blob: e9053a359b33b5f65f8096fd914823fe6fa0b486 [file] [log] [blame]
/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include <time.h>
#include "libyuv/convert_argb.h"
#include "libyuv/convert_from.h"
#include "libyuv/compare.h"
#include "libyuv/cpu_id.h"
#include "libyuv/format_conversion.h"
#include "libyuv/planar_functions.h"
#include "libyuv/rotate.h"
#include "../unit_test/unit_test.h"
#if defined(_MSC_VER)
#define SIMD_ALIGNED(var) __declspec(align(16)) var
#else // __GNUC__
#define SIMD_ALIGNED(var) var __attribute__((aligned(16)))
#endif
namespace libyuv {
#define TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, N, NEG) \
TEST_F(libyuvTest, FMT_PLANAR##To##FMT_B##N##_OptVsC) { \
const int kWidth = 1280; \
const int kHeight = 720; \
const int kStride = (kWidth * 8 * BPP_B + 7) / 8; \
align_buffer_16(src_y, kWidth * kHeight); \
align_buffer_16(src_u, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(src_v, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_argb_c, kStride * kHeight); \
align_buffer_16(dst_argb_opt, kStride * kHeight); \
srandom(time(NULL)); \
for (int i = 0; i < kHeight; ++i) \
for (int j = 0; j < kWidth; ++j) \
src_y[(i * kWidth) + j] = (random() & 0xff); \
for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) \
for (int j = 0; j < kWidth / SUBSAMP_X; ++j) { \
src_u[(i * kWidth / SUBSAMP_X) + j] = (random() & 0xff); \
src_v[(i * kWidth / SUBSAMP_X) + j] = (random() & 0xff); \
} \
MaskCpuFlags(kCpuInitialized); \
FMT_PLANAR##To##FMT_B(src_y, kWidth, \
src_u, kWidth / SUBSAMP_X, \
src_v, kWidth / SUBSAMP_X, \
dst_argb_c, kStride, \
kWidth, NEG kHeight); \
MaskCpuFlags(-1); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_PLANAR##To##FMT_B(src_y, kWidth, \
src_u, kWidth / SUBSAMP_X, \
src_v, kWidth / SUBSAMP_X, \
dst_argb_opt, kStride, \
kWidth, NEG kHeight); \
} \
int max_diff = 0; \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth * BPP_B; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_argb_c[i * kWidth * BPP_B + j]) - \
static_cast<int>(dst_argb_opt[i * kWidth * BPP_B + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 2); \
free_aligned_buffer_16(src_y) \
free_aligned_buffer_16(src_u) \
free_aligned_buffer_16(src_v) \
free_aligned_buffer_16(dst_argb_c) \
free_aligned_buffer_16(dst_argb_opt) \
}
#define TESTPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B) \
TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, , +) \
TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, Invert, -)
TESTPLANARTOB(I420, 2, 2, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, BGRA, 4)
TESTPLANARTOB(I420, 2, 2, ABGR, 4)
TESTPLANARTOB(I420, 2, 2, RGBA, 4)
TESTPLANARTOB(I420, 2, 2, RAW, 3)
TESTPLANARTOB(I420, 2, 2, RGB24, 3)
TESTPLANARTOB(I420, 2, 2, RGB565, 2)
TESTPLANARTOB(I420, 2, 2, ARGB1555, 2)
TESTPLANARTOB(I420, 2, 2, ARGB4444, 2)
TESTPLANARTOB(I422, 2, 1, ARGB, 4)
TESTPLANARTOB(I422, 2, 1, BGRA, 4)
TESTPLANARTOB(I422, 2, 1, ABGR, 4)
TESTPLANARTOB(I422, 2, 1, RGBA, 4)
TESTPLANARTOB(I411, 4, 1, ARGB, 4)
TESTPLANARTOB(I444, 1, 1, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, YUY2, 2)
TESTPLANARTOB(I420, 2, 2, UYVY, 2)
// TODO(fbarchard): Re-enable test and fix valgrind.
// TESTPLANARTOB(I420, 2, 2, V210, 16 / 6)
TESTPLANARTOB(I420, 2, 2, I400, 1)
TESTPLANARTOB(I420, 2, 2, BayerBGGR, 1)
TESTPLANARTOB(I420, 2, 2, BayerRGGB, 1)
TESTPLANARTOB(I420, 2, 2, BayerGBRG, 1)
TESTPLANARTOB(I420, 2, 2, BayerGRBG, 1)
#define TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \
N, NEG) \
TEST_F(libyuvTest, FMT_PLANAR##To##FMT_B##N##_OptVsC) { \
const int kWidth = 1280; \
const int kHeight = 720; \
align_buffer_16(src_y, kWidth * kHeight); \
align_buffer_16(src_uv, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y * 2); \
align_buffer_16(dst_argb_c, (kWidth * BPP_B) * kHeight); \
align_buffer_16(dst_argb_opt, (kWidth * BPP_B) * kHeight); \
srandom(time(NULL)); \
for (int i = 0; i < kHeight; ++i) \
for (int j = 0; j < kWidth; ++j) \
src_y[(i * kWidth) + j] = (random() & 0xff); \
for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) \
for (int j = 0; j < kWidth / SUBSAMP_X * 2; ++j) { \
src_uv[(i * kWidth / SUBSAMP_X) * 2 + j] = (random() & 0xff); \
} \
MaskCpuFlags(kCpuInitialized); \
FMT_PLANAR##To##FMT_B(src_y, kWidth, \
src_uv, kWidth / SUBSAMP_X * 2, \
dst_argb_c, kWidth * BPP_B, \
kWidth, NEG kHeight); \
MaskCpuFlags(-1); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_PLANAR##To##FMT_B(src_y, kWidth, \
src_uv, kWidth / SUBSAMP_X * 2, \
dst_argb_opt, kWidth * BPP_B, \
kWidth, NEG kHeight); \
} \
int max_diff = 0; \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth * BPP_B; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_argb_c[i * kWidth * BPP_B + j]) - \
static_cast<int>(dst_argb_opt[i * kWidth * BPP_B + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 3); \
free_aligned_buffer_16(src_y) \
free_aligned_buffer_16(src_uv) \
free_aligned_buffer_16(dst_argb_c) \
free_aligned_buffer_16(dst_argb_opt) \
}
#define TESTBIPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B) \
TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, , +) \
TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, Invert, -)
TESTBIPLANARTOB(NV12, 2, 2, ARGB, 4)
TESTBIPLANARTOB(NV21, 2, 2, ARGB, 4)
TESTBIPLANARTOB(NV12, 2, 2, RGB565, 2)
TESTBIPLANARTOB(NV21, 2, 2, RGB565, 2)
#define TESTATOPLANARI(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, N, NEG) \
TEST_F(libyuvTest, FMT_A##To##FMT_PLANAR##N##_OptVsC) { \
const int kWidth = 1280; \
const int kHeight = 720; \
const int kStride = (kWidth * 8 * BPP_A + 7) / 8; \
align_buffer_16(src_argb, kStride * kHeight); \
align_buffer_16(dst_y_c, kWidth * kHeight); \
align_buffer_16(dst_u_c, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_v_c, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_y_opt, kWidth * kHeight); \
align_buffer_16(dst_u_opt, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
align_buffer_16(dst_v_opt, kWidth / SUBSAMP_X * kHeight / SUBSAMP_Y); \
srandom(time(NULL)); \
for (int i = 0; i < kHeight; ++i) \
for (int j = 0; j < kStride; ++j) \
src_argb[(i * kStride) + j] = (random() & 0xff); \
MaskCpuFlags(kCpuInitialized); \
FMT_A##To##FMT_PLANAR(src_argb, kStride, \
dst_y_c, kWidth, \
dst_u_c, kWidth / SUBSAMP_X, \
dst_v_c, kWidth / SUBSAMP_X, \
kWidth, NEG kHeight); \
MaskCpuFlags(-1); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_A##To##FMT_PLANAR(src_argb, kStride, \
dst_y_opt, kWidth, \
dst_u_opt, kWidth / SUBSAMP_X, \
dst_v_opt, kWidth / SUBSAMP_X, \
kWidth, NEG kHeight); \
} \
int max_diff = 0; \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_y_c[i * kWidth + j]) - \
static_cast<int>(dst_y_opt[i * kWidth + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 2); \
for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) { \
for (int j = 0; j < kWidth / SUBSAMP_X; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_u_c[i * kWidth / SUBSAMP_X + j]) - \
