blob: dda2308ada6fd7c364fb759ca459197efa13f8dd [file] [log] [blame]
/* -*- mode: C++; c-basic-offset: 4; tab-width: 4 vi:set tabstop=4 expandtab: -*/
//===-- CompactUnwinder.hpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// C++ interface to lower levels of libuwind
//
#ifndef __COMPACT_UNWINDER_HPP__
#define __COMPACT_UNWINDER_HPP__
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <libunwind.h>
#include <mach-o/compact_unwind_encoding.h>
#include "AddressSpace.hpp"
#include "Registers.hpp"
#define EXTRACT_BITS(value, mask) \
( (value >> __builtin_ctz(mask)) & (((1 << __builtin_popcount(mask)))-1) )
#define SUPPORT_OLD_BINARIES 0
namespace lldb_private {
///
/// CompactUnwinder_x86 uses a compact unwind info to virtually "step" (aka unwind) by
/// modifying a Registers_x86 register set
///
template <typename A>
class CompactUnwinder_x86
{
public:
static int stepWithCompactEncoding(compact_unwind_encoding_t info, uint32_t functionStart, A& addressSpace, Registers_x86& registers);
private:
typename A::pint_t pint_t;
static void frameUnwind(A& addressSpace, Registers_x86& registers);
static void framelessUnwind(A& addressSpace, typename A::pint_t returnAddressLocation, Registers_x86& registers);
static int stepWithCompactEncodingEBPFrame(compact_unwind_encoding_t compactEncoding, uint32_t functionStart, A& addressSpace, Registers_x86& registers);
static int stepWithCompactEncodingFrameless(compact_unwind_encoding_t compactEncoding, uint32_t functionStart, A& addressSpace, Registers_x86& registers, bool indirectStackSize);
#if SUPPORT_OLD_BINARIES
static int stepWithCompactEncodingCompat(compact_unwind_encoding_t compactEncoding, uint32_t functionStart, A& addressSpace, Registers_x86& registers);
#endif
};
template <typename A>
int CompactUnwinder_x86<A>::stepWithCompactEncoding(compact_unwind_encoding_t compactEncoding, uint32_t functionStart, A& addressSpace, Registers_x86& registers)
{
//fprintf(stderr, "stepWithCompactEncoding(0x%08X)\n", compactEncoding);
switch ( compactEncoding & UNWIND_X86_MODE_MASK ) {
#if SUPPORT_OLD_BINARIES
case UNWIND_X86_MODE_COMPATIBILITY:
return stepWithCompactEncodingCompat(compactEncoding, functionStart, addressSpace, registers);
#endif
case UNWIND_X86_MODE_EBP_FRAME:
return stepWithCompactEncodingEBPFrame(compactEncoding, functionStart, addressSpace, registers);
case UNWIND_X86_MODE_STACK_IMMD:
return stepWithCompactEncodingFrameless(compactEncoding, functionStart, addressSpace, registers, false);
case UNWIND_X86_MODE_STACK_IND:
return stepWithCompactEncodingFrameless(compactEncoding, functionStart, addressSpace, registers, true);
}
ABORT("invalid compact unwind encoding");
}
template <typename A>
int CompactUnwinder_x86<A>::stepWithCompactEncodingEBPFrame(compact_unwind_encoding_t compactEncoding, uint32_t functionStart,
A& addressSpