the newly created dictionary, or NULL if an error occurred. |
| */ |
| xmlDictPtr |
| xmlDictCreateSub(xmlDictPtr sub) { |
| xmlDictPtr dict = xmlDictCreate(); |
| |
| if ((dict != NULL) && (sub != NULL)) { |
| #ifdef DICT_DEBUG_PATTERNS |
| fprintf(stderr, "R"); |
| #endif |
| dict->seed = sub->seed; |
| dict->subdict = sub; |
| xmlDictReference(dict->subdict); |
| } |
| return(dict); |
| } |
| |
| /** |
| * xmlDictReference: |
| * @dict: the dictionary |
| * |
| * Increment the reference counter of a dictionary |
| * |
| * Returns 0 in case of success and -1 in case of error |
| */ |
| int |
| xmlDictReference(xmlDictPtr dict) { |
| if (!xmlDictInitialized) |
| if (!__xmlInitializeDict()) |
| return(-1); |
| |
| if (dict == NULL) return -1; |
| xmlRMutexLock(xmlDictMutex); |
| dict->ref_counter++; |
| xmlRMutexUnlock(xmlDictMutex); |
| return(0); |
| } |
| |
| /** |
| * xmlDictGrow: |
| * @dict: the dictionary |
| * @size: the new size of the dictionary |
| * |
| * resize the dictionary |
| * |
| * Returns 0 in case of success, -1 in case of failure |
| */ |
| static int |
| xmlDictGrow(xmlDictPtr dict, size_t size) { |
| unsigned long key, okey; |
| size_t oldsize, i; |
| xmlDictEntryPtr iter, next; |
| struct _xmlDictEntry *olddict; |
| #ifdef DEBUG_GROW |
| unsigned long nbElem = 0; |
| #endif |
| int ret = 0; |
| int keep_keys = 1; |
| |
| if (dict == NULL) |
| return(-1); |
| if (size < 8) |
| return(-1); |
| if (size > 8 * 2048) |
| return(-1); |
| |
| #ifdef DICT_DEBUG_PATTERNS |
| fprintf(stderr, "*"); |
| #endif |
| |
| oldsize = dict->size; |
| olddict = dict->dict; |
| if (olddict == NULL) |
| return(-1); |
| if (oldsize == MIN_DICT_SIZE) |
| keep_keys = 0; |
| |
| dict->dict = xmlMalloc(size * sizeof(xmlDictEntry)); |
| if (dict->dict == NULL) { |
| dict->dict = olddict; |
| return(-1); |
| } |
| memset(dict->dict, 0, size * sizeof(xmlDictEntry)); |
| dict->size = size; |
| |
| /* If the two loops are merged, there would be situations where |
| a new entry needs to allocated and data copied into it from |
| the main dict. It is nicer to run through the array twice, first |
| copying all the elements in the main array (less probability of |
| allocate) and then the rest, so we only free in the second loop. |
| */ |
| for (i = 0; i < oldsize; i++) { |
| if (olddict[i].valid == 0) |
| continue; |
| |
| if (keep_keys) |
| okey = olddict[i].okey; |
| else |
| okey = xmlDictComputeKey(dict, olddict[i].name, olddict[i].len); |
| key = okey % dict->size; |
| |
| if (dict->dict[key].valid == 0) { |
| memcpy(&(dict->dict[key]), &(olddict[i]), sizeof(xmlDictEntry)); |
| dict->dict[key].next = NULL; |
| dict->dict[key].okey = okey; |
| } else { |
| xmlDictEntryPtr entry; |
| |
| entry = xmlMalloc(sizeof(xmlDictEntry)); |
| if (entry != NULL) { |
| entry->name = olddict[i].name; |
| entry->len = olddict[i].len; |
| entry->okey = okey; |
| entry->next = dict->dict[key].next; |
| entry->valid = 1; |
| dict->dict[key].next = entry; |
| } else { |
| /* |
| * we don't have much ways to alert from herei |
| * result is losing an entry and unicity guarantee |
| */ |
| ret = -1; |
| } |
| } |
| #ifdef DEBUG_GROW |
| nbElem++; |
| #endif |
| } |
| |
| for (i = 0; i < oldsize; i++) { |
| iter = olddict[i].next; |
| while (iter) { |
| next = iter->next; |
| |
| /* |
| * put back the entry in the new dict |
| */ |
