blob: b34f93f50c6519a89993dd6087ad214988362347 [file] [log] [blame]
/* -*- mode: C++; c-basic-offset: 4; tab-width: 4 vi:set tabstop=4 expandtab: -*/
//===-- AssemblyParser.hpp --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Disassemble the prologue instructions in functions, create a profile
// of stack movements and register saves performed therein.
#ifndef __ASSEMBLY_PARSER_HPP
#define __ASSEMBLY_PARSER_HPP
#if defined (SUPPORT_REMOTE_UNWINDING)
#ifndef __STDC_LIMIT_MACROS
#define __STDC_LIMIT_MACROS
#endif
#ifndef __STDC_CONSTANT_MACROS
#define __STDC_CONSTANT_MACROS
#endif
#include <limits.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <map>
#include <vector>
#include "libunwind.h"
#include "RemoteProcInfo.hpp"
#include "Registers.hpp"
#include "FileAbstraction.hpp"
#include "AddressSpace.hpp"
#include "RemoteUnwindProfile.h"
namespace lldb_private
{
// Analyze the instructions in an x86_64/i386 function prologue, fill out an RemoteUnwindProfile.
class AssemblyParse_x86 {
public:
AssemblyParse_x86 (RemoteProcInfo& procinfo, unw_accessors_t *acc, unw_addr_space_t as, void *arg) : fArg(arg), fAccessors(acc), fAs(as), fRemoteProcInfo(procinfo) {
fRegisterMap = fRemoteProcInfo.getRegisterMap();
if (fRemoteProcInfo.getTargetArch() == UNW_TARGET_X86_64) {
fStackPointerRegnum = UNW_X86_64_RSP;
fFramePointerRegnum = UNW_X86_64_RBP;
fWordSize = 8;
} else {
fStackPointerRegnum = UNW_X86_ESP;
fFramePointerRegnum = UNW_X86_EBP;
fWordSize = 4;
}
}
uint32_t extract_4_LE (uint8_t *b) {
uint32_t v = 0;
for (int i = 3; i >= 0; i--)
v = (v << 8) | b[i];
return v;
}
bool push_rbp_pattern_p ();
bool push_0_pattern_p ();
bool mov_rsp_rbp_pattern_p ();
bool sub_rsp_pattern_p (int *amount);
bool push_reg_p (int *regno);
bool mov_reg_to_local_stack_frame_p (int *regno, int *rbp_offset);
bool ret_pattern_p ();
bool profileFunction (uint64_t start, uint64_t end, RemoteUnwindProfile& profile);
private:
void *fArg;
uint8_t* fCurInsnByteBuf;
int fCurInsnSize;
RemoteProcInfo& fRemoteProcInfo;
RemoteRegisterMap *fRegisterMap;
unw_accessors_t *fAccessors;
unw_addr_space_t fAs;
int fWordSize;
int fStackPointerRegnum;
int fFramePointerRegnum;
};
// Macro to detect if this is a REX mode prefix byte.
#define REX_W_PREFIX_P(opcode) (((opcode) & (~0x5)) == 0x48)
// The high bit which should be added to the source register number (the "R" bit)
#define REX_W_SRCREG(opcode) (((opcode) & 0x4) >> 2)
// The high bit which should be added to the destination register number (the "B" bit)
#define REX_W_DSTREG(opcode) ((opcode) & 0x1)
// pushq %rbp [0x55]
bool AssemblyParse_x86::push_rbp_pattern_p () {
uint8_t *p = fCurInsnByteBuf;
if (*p == 0x55)
return true;
return false;
}
// pushq $0 ; the first instruction in start() [0x6a 0x00]
bool AssemblyParse_x86::push_0_pattern_p ()
{
uint8_t *p = fCurInsnByteBuf;
if (*p == 0x6a && *(p + 1) == 0x0)
return true;
return false;
}
// movq %rsp, %rbp [0x48 0x8b 0xec] or [0x48 0x89 0xe5]
// movl %esp, %ebp [0x8b 0xec] or [0x89 0xe5]
bool AssemblyParse_x86::mov_rsp_rbp_pattern_p () {
uint8_t *p = fCurInsnByteBuf;
if (fWordSize == 8 && *p == 0x48)
p++;
if (*(p) == 0x8b && *(p + 1) == 0xec)
return true;
if (*(p) == 0x89 && *(p + 1) == 0xe5)
return true;
return false;
}
// subq $0x20, %rsp
bool AssemblyParse_x86::sub_rsp_pattern_p (int *amount) {
uint8_t *p = fCurInsnByteBuf;
if (fWordSize == 8 && *p == 0x48)
p++;
// 8-bit immediate operand
if (*p == 0x83 && *(p + 1) == 0xec) {
*amount = (int8_t) *(p + 2);
return true;
}
// 32-bit immediate operand
if (*p == 0x81 && *(p + 1) == 0xec) {
*amount = (int32_t) extract_4_LE (p + 2);
return true;
}
// Not handled: [0x83 0xc4] for imm8 with neg values
// [0x81 0xc4] for imm32 with neg values
return false;
}
// pushq %rbx
// pushl $ebx
bool AssemblyParse_x86::push_reg_p (int *regno) {
uint8_t *p = fCurInsnByteBuf;
int regno_prefix_bit = 0;
// If we have a rex prefix byte, check to see if a B bit is set
if (fWordSize == 8 && *p == 0x41) {
regno_prefix_bit = 1 << 3;
p++;
}
if (*p >= 0x50 && *p <= 0x57) {
int r = (*p - 0x50) | regno_prefix_bit;
if (fRegisterMap->machine_regno_to_unwind_regno (r, *regno) == true) {
return true;
}
}
return false;
}
// Look for an instruction sequence storing a nonvolatile register
// on to the stack frame.
// movq %rax, -0x10(%rbp) [0x48 0x89 0x45 0xf0]
// movl %eax, -0xc(%ebp) [0x89 0x45 0xf4]
bool AssemblyParse_x86::mov_reg_to_local_stack_frame_p (int *regno, int *rbp_offset) {
uint8_t *p = fCurInsnByteBuf;
int src_reg_prefix_bit = 0;
int target_reg_prefix_bit = 0;
if (fWordSize == 8 && REX_W_PREFIX_P (*p)) {
src_reg_prefix_bit = REX_W_SRCREG (*p) << 3;
target_reg_prefix_bit = REX_W_DSTREG (*p) << 3;
if (target_reg_prefix_bit == 1) {
// rbp/ebp don't need a prefix bit - we know this isn't the
// reg we care about.
return false;
}
p++;
}
if (*p == 0x89) {
/* Mask off the 3-5 bits which indicate the destination register
if this is a ModR/M byte. */
int opcode_destreg_masked_out = *(p + 1) & (~0x38);
/* Is this a ModR/M byte with Mod bits 01 and R/M bits 101
and three bits between them, e.g. 01nnn101
We're looking for a destination of ebp-disp8 or ebp-disp32. */
int immsize;
if (opcode_destreg_masked_out == 0x45)
immsize = 2;
else if (opcode_destreg_masked_out == 0x85)
immsize = 4;
else
return false;
int offset = 0;
if (immsize == 2)
offset = (int8_t) *(p + 2);
if (immsize == 4)
offset = (uint32_t) extract_4_LE (p + 2);
if (offset > 0)
return false;
int savedreg = ((*(p + 1) >> 3) & 0x7) | src_reg_prefix_bit;
if (fRegisterMap->machine_regno_to_unwind_regno (savedreg, *regno) == true) {
*rbp_offset = offset > 0 ? offset : -offset;
return true;
}
}
return false;
}
// ret [0xc9] or [0xc2 imm8] or [0xca imm8]
bool AssemblyParse_x86::ret_pattern_p () {
uint8_t *p = fCurInsnByteBuf;
if (*p == 0xc9 || *p == 0xc2 || *p == 0xca || *p == 0xc3)
return true;
return false;
}
bool AssemblyParse_x86::profileFunction (uint64_t start, uint64_t end, RemoteUnwindProfile& profile) {
if (start == -1 || end == 0)
return false;
profile.fStart = start;
profile.fEnd = end;
profile.fRegSizes[RemoteUnwindProfile::kGeneralPurposeRegister] = fWordSize;
profile.fRegSizes[RemoteUnwindProfile::kFloatingPointRegister] = 8;
profile.fRegSizes[RemoteUnwindProfile::kVectorRegister] = 16;
// On function entry, the CFA is rsp+fWordSize
RemoteUnwindProfile::CFALocation initial_cfaloc;
initial_cfaloc.regno = fStackPointerRegnum;
initial_cfaloc.offset = fWordSize;
profile.cfa[start] = initial_cfaloc;
// The return address is at CFA - fWordSize
// CFA doesn't change value during the lifetime of the function (hence "C")
// so the returnAddress is the same for the duration of the function.