static_cast<int>(dst_u_opt[i * kWidth / SUBSAMP_X + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 2); \
for (int i = 0; i < kHeight / SUBSAMP_Y; ++i) { \
for (int j = 0; j < kWidth / SUBSAMP_X; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_v_c[i * kWidth / SUBSAMP_X + j]) - \
static_cast<int>(dst_v_opt[i * kWidth / SUBSAMP_X + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 2); \
free_aligned_buffer_16(dst_y_c) \
free_aligned_buffer_16(dst_u_c) \
free_aligned_buffer_16(dst_v_c) \
free_aligned_buffer_16(dst_y_opt) \
free_aligned_buffer_16(dst_u_opt) \
free_aligned_buffer_16(dst_v_opt) \
free_aligned_buffer_16(src_argb) \
}
#define TESTATOPLANAR(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \
TESTATOPLANARI(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, , +) \
TESTATOPLANARI(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, Invert, -)
TESTATOPLANAR(ARGB, 4, I420, 2, 2)
TESTATOPLANAR(BGRA, 4, I420, 2, 2)
TESTATOPLANAR(ABGR, 4, I420, 2, 2)
TESTATOPLANAR(RGBA, 4, I420, 2, 2)
TESTATOPLANAR(RAW, 3, I420, 2, 2)
TESTATOPLANAR(RGB24, 3, I420, 2, 2)
TESTATOPLANAR(RGB565, 2, I420, 2, 2)
TESTATOPLANAR(ARGB1555, 2, I420, 2, 2)
TESTATOPLANAR(ARGB4444, 2, I420, 2, 2)
// TESTATOPLANAR(ARGB, 4, I411, 4, 1)
TESTATOPLANAR(ARGB, 4, I422, 2, 1)
// TESTATOPLANAR(ARGB, 4, I444, 1, 1)
// TODO(fbarchard): Implement and test 411 and 444
TESTATOPLANAR(YUY2, 2, I420, 2, 2)
TESTATOPLANAR(UYVY, 2, I420, 2, 2)
TESTATOPLANAR(YUY2, 2, I422, 2, 1)
TESTATOPLANAR(UYVY, 2, I422, 2, 1)
TESTATOPLANAR(V210, 16 / 6, I420, 2, 2)
TESTATOPLANAR(I400, 1, I420, 2, 2)
TESTATOPLANAR(BayerBGGR, 1, I420, 2, 2)
TESTATOPLANAR(BayerRGGB, 1, I420, 2, 2)
TESTATOPLANAR(BayerGBRG, 1, I420, 2, 2)
TESTATOPLANAR(BayerGRBG, 1, I420, 2, 2)
#define TESTATOBI(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B, N, NEG) \
TEST_F(libyuvTest, FMT_A##To##FMT_B##N##_OptVsC) { \
const int kWidth = 1280; \
const int kHeight = 720; \
align_buffer_16(src_argb, (kWidth * BPP_A) * kHeight); \
align_buffer_16(dst_argb_c, (kWidth * BPP_B) * kHeight); \
align_buffer_16(dst_argb_opt, (kWidth * BPP_B) * kHeight); \
srandom(time(NULL)); \
for (int i = 0; i < kHeight * kWidth * BPP_A; ++i) { \
src_argb[i] = (random() & 0xff); \
} \
MaskCpuFlags(kCpuInitialized); \
FMT_A##To##FMT_B(src_argb, kWidth * STRIDE_A, \
dst_argb_c, kWidth * BPP_B, \
kWidth, NEG kHeight); \
MaskCpuFlags(-1); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_A##To##FMT_B(src_argb, kWidth * STRIDE_A, \
dst_argb_opt, kWidth * BPP_B, \
kWidth, NEG kHeight); \
} \
int max_diff = 0; \
for (int i = 0; i < kHeight * kWidth * BPP_B; ++i) { \
int abs_diff = \
abs(static_cast<int>(dst_argb_c[i]) - \
static_cast<int>(dst_argb_opt[i])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
EXPECT_LE(max_diff, 2); \
free_aligned_buffer_16(src_argb) \
free_aligned_buffer_16(dst_argb_c) \
free_aligned_buffer_16(dst_argb_opt) \
}
#define TESTATOB(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B) \
TESTATOBI(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B, , +) \
TESTATOBI(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B, Invert, -)
TESTATOB(I400, 1, 1, I400, 1)
TESTATOB(ARGB, 4, 4, ARGB, 4)
TESTATOB(ARGB, 4, 4, BGRA, 4)
TESTATOB(ARGB, 4, 4, ABGR, 4)
TESTATOB(ARGB, 4, 4, RGBA, 4)
TESTATOB(ARGB, 4, 4, RAW, 3)
TESTATOB(ARGB, 4, 4, RGB24, 3)
TESTATOB(ARGB, 4, 4, RGB565, 2)
TESTATOB(ARGB, 4, 4, ARGB1555, 2)
TESTATOB(ARGB, 4, 4, ARGB4444, 2)
TESTATOB(BGRA, 4, 4, ARGB, 4)
TESTATOB(ABGR, 4, 4, ARGB, 4)
TESTATOB(RGBA, 4, 4, ARGB, 4)
TESTATOB(RAW, 3, 3, ARGB, 4)
TESTATOB(RGB24, 3, 3, ARGB, 4)
TESTATOB(RGB565, 2, 2, ARGB, 4)
TESTATOB(ARGB1555, 2, 2, ARGB, 4)
TESTATOB(ARGB4444, 2, 2, ARGB, 4)
TESTATOB(YUY2, 2, 2, ARGB, 4)
TESTATOB(UYVY, 2, 2, ARGB, 4)
TESTATOB(M420, 3 / 2, 1, ARGB, 4)
static const int kReadPad = 16; // Allow overread of 16 bytes.