| |
| if (keep_keys) |
| okey = iter->okey; |
| else |
| okey = xmlDictComputeKey(dict, iter->name, iter->len); |
| key = okey % dict->size; |
| if (dict->dict[key].valid == 0) { |
| memcpy(&(dict->dict[key]), iter, sizeof(xmlDictEntry)); |
| dict->dict[key].next = NULL; |
| dict->dict[key].valid = 1; |
| dict->dict[key].okey = okey; |
| xmlFree(iter); |
| } else { |
| iter->next = dict->dict[key].next; |
| iter->okey = okey; |
| dict->dict[key].next = iter; |
| } |
| |
| #ifdef DEBUG_GROW |
| nbElem++; |
| #endif |
| |
| iter = next; |
| } |
| } |
| |
| xmlFree(olddict); |
| |
| #ifdef DEBUG_GROW |
| xmlGenericError(xmlGenericErrorContext, |
| "xmlDictGrow : from %lu to %lu, %u elems\n", oldsize, size, nbElem); |
| #endif |
| |
| return(ret); |
| } |
| |
| /** |
| * xmlDictFree: |
| * @dict: the dictionary |
| * |
| * Free the hash @dict and its contents. The userdata is |
| * deallocated with @f if provided. |
| */ |
| void |
| xmlDictFree(xmlDictPtr dict) { |
| size_t i; |
| xmlDictEntryPtr iter; |
| xmlDictEntryPtr next; |
| int inside_dict = 0; |
| xmlDictStringsPtr pool, nextp; |
| |
| if (dict == NULL) |
| return; |
| |
| if (!xmlDictInitialized) |
| if (!__xmlInitializeDict()) |
| return; |
| |
| /* decrement the counter, it may be shared by a parser and docs */ |
| xmlRMutexLock(xmlDictMutex); |
| dict->ref_counter--; |
| if (dict->ref_counter > 0) { |
| xmlRMutexUnlock(xmlDictMutex); |
| return; |
| } |
| |
| xmlRMutexUnlock(xmlDictMutex); |
| |
| if (dict->subdict != NULL) { |
| xmlDictFree(dict->subdict); |
| } |
| |
| if (dict->dict) { |
| for(i = 0; ((i < dict->size) && (dict->nbElems > 0)); i++) { |
| iter = &(dict->dict[i]); |
| if (iter->valid == 0) |
| continue; |
| inside_dict = 1; |
| while (iter) { |
| next = iter->next; |
| if (!inside_dict) |
| xmlFree(iter); |
| dict->nbElems--; |
| inside_dict = 0; |
| iter = next; |
| } |
| } |
| xmlFree(dict->dict); |
| } |
| pool = dict->strings; |
| while (pool != NULL) { |
| nextp = pool->next; |
| xmlFree(pool); |
| pool = nextp; |
| } |
| xmlFree(dict); |
| } |
| |
| /** |
| * xmlDictLookup: |
| * @dict: the dictionary |
| * @name: the name of the userdata |
| * @len: the length of the name, if -1 it is recomputed |
| * |
| * Add the @name to the dictionary @dict if not present. |
| * |
| * Returns the internal copy of the name or NULL in case of internal error |
| */ |
| const xmlChar * |
| xmlDictLookup(xmlDictPtr dict, const xmlChar *name, int len) { |
| unsigned long key, okey, nbi = 0; |
| xmlDictEntryPtr entry; |
| xmlDictEntryPtr insert; |
| const xmlChar *ret; |
| unsigned int l; |
| |
| if ((dict == NULL) || (name == NULL)) |
| return(NULL); |
| |
| if (len < 0) |
| l = strlen((const char *) name); |
| else |
| l = len; |
| |
| if (((dict->limit > 0) && (l >= dict->limit)) || |
| (l > INT_MAX / 2)) |
| return(NULL); |
| |
| /* |
| * Check for duplicate and insertion location. |
| */ |
| okey = xmlDictComputeKey(dict, name, l); |
| key = okey % dict->size; |
| if (dict->dict[key].valid == 0) { |
| insert = NULL; |
| } else { |
| for (insert = &(dict->dict[key]); insert->next != NULL; |
| insert = insert->next) { |
| #ifdef __GNUC__ |
| if ((insert->okey == okey) && (insert->len == l)) { |
| if (!memcmp(insert->name, name, l)) |
| return(insert->name); |
| } |
| #else |
| if ((insert->okey == okey) && (insert->len == l) && |