profile.returnAddress.regno = 0;
profile.returnAddress.location = RemoteUnwindProfile::kRegisterOffsetFromCFA;
profile.returnAddress.value = -fWordSize;
profile.returnAddress.adj = 0;
profile.returnAddress.type = RemoteUnwindProfile::kGeneralPurposeRegister;
// The caller's rsp has the same value as the CFA at all points during
// this function's lifetime.
RemoteUnwindProfile::SavedReg rsp_loc;
rsp_loc.regno = fStackPointerRegnum;
rsp_loc.location = RemoteUnwindProfile::kRegisterIsCFA;
rsp_loc.value = 0;
rsp_loc.adj = 0;
rsp_loc.type = RemoteUnwindProfile::kGeneralPurposeRegister;
profile.saved_registers[start].push_back(rsp_loc);
profile.fRegistersSaved[fStackPointerRegnum] = 1;
int non_prologue_insn_count = 0;
int insn_count = 0;
uint64_t cur_addr = start;
uint64_t first_insn_past_prologue = start;
int push_rbp_seen = 0;
int current_cfa_register = fStackPointerRegnum;
int sp_adjustments = 0;
while (cur_addr < end && non_prologue_insn_count < 10)
{
int offset, regno;
uint64_t next_addr;
insn_count++;
int is_prologue_insn = 0;
if (fAccessors->instruction_length (fAs, cur_addr, &fCurInsnSize, fArg) != 0) {
/* An error parsing the instruction; stop scanning. */
break;
}
fCurInsnByteBuf = (uint8_t *) malloc (fCurInsnSize);
if (fRemoteProcInfo.getBytes (cur_addr, fCurInsnSize, fCurInsnByteBuf, fArg) == 0)
return false;
next_addr = cur_addr + fCurInsnSize;
// start () opens with a 'push $0x0' which is in the saved ip slot on the stack -
// so we know to stop backtracing here. We need to ignore this instruction.
if (push_0_pattern_p () && push_rbp_seen == 0 && insn_count == 1)
{
cur_addr = next_addr;
first_insn_past_prologue = next_addr;
continue;
}
if (push_rbp_pattern_p () && push_rbp_seen == 0)
{
if (current_cfa_register == fStackPointerRegnum) {
sp_adjustments -= fWordSize;
RemoteUnwindProfile::CFALocation cfaloc;
cfaloc.regno = fStackPointerRegnum;
cfaloc.offset = abs (sp_adjustments - fWordSize);
profile.cfa[next_addr] = cfaloc;
}
RemoteUnwindProfile::SavedReg sreg;
sreg.regno = fFramePointerRegnum;
sreg.location = RemoteUnwindProfile::kRegisterOffsetFromCFA;
sreg.value = sp_adjustments - fWordSize;
sreg.adj = 0;
sreg.type = RemoteUnwindProfile::kGeneralPurposeRegister;
profile.saved_registers[next_addr].push_back(sreg);
push_rbp_seen = 1;
profile.fRegistersSaved[fFramePointerRegnum] = 1;
is_prologue_insn = 1;
goto next_iteration;
}
if (mov_rsp_rbp_pattern_p ()) {
RemoteUnwindProfile::CFALocation cfaloc;
cfaloc.regno = fFramePointerRegnum;
cfaloc.offset = abs (sp_adjustments - fWordSize);
profile.cfa[next_addr] = cfaloc;
current_cfa_register = fFramePointerRegnum;
is_prologue_insn = 1;
goto next_iteration;
}
if (ret_pattern_p ()) {
break;
}
if (sub_rsp_pattern_p (&offset)) {
sp_adjustments -= offset;
if (current_cfa_register == fStackPointerRegnum) {
RemoteUnwindProfile::CFALocation cfaloc;
cfaloc.regno = fStackPointerRegnum;
cfaloc.offset = abs (sp_adjustments - fWordSize);
profile.cfa[next_addr] = cfaloc;
}
is_prologue_insn = 1;
}
if (push_reg_p (&regno)) {
sp_adjustments -= fWordSize;
if (current_cfa_register == fStackPointerRegnum) {
RemoteUnwindProfile::CFALocation cfaloc;
cfaloc.regno = fStackPointerRegnum;
cfaloc.offset = abs (sp_adjustments - fWordSize);
profile.cfa[next_addr] = cfaloc;
is_prologue_insn = 1;
}
if (fRegisterMap->nonvolatile_reg_p (regno) && profile.fRegistersSaved[regno] == 0) {
RemoteUnwindProfile::SavedReg sreg;
sreg.regno = regno;
sreg.location = RemoteUnwindProfile::kRegisterOffsetFromCFA;
sreg.value = sp_adjustments - fWordSize;
sreg.adj = 0;
sreg.type = RemoteUnwindProfile::kGeneralPurposeRegister;
profile.saved_registers[next_addr].push_back(sreg);
profile.fRegistersSaved[regno] = 1;
is_prologue_insn = 1;
}
}
if (mov_reg_to_local_stack_frame_p (&regno, &offset)
&& fRegisterMap->nonvolatile_reg_p (regno)
&& profile.fRegistersSaved[regno] == 0) {
RemoteUnwindProfile::SavedReg sreg;
sreg.regno = regno;
sreg.location = RemoteUnwindProfile::kRegisterOffsetFromCFA;
sreg.value = offset - fWordSize;
sreg.adj = 0;
sreg.type = RemoteUnwindProfile::kGeneralPurposeRegister;
profile.saved_registers[next_addr].push_back(sreg);
profile.fRegistersSaved[regno] = 1;
is_prologue_insn = 1;
}
next_iteration:
if (is_prologue_insn) {
first_insn_past_prologue = next_addr;
non_prologue_insn_count = 0;
}
cur_addr = next_addr;
non_prologue_insn_count++;
}
profile.fFirstInsnPastPrologue = first_insn_past_prologue;
return true;
}
bool AssemblyParse (RemoteProcInfo *procinfo, unw_accessors_t *acc, unw_addr_space_t as, uint64_t start, uint64_t end, RemoteUnwindProfile &profile, void *arg) {
if (procinfo->getTargetArch() == UNW_TARGET_X86_64 || procinfo->getTargetArch() == UNW_TARGET_I386) {
AssemblyParse_x86 parser(*procinfo, acc, as, arg);
return parser.profileFunction (start, end, profile);
} else {
ABORT("Only x86_64 and i386 assembly parsing supported at this time");
return false;
}
}
}; // namespace lldb_private
#endif // SUPPORT_REMOTE_UNWINDING
#endif //ASSEMBLY_PARSER_HPP