#define TESTATOBRANDOM(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B) \
TEST_F(libyuvTest, FMT_A##To##FMT_B##_Random) { \
srandom(time(NULL)); \
for (int times = 0; times < benchmark_iterations_; ++times) { \
const int kWidth = (random() & 63) + 1; \
const int kHeight = (random() & 31) + 1; \
align_buffer_page_end(src_argb, (kWidth * BPP_A) * kHeight + kReadPad); \
align_buffer_page_end(dst_argb_c, (kWidth * BPP_B) * kHeight); \
align_buffer_page_end(dst_argb_opt, (kWidth * BPP_B) * kHeight); \
for (int i = 0; i < kHeight * kWidth * BPP_A; ++i) { \
src_argb[i] = (random() & 0xff); \
} \
MaskCpuFlags(kCpuInitialized); \
FMT_A##To##FMT_B(src_argb, kWidth * STRIDE_A, \
dst_argb_c, kWidth * BPP_B, \
kWidth, kHeight); \
MaskCpuFlags(-1); \
FMT_A##To##FMT_B(src_argb, kWidth * STRIDE_A, \
dst_argb_opt, kWidth * BPP_B, \
kWidth, kHeight); \
int max_diff = 0; \
for (int i = 0; i < kHeight * kWidth * BPP_B; ++i) { \
int abs_diff = \
abs(static_cast<int>(dst_argb_c[i]) - \
static_cast<int>(dst_argb_opt[i])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
EXPECT_LE(max_diff, 2); \
free_aligned_buffer_page_end(src_argb) \
free_aligned_buffer_page_end(dst_argb_c) \
free_aligned_buffer_page_end(dst_argb_opt) \
} \
}
TESTATOBRANDOM(ARGB, 4, 4, ARGB, 4)
TESTATOBRANDOM(ARGB, 4, 4, BGRA, 4)
TESTATOBRANDOM(ARGB, 4, 4, ABGR, 4)
TESTATOBRANDOM(ARGB, 4, 4, RGBA, 4)
TESTATOBRANDOM(ARGB, 4, 4, RAW, 3)
TESTATOBRANDOM(ARGB, 4, 4, RGB24, 3)
TESTATOBRANDOM(ARGB, 4, 4, RGB565, 2)
TESTATOBRANDOM(ARGB, 4, 4, ARGB1555, 2)
TESTATOBRANDOM(ARGB, 4, 4, ARGB4444, 2)
TESTATOBRANDOM(BGRA, 4, 4, ARGB, 4)
TESTATOBRANDOM(ABGR, 4, 4, ARGB, 4)
TESTATOBRANDOM(RGBA, 4, 4, ARGB, 4)
TESTATOBRANDOM(RAW, 3, 3, ARGB, 4)
TESTATOBRANDOM(RGB24, 3, 3, ARGB, 4)
TESTATOBRANDOM(RGB565, 2, 2, ARGB, 4)
TESTATOBRANDOM(ARGB1555, 2, 2, ARGB, 4)
TESTATOBRANDOM(ARGB4444, 2, 2, ARGB, 4)
TEST_F(libyuvTest, TestAttenuate) {
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
SIMD_ALIGNED(uint8 atten_pixels[256][4]);
SIMD_ALIGNED(uint8 unatten_pixels[256][4]);
SIMD_ALIGNED(uint8 atten2_pixels[256][4]);
// Test unattenuation clamps
orig_pixels[0][0] = 200u;
orig_pixels[0][1] = 129u;
orig_pixels[0][2] = 127u;
orig_pixels[0][3] = 128u;
// Test unattenuation transparent and opaque are unaffected
orig_pixels[1][0] = 16u;
orig_pixels[1][1] = 64u;
orig_pixels[1][2] = 192u;
orig_pixels[1][3] = 0u;
orig_pixels[2][0] = 16u;
orig_pixels[2][1] = 64u;
orig_pixels[2][2] = 192u;
orig_pixels[2][3] = 255u;
orig_pixels[3][0] = 16u;
orig_pixels[3][1] = 64u;
orig_pixels[3][2] = 192u;
orig_pixels[3][3] = 128u;
ARGBUnattenuate(&orig_pixels[0][0], 0, &unatten_pixels[0][0], 0, 4, 1);
EXPECT_EQ(255u, unatten_pixels[0][0]);
EXPECT_EQ(255u, unatten_pixels[0][1]);
EXPECT_EQ(254u, unatten_pixels[0][2]);
EXPECT_EQ(128u, unatten_pixels[0][3]);
EXPECT_EQ(16u, unatten_pixels[1][0]);
EXPECT_EQ(64u, unatten_pixels[1][1]);
EXPECT_EQ(192u, unatten_pixels[1][2]);
EXPECT_EQ(0u, unatten_pixels[1][3]);
EXPECT_EQ(16u, unatten_pixels[2][0]);
EXPECT_EQ(64u, unatten_pixels[2][1]);
EXPECT_EQ(192u, unatten_pixels[2][2]);
EXPECT_EQ(255u, unatten_pixels[2][3]);
EXPECT_EQ(32u, unatten_pixels[3][0]);
EXPECT_EQ(128u, unatten_pixels[3][1]);
EXPECT_EQ(255u, unatten_pixels[3][2]);
EXPECT_EQ(128u, unatten_pixels[3][3]);
for (int i = 0; i < 256; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
ARGBAttenuate(&orig_pixels[0][0], 0, &atten_pixels[0][0], 0, 256, 1);
ARGBUnattenuate(&atten_pixels[0][0], 0, &unatten_pixels[0][0], 0, 256, 1);
for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) {
ARGBAttenuate(&unatten_pixels[0][0], 0, &atten2_pixels[0][0], 0, 256, 1);
}
for (int i = 0; i < 256; ++i) {
EXPECT_NEAR(atten_pixels[i][0], atten2_pixels[i][0], 2);
EXPECT_NEAR(atten_pixels[i][1], atten2_pixels[i][1], 2);
EXPECT_NEAR(atten_pixels[i][2], atten2_pixels[i][2], 2);
EXPECT_NEAR(atten_pixels[i][3], atten2_pixels[i][3], 2);
}
// Make sure transparent, 50% and opaque are fully accurate.
EXPECT_EQ(0, atten_pixels[0][0]);
EXPECT_EQ(0, atten_pixels[0][1]);
EXPECT_EQ(0, atten_pixels[0][2]);
EXPECT_EQ(0, atten_pixels[0][3]);
EXPECT_EQ(64, atten_pixels[128][0]);
EXPECT_EQ(32, atten_pixels[128][1]);
EXPECT_EQ(21, atten_pixels[128][2]);
EXPECT_EQ(128, atten_pixels[128][3]);
EXPECT_EQ(255, atten_pixels[255][0]);
EXPECT_EQ(127, atten_pixels[255][1]);
EXPECT_EQ(85, atten_pixels[255][2]);
EXPECT_EQ(255, atten_pixels[255][3]);
}
TEST_F(libyuvTest, TestARGBComputeCumulativeSum) {
SIMD_ALIGNED(uint8 orig_pixels[16][16][4]);
SIMD_ALIGNED(int32 added_pixels[16][16][4]);
for (int y = 0; y < 16; ++y) {
for (int x = 0; x < 16; ++x) {
orig_pixels[y][x][0] = 1u;
orig_pixels[y][x][1] = 2u;
orig_pixels[y][x][2] = 3u;
orig_pixels[y][x][3] = 255u;
}
}
ARGBComputeCumulativeSum(&orig_pixels[0][0][0], 16 * 4,
&added_pixels[0][0][0], 16 * 4,
16, 16);
for (int y = 0; y < 16; ++y) {
for (int x = 0; x < 16; ++x) {
EXPECT_EQ((x + 1) * (y + 1), added_pixels[y][x][0]);
EXPECT_EQ((x + 1) * (y + 1) * 2, added_pixels[y][x][1]);
EXPECT_EQ((x + 1) * (y + 1) * 3, added_pixels[y][x][2]);
EXPECT_EQ((x + 1) * (y + 1) * 255, added_pixels[y][x][3]);
}
}
}
TEST_F(libyuvTest, TestARGBGray) {
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test color
orig_pixels[3][0] = 16u;
orig_pixels[3][1] = 64u;
orig_pixels[3][2] = 192u;
orig_pixels[3][3] = 224u;
// Do 16 to test asm version.
ARGBGray(&orig_pixels[0][0], 0, 0, 0, 16, 1);
EXPECT_EQ(27u, orig_pixels[0][0]);
EXPECT_EQ(27u, orig_pixels[0][1]);
EXPECT_EQ(27u, orig_pixels[0][2]);
EXPECT_EQ(128u, orig_pixels[0][3]);
EXPECT_EQ(151u, orig_pixels[1][0]);
EXPECT_EQ(151u, orig_pixels[1][1]);
EXPECT_EQ(151u, orig_pixels[1][2]);
EXPECT_EQ(0u, orig_pixels[1][3]);
EXPECT_EQ(75u, orig_pixels[2][0]);
EXPECT_EQ(75u, orig_pixels[2][1]);
EXPECT_EQ(75u, orig_pixels[2][2]);
EXPECT_EQ(255u, orig_pixels[2][3]);
EXPECT_EQ(96u, orig_pixels[3][0]);
EXPECT_EQ(96u, orig_pixels[3][1]);
EXPECT_EQ(96u, orig_pixels[3][2]);
EXPECT_EQ(224u, orig_pixels[3][3]);
for (int i = 0; i < 256; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) {
ARGBGray(&orig_pixels[0][0], 0, 0, 0, 256, 1);
}
}
TEST_F(libyuvTest, TestARGBGrayTo) {
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
SIMD_ALIGNED(uint8 gray_pixels[256][4]);
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test color
orig_pixels[3][0] = 16u;
orig_pixels[3][1] = 64u;
orig_pixels[3][2] = 192u;
orig_pixels[3][3] = 224u;
// Do 16 to test asm version.
ARGBGrayTo(&orig_pixels[0][0], 0, &gray_pixels[0][0], 0, 16, 1);
EXPECT_EQ(27u, gray_pixels[0][0]);
EXPECT_EQ(27u, gray_pixels[0][1]);
EXPECT_EQ(27u, gray_pixels[0][2]);
EXPECT_EQ(128u, gray_pixels[0][3]);
EXPECT_EQ(151u, gray_pixels[1][0]);
EXPECT_EQ(151u, gray_pixels[1][1]);
EXPECT_EQ(151u, gray_pixels[1][2]);
EXPECT_EQ(0u, gray_pixels[1][3]);
EXPECT_EQ(75u, gray_pixels[2][0]);
EXPECT_EQ(75u, gray_pixels[2][1]);
EXPECT_EQ(75u, gray_pixels[2][2]);
EXPECT_EQ(255u, gray_pixels[2][3]);
EXPECT_EQ(96u, gray_pixels[3][0]);
EXPECT_EQ(96u, gray_pixels[3][1]);
EXPECT_EQ(96u, gray_pixels[3][2]);
EXPECT_EQ(224u, gray_pixels[3][3]);
for (int i = 0; i < 256; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) {
ARGBGrayTo(&orig_pixels[0][0], 0, &gray_pixels[0][0], 0, 256, 1);
}
}
TEST_F(libyuvTest, TestARGBSepia) {
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test color
orig_pixels[3][0] = 16u;
orig_pixels[3][1] = 64u;
orig_pixels[3][2] = 192u;
orig_pixels[3][3] = 224u;
// Do 16 to test asm version.
ARGBSepia(&orig_pixels[0][0], 0, 0, 0, 16, 1);
EXPECT_EQ(33u, orig_pixels[0][0]);
EXPECT_EQ(43u, orig_pixels[0][1]);
EXPECT_EQ(47u, orig_pixels[0][2]);
EXPECT_EQ(128u, orig_pixels[0][3]);
EXPECT_EQ(135u, orig_pixels[1][0]);
EXPECT_EQ(175u, orig_pixels[1][1]);
EXPECT_EQ(195u, orig_pixels[1][2]);
EXPECT_EQ(0u, orig_pixels[1][3]);
EXPECT_EQ(69u, orig_pixels[2][0]);
EXPECT_EQ(89u, orig_pixels[2][1]);
EXPECT_EQ(99u, orig_pixels[2][2]);
EXPECT_EQ(255u, orig_pixels[2][3]);
EXPECT_EQ(88u, orig_pixels[3][0]);
EXPECT_EQ(114u, orig_pixels[3][1]);
EXPECT_EQ(127u, orig_pixels[3][2]);
EXPECT_EQ(224u, orig_pixels[3][3]);
for (int i = 0; i < 256; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) {
ARGBSepia(&orig_pixels[0][0], 0, 0, 0, 256, 1);
}
}
TEST_F(libyuvTest, TestARGBColorMatrix) {
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
// Matrix for Sepia.
static const int8 kARGBToSepia[] = {
17, 68, 35, 0,
22, 88, 45, 0,
24, 98, 50, 0,
};
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test color
orig_pixels[3][0] = 16u;
orig_pixels[3][1] = 64u;
orig_pixels[3][2] = 192u;
orig_pixels[3][3] = 224u;
// Do 16 to test asm version.
ARGBColorMatrix(&orig_pixels[0][0], 0, &kARGBToSepia[0], 0, 0, 16, 1);
EXPECT_EQ(33u, orig_pixels[0][0]);
EXPECT_EQ(43u, orig_pixels[0][1]);
EXPECT_EQ(47u, orig_pixels[0][2]);
EXPECT_EQ(128u, orig_pixels[0][3]);
EXPECT_EQ(135u, orig_pixels[1][0]);
EXPECT_EQ(175u, orig_pixels[1][1]);
EXPECT_EQ(195u, orig_pixels[1][2]);
EXPECT_EQ(0u, orig_pixels[1][3]);
EXPECT_EQ(69u, orig_pixels[2][0]);
EXPECT_EQ(89u, orig_pixels[2][1]);
EXPECT_EQ(99u, orig_pixels[2][2]);
EXPECT_EQ(255u, orig_pixels[2][3]);
EXPECT_EQ(88u, orig_pixels[3][0]);
EXPECT_EQ(114u, orig_pixels[3][1]);
EXPECT_EQ(127u, orig_pixels[3][2]);
EXPECT_EQ(224u, orig_pixels[3][3]);
for (int i = 0; i < 256; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) {
ARGBColorMatrix(&orig_pixels[0][0], 0, &kARGBToSepia[0], 0, 0, 256, 1);
}
}
TEST_F(libyuvTest, TestARGBColorTable) {
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
memset(orig_pixels, 0, sizeof(orig_pixels));
// Matrix for Sepia.
static const uint8 kARGBTable[256 * 4] = {
1u, 2u, 3u, 4u,
5u, 6u, 7u, 8u,
9u, 10u, 11u, 12u,
13u, 14u, 15u, 16u,
};
orig_pixels[0][0] = 0u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 0u;
orig_pixels[1][0] = 1u;
orig_pixels[1][1] = 1u;
orig_pixels[1][2] = 1u;
orig_pixels[1][3] = 1u;
orig_pixels[2][0] = 2u;
orig_pixels[2][1] = 2u;
orig_pixels[2][2] = 2u;
orig_pixels[2][3] = 2u;
orig_pixels[3][0] = 0u;
orig_pixels[3][1] = 1u;
orig_pixels[3][2] = 2u;
orig_pixels[3][3] = 3u;
// Do 16 to test asm version.
ARGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 16, 1);
EXPECT_EQ(1u, orig_pixels[0][0]);
EXPECT_EQ(2u, orig_pixels[0][1]);
EXPECT_EQ(3u, orig_pixels[0][2]);
EXPECT_EQ(4u, orig_pixels[0][3]);
EXPECT_EQ(5u, orig_pixels[1][0]);
EXPECT_EQ(6u, orig_pixels[1][1]);
EXPECT_EQ(7u, orig_pixels[1][2]);
EXPECT_EQ(8u, orig_pixels[1][3]);
EXPECT_EQ(9u, orig_pixels[2][0]);
EXPECT_EQ(10u, orig_pixels[2][1]);
EXPECT_EQ(11u, orig_pixels[2][2]);
EXPECT_EQ(12u, orig_pixels[2][3]);
EXPECT_EQ(1u, orig_pixels[3][0]);
EXPECT_EQ(6u, orig_pixels[3][1]);
EXPECT_EQ(11u, orig_pixels[3][2]);
EXPECT_EQ(16u, orig_pixels[3][3]);
for (int i = 0; i < 256; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) {
ARGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 256, 1);
}
}
TEST_F(libyuvTest, TestARGBQuantize) {
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
for (int i = 0; i < 256; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
ARGBQuantize(&orig_pixels[0][0], 0,
(65536 + (8 / 2)) / 8, 8, 8 / 2, 0, 0, 256, 1);
for (int i = 0; i < 256; ++i) {
EXPECT_EQ(i / 8 * 8 + 8 / 2, orig_pixels[i][0]);
EXPECT_EQ(i / 2 / 8 * 8 + 8 / 2, orig_pixels[i][1]);
EXPECT_EQ(i / 3 / 8 * 8 + 8 / 2, orig_pixels[i][2]);
EXPECT_EQ(i, orig_pixels[i][3]);
}
for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) {
ARGBQuantize(&orig_pixels[0][0], 0,
(65536 + (8 / 2)) / 8, 8, 8 / 2, 0, 0, 256, 1);
}
}
TEST_F(libyuvTest, TestARGBMirror) {
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
SIMD_ALIGNED(uint8 dst_pixels[256][4]);
for (int i = 0; i < 256; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i / 4;
}
ARGBMirror(&orig_pixels[0][0], 0, &dst_pixels[0][0], 0, 256, 1);
for (int i = 0; i < 256; ++i) {
EXPECT_EQ(i, dst_pixels[255 - i][0]);
EXPECT_EQ(i / 2, dst_pixels[255 - i][1]);
EXPECT_EQ(i / 3, dst_pixels[255 - i][2]);
EXPECT_EQ(i / 4, dst_pixels[255 - i][3]);
}
for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) {
ARGBMirror(&orig_pixels[0][0], 0, &dst_pixels[0][0], 0, 256, 1);
}
}
TEST_F(libyuvTest, TestShade) {
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
SIMD_ALIGNED(uint8 shade_pixels[256][4]);
orig_pixels[0][0] = 10u;
orig_pixels[0][1] = 20u;
orig_pixels[0][2] = 40u;
orig_pixels[0][3] = 80u;
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 0u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 255u;
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 0u;
orig_pixels[2][3] = 0u;
orig_pixels[3][0] = 0u;
orig_pixels[3][1] = 0u;
orig_pixels[3][2] = 0u;
orig_pixels[3][3] = 0u;
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 4, 1, 0x80ffffff);
EXPECT_EQ(10u, shade_pixels[0][0]);
EXPECT_EQ(20u, shade_pixels[0][1]);
EXPECT_EQ(40u, shade_pixels[0][2]);
EXPECT_EQ(40u, shade_pixels[0][3]);
EXPECT_EQ(0u, shade_pixels[1][0]);
EXPECT_EQ(0u, shade_pixels[1][1]);
EXPECT_EQ(0u, shade_pixels[1][2]);
EXPECT_EQ(128u, shade_pixels[1][3]);
EXPECT_EQ(0u, shade_pixels[2][0]);
EXPECT_EQ(0u, shade_pixels[2][1]);
EXPECT_EQ(0u, shade_pixels[2][2]);
EXPECT_EQ(0u, shade_pixels[2][3]);
EXPECT_EQ(0u, shade_pixels[3][0]);
EXPECT_EQ(0u, shade_pixels[3][1]);
EXPECT_EQ(0u, shade_pixels[3][2]);
EXPECT_EQ(0u, shade_pixels[3][3]);
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 4, 1, 0x80808080);
EXPECT_EQ(5u, shade_pixels[0][0]);
EXPECT_EQ(10u, shade_pixels[0][1]);
EXPECT_EQ(20u, shade_pixels[0][2]);
EXPECT_EQ(40u, shade_pixels[0][3]);
for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) {
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 256, 1,
0x80808080);
}
}
TEST_F(libyuvTest, TestInterpolate) {
SIMD_ALIGNED(uint8 orig_pixels_0[256][4]);
SIMD_ALIGNED(uint8 orig_pixels_1[256][4]);
SIMD_ALIGNED(uint8 interpolate_pixels[256][4]);
orig_pixels_0[0][0] = 16u;
orig_pixels_0[0][1] = 32u;
orig_pixels_0[0][2] = 64u;
orig_pixels_0[0][3] = 128u;
orig_pixels_0[1][0] = 0u;
orig_pixels_0[1][1] = 0u;
orig_pixels_0[1][2] = 0u;
orig_pixels_0[1][3] = 255u;
orig_pixels_0[2][0] = 0u;
orig_pixels_0[2][1] = 0u;
orig_pixels_0[2][2] = 0u;
orig_pixels_0[2][3] = 0u;
orig_pixels_0[3][0] = 0u;
orig_pixels_0[3][1] = 0u;
orig_pixels_0[3][2] = 0u;
orig_pixels_0[3][3] = 0u;
orig_pixels_1[0][0] = 0u;
orig_pixels_1[0][1] = 0u;
orig_pixels_1[0][2] = 0u;
orig_pixels_1[0][3] = 0u;
orig_pixels_1[1][0] = 0u;
orig_pixels_1[1][1] = 0u;
orig_pixels_1[1][2] = 0u;
orig_pixels_1[1][3] = 0u;
orig_pixels_1[2][0] = 0u;
orig_pixels_1[2][1] = 0u;
orig_pixels_1[2][2] = 0u;
orig_pixels_1[2][3] = 0u;
orig_pixels_1[3][0] = 255u;
orig_pixels_1[3][1] = 255u;
orig_pixels_1[3][2] = 255u;
orig_pixels_1[3][3] = 255u;
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
&interpolate_pixels[0][0], 0, 4, 1, 128);
EXPECT_EQ(8u, interpolate_pixels[0][0]);
EXPECT_EQ(16u, interpolate_pixels[0][1]);
EXPECT_EQ(32u, interpolate_pixels[0][2]);
EXPECT_EQ(64u, interpolate_pixels[0][3]);
EXPECT_EQ(0u, interpolate_pixels[1][0]);
EXPECT_EQ(0u, interpolate_pixels[1][1]);
EXPECT_EQ(0u, interpolate_pixels[1][2]);
EXPECT_NEAR(128u, interpolate_pixels[1][3], 1); // C = 127, SSE = 128.
EXPECT_EQ(0u, interpolate_pixels[2][0]);
EXPECT_EQ(0u, interpolate_pixels[2][1]);
EXPECT_EQ(0u, interpolate_pixels[2][2]);
EXPECT_EQ(0u, interpolate_pixels[2][3]);
EXPECT_NEAR(128u, interpolate_pixels[3][0], 1);
EXPECT_NEAR(128u, interpolate_pixels[3][1], 1);
EXPECT_NEAR(128u, interpolate_pixels[3][2], 1);
EXPECT_NEAR(128u, interpolate_pixels[3][3], 1);
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
&interpolate_pixels[0][0], 0, 4, 1, 0);
EXPECT_EQ(16u, interpolate_pixels[0][0]);
EXPECT_EQ(32u, interpolate_pixels[0][1]);
EXPECT_EQ(64u, interpolate_pixels[0][2]);
EXPECT_EQ(128u, interpolate_pixels[0][3]);
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
&interpolate_pixels[0][0], 0, 4, 1, 192);
EXPECT_EQ(4u, interpolate_pixels[0][0]);
EXPECT_EQ(8u, interpolate_pixels[0][1]);
EXPECT_EQ(16u, interpolate_pixels[0][2]);
EXPECT_EQ(32u, interpolate_pixels[0][3]);
for (int i = 0; i < benchmark_iterations_ * (1280 * 720 / 256); ++i) {
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
&interpolate_pixels[0][0], 0, 256, 1, 128);
}
}
TEST_F(libyuvTest, TestAffine) {
SIMD_ALIGNED(uint8 orig_pixels_0[256][4]);
SIMD_ALIGNED(uint8 interpolate_pixels_C[256][4]);
#if defined(HAS_ARGBAFFINEROW_SSE2)
SIMD_ALIGNED(uint8 interpolate_pixels_Opt[256][4]);
#endif
for (int i = 0; i < 256; ++i) {
for (int j = 0; j < 4; ++j) {
orig_pixels_0[i][j] = i;
}
}
float uv_step[4] = { 0.f, 0.f, 0.75f, 0.f };
ARGBAffineRow_C(&orig_pixels_0[0][0], 0, &interpolate_pixels_C[0][0],
uv_step, 256);
EXPECT_EQ(0u, interpolate_pixels_C[0][0]);
EXPECT_EQ(96u, interpolate_pixels_C[128][0]);
EXPECT_EQ(191u, interpolate_pixels_C[255][3]);
#if defined(HAS_ARGBAFFINEROW_SSE2)
ARGBAffineRow_SSE2(&orig_pixels_0[0][0], 0, &interpolate_pixels_Opt[0][0],
uv_step, 256);
EXPECT_EQ(0, memcmp(interpolate_pixels_Opt, interpolate_pixels_C, 256 * 4));
#endif
#if defined(HAS_ARGBAFFINEROW_SSE2)
int has_sse2 = TestCpuFlag(kCpuHasSSE2);
if (has_sse2) {
for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) {
ARGBAffineRow_SSE2(&orig_pixels_0[0][0], 0, &interpolate_pixels_Opt[0][0],
uv_step, 256);
}
} else {
#endif
for (int i = 0; i < benchmark_iterations_ * 1280 * 720 / 256; ++i) {
ARGBAffineRow_C(&orig_pixels_0[0][0], 0, &interpolate_pixels_C[0][0],
uv_step, 256);
}
#if defined(HAS_ARGBAFFINEROW_SSE2)
}
#endif
}
TEST_F(libyuvTest, Test565) {
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
SIMD_ALIGNED(uint8 pixels565[256][2]);
for (int i = 0; i < 256; ++i) {
for (int j = 0; j < 4; ++j) {
orig_pixels[i][j] = i;
}
}
ARGBToRGB565(&orig_pixels[0][0], 0, &pixels565[0][0], 0, 256, 1);
uint32 checksum = HashDjb2(&pixels565[0][0], sizeof(pixels565), 5381);
EXPECT_EQ(610919429u, checksum);
}
} // namespace libyuv