| (!xmlStrncmp(insert->name, name, l))) |
| return(insert->name); |
| #endif |
| nbi++; |
| } |
| #ifdef __GNUC__ |
| if ((insert->okey == okey) && (insert->len == l)) { |
| if (!memcmp(insert->name, name, l)) |
| return(insert->name); |
| } |
| #else |
| if ((insert->okey == okey) && (insert->len == l) && |
| (!xmlStrncmp(insert->name, name, l))) |
| return(insert->name); |
| #endif |
| } |
| |
| if (dict->subdict) { |
| unsigned long skey; |
| |
| /* we cannot always reuse the same okey for the subdict */ |
| if (((dict->size == MIN_DICT_SIZE) && |
| (dict->subdict->size != MIN_DICT_SIZE)) || |
| ((dict->size != MIN_DICT_SIZE) && |
| (dict->subdict->size == MIN_DICT_SIZE))) |
| skey = xmlDictComputeKey(dict->subdict, name, l); |
| else |
| skey = okey; |
| |
| key = skey % dict->subdict->size; |
| if (dict->subdict->dict[key].valid != 0) { |
| xmlDictEntryPtr tmp; |
| |
| for (tmp = &(dict->subdict->dict[key]); tmp->next != NULL; |
| tmp = tmp->next) { |
| #ifdef __GNUC__ |
| if ((tmp->okey == skey) && (tmp->len == l)) { |
| if (!memcmp(tmp->name, name, l)) |
| return(tmp->name); |
| } |
| #else |
| if ((tmp->okey == skey) && (tmp->len == l) && |
| (!xmlStrncmp(tmp->name, name, l))) |
| return(tmp->name); |
| #endif |
| nbi++; |
| } |
| #ifdef __GNUC__ |
| if ((tmp->okey == skey) && (tmp->len == l)) { |
| if (!memcmp(tmp->name, name, l)) |
| return(tmp->name); |
| } |
| #else |
| if ((tmp->okey == skey) && (tmp->len == l) && |
| (!xmlStrncmp(tmp->name, name, l))) |
| return(tmp->name); |
| #endif |
| } |
| key = okey % dict->size; |
| } |
| |
| ret = xmlDictAddString(dict, name, l); |
| if (ret == NULL) |
| return(NULL); |
| if (insert == NULL) { |
| entry = &(dict->dict[key]); |
| } else { |
| entry = xmlMalloc(sizeof(xmlDictEntry)); |
| if (entry == NULL) |
| return(NULL); |
| } |
| entry->name = ret; |
| entry->len = l; |
| entry->next = NULL; |
| entry->valid = 1; |
| entry->okey = okey; |
| |
| |
| if (insert != NULL) |
| insert->next = entry; |
| |
| dict->nbElems++; |
| |
| if ((nbi > MAX_HASH_LEN) && |
| (dict->size <= ((MAX_DICT_HASH / 2) / MAX_HASH_LEN))) { |
| if (xmlDictGrow(dict, MAX_HASH_LEN * 2 * dict->size) != 0) |
| return(NULL); |
| } |
| /* Note that entry may have been freed at this point by xmlDictGrow */ |
| |
| return(ret); |
| } |
| |
| /** |
| * xmlDictExists: |
| * @dict: the dictionary |
| * @name: the name of the userdata |
| * @len: the length of the name, if -1 it is recomputed |
| * |
| * Check if the @name exists in the dictionary @dict. |
| * |
| * Returns the internal copy of the name or NULL if not found. |
| */ |
| const xmlChar * |
| xmlDictExists(xmlDictPtr dict, const xmlChar *name, int len) { |
| unsigned long key, okey, nbi = 0; |
| xmlDictEntryPtr insert; |
| unsigned int l; |
| |
| if ((dict == NULL) || (name == NULL)) |
| return(NULL); |
| |
| if (len < 0) |
| l = strlen((const char *) name); |
| else |
| l = len; |
| if (((dict->limit > 0) && (l >= dict->limit)) || |
| (l > INT_MAX / 2)) |
| return(NULL); |
| |
| /* |
| * Check for duplicate and insertion location. |
| */ |
| okey = xmlDictComputeKey(dict, name, l); |
| key = okey % dict->size; |
| if (dict->dict[key].valid == 0) { |
| insert = NULL; |
| } else { |
| for (insert = &(dict->dict[key]); insert->next != NULL; |
| insert = insert->next) { |
| #ifdef __GNUC__ |
| if ((insert->okey == okey) && (insert->len == l)) { |
| if (!memcmp(insert->name, name, l)) |
| return(insert->name); |
| } |
| #else |
| if ((insert->okey == okey) && (insert->len == l) && |
| (!xmlStrncmp(insert->name, name, l))) |
| return(insert->name); |
| #endif |
| nbi++; |
| } |
| #ifdef __GNUC__ |
| if ((insert->okey == okey) && (insert->len == l)) { |
| if (!memcmp(insert->name, name, l)) |
| return(insert->name); |
| } |
| #else |
| if ((insert->okey == okey) && (insert->len == l) && |
| (!xmlStrncmp(insert->name, name, l))) |
| return(insert->name); |
| #endif |
| } |
| |
| if (dict->subdict) { |
| unsigned long skey; |
| |
| /* we cannot always reuse the same okey for the subdict */ |
| if (((dict->size == MIN_DICT_SIZE) && |
| (dict->subdict->size != MIN_DICT_SIZE)) || |
| ((dict->size != MIN_DICT_SIZE) && |
| (dict->subdict->size == MIN_DICT_SIZE))) |
| skey = xmlDictComputeKey(dict->subdict, name, l); |
| else |
| skey = okey; |
| |
| key = skey % dict->subdict->size; |
| if (dict->subdict->dict[key].valid != 0) { |
| xmlDictEntryPtr tmp; |
| |
| for (tmp = &(dict->subdict->dict[key]); tmp->next != NULL; |
| tmp = tmp->next) { |
| #ifdef __GNUC__ |
| if ((tmp->okey == skey) && (tmp->len == l)) { |
| if (!memcmp(tmp->name, name, l)) |
| return(tmp->name); |
| } |
| #else |
| if ((tmp->okey == skey) && (tmp->len == l) && |
| (!xmlStrncmp(tmp->name, name, l))) |
| return(tmp->name); |
| #endif |
| nbi++; |
| } |
| #ifdef __GNUC__ |
| if ((tmp->okey == skey) && (tmp->len == l)) { |
| if (!memcmp(tmp->name, name, l)) |
| return(tmp->name); |
| } |
| #else |
| if ((tmp->okey == skey) && (tmp->len == l) && |
| (!xmlStrncmp(tmp->name, name, l))) |
| return(tmp->name); |
| #endif |
| } |
| } |
| |
| /* not found */ |
| return(NULL); |
| } |
| |
| /** |
| * xmlDictQLookup: |
| * @dict: the dictionary |
| * @prefix: the prefix |
| * @name: the name |
| * |
| * Add the QName @prefix:@name to the hash @dict if not present. |
| * |
| * Returns the internal copy of the QName or NULL in case of internal error |
| */ |
| const xmlChar * |
| xmlDictQLookup(xmlDictPtr dict, const xmlChar *prefix, const xmlChar *name) { |
| unsigned long okey, key, nbi = 0; |
| xmlDictEntryPtr entry; |
| xmlDictEntryPtr insert; |
| const xmlChar *ret; |
| unsigned int len, plen, l; |
| |
| if ((dict == NULL) || (name == NULL)) |
| return(NULL); |
| if (prefix == NULL) |
| return(xmlDictLookup(dict, name, -1)); |
| |
| l = len = strlen((const char *) name); |
| plen = strlen((const char *) prefix); |
| len += 1 + plen; |
| |
| /* |
| * Check for duplicate and insertion location. |
| */ |
| okey = xmlDictComputeQKey(dict, prefix, plen, name, l); |
| key = okey % dict->size; |
| if (dict->dict[key].valid == 0) { |
| insert = NULL; |
| } else { |
| for (insert = &(dict->dict[key]); insert->next != NULL; |
| insert = insert->next) { |
| if ((insert->okey == okey) && (insert->len == len) && |
| (xmlStrQEqual(prefix, name, insert->name))) |
| return(insert->name); |
| nbi++; |
| } |
| if ((insert->okey == okey) && (insert->len == len) && |
| (xmlStrQEqual(prefix, name, insert->name))) |
| return(insert->name); |
| } |
| |
| if (dict->subdict) { |
| unsigned long skey; |
| |
| /* we cannot always reuse the same okey for the subdict */ |
| if (((dict->size == MIN_DICT_SIZE) && |
| (dict->subdict->size != MIN_DICT_SIZE)) || |
| ((dict->size != MIN_DICT_SIZE) && |
| (dict->subdict->size == MIN_DICT_SIZE))) |
| skey = xmlDictComputeQKey(dict->subdict, prefix, plen, name, l); |
| else |
| skey = okey; |
| |
| key = skey % dict->subdict->size; |
| if (dict->subdict->dict[key].valid != 0) { |
| xmlDictEntryPtr tmp; |
| for (tmp = &(dict->subdict->dict[key]); tmp->next != NULL; |
| tmp = tmp->next) { |
| if ((tmp->okey == skey) && (tmp->len == len) && |
| (xmlStrQEqual(prefix, name, tmp->name))) |
| return(tmp->name); |
| nbi++; |
| } |
| if ((tmp->okey == skey) && (tmp->len == len) && |
| (xmlStrQEqual(prefix, name, tmp->name))) |
| return(tmp->name); |
| } |
| key = okey % dict->size; |
| } |
| |
| ret = xmlDictAddQString(dict, prefix, plen, name, l); |
| if (ret == NULL) |
| return(NULL); |
| if (insert == NULL) { |
| entry = &(dict->dict[key]); |
| } else { |
| entry = xmlMalloc(sizeof(xmlDictEntry)); |
| if (entry == NULL) |
| return(NULL); |
| } |
| entry->name = ret; |
| entry->len = len; |
| entry->next = NULL; |
| entry->valid = 1; |
| entry->okey = okey; |
| |
| if (insert != NULL) |
| insert->next = entry; |
| |
| dict->nbElems++; |
| |
| if ((nbi > MAX_HASH_LEN) && |
| (dict->size <= ((MAX_DICT_HASH / 2) / MAX_HASH_LEN))) |
| xmlDictGrow(dict, MAX_HASH_LEN * 2 * dict->size); |
| /* Note that entry may have been freed at this point by xmlDictGrow */ |
| |
| return(ret); |
| } |
| |
| /** |
| * xmlDictOwns: |
| * @dict: the dictionary |
| * @str: the string |
| * |
| * check if a string is owned by the disctionary |
| * |
| * Returns 1 if true, 0 if false and -1 in case of error |
| * -1 in case of error |
| */ |
| int |
| xmlDictOwns(xmlDictPtr dict, const xmlChar *str) { |
| xmlDictStringsPtr pool; |
| |
| if ((dict == NULL) || (str == NULL)) |
| return(-1); |
| pool = dict->strings; |
| while (pool != NULL) { |
| if ((str >= &pool->array[0]) && (str <= pool->free)) |
| return(1); |
| pool = pool->next; |
| } |
| if (dict->subdict) |
| return(xmlDictOwns(dict->subdict, str)); |
| return(0); |
| } |
| |
| /** |
| * xmlDictSize: |
| * @dict: the dictionary |
| * |
| * Query the number of elements installed in the hash @dict. |
| * |
| * Returns the number of elements in the dictionary or |
| * -1 in case of error |
| */ |
| int |
| xmlDictSize(xmlDictPtr dict) { |
| if (dict == NULL) |
| return(-1); |
| if (dict->subdict) |
| return(dict->nbElems + dict->subdict->nbElems); |
| return(dict->nbElems); |
| } |
| |
| /** |
| * xmlDictSetLimit: |
| * @dict: the dictionary |
| * @limit: the limit in bytes |
| * |
| * Set a size limit for the dictionary |
| * Added in 2.9.0 |
| * |
| * Returns the previous limit of the dictionary or 0 |
| */ |
| size_t |
| xmlDictSetLimit(xmlDictPtr dict, size_t limit) { |
| size_t ret; |
| |
| if (dict == NULL) |
| return(0); |
| ret = dict->limit; |
| dict->limit = limit; |
| return(ret); |
| } |
| |
| /** |
| * xmlDictGetUsage: |
| * @dict: the dictionary |
| * |
| * Get how much memory is used by a dictionary for strings |
| * Added in 2.9.0 |
| * |
| * Returns the amount of strings allocated |
| */ |
| size_t |
| xmlDictGetUsage(xmlDictPtr dict) { |
| xmlDictStringsPtr pool; |
| size_t limit = 0; |
| |
| if (dict == NULL) |
| return(0); |
| pool = dict->strings; |
| while (pool != NULL) { |
| limit += pool->size; |
| pool = pool->next; |
| } |
| return(limit); |
| } |
| |
| #define bottom_dict |
| #include "elfgcchack.h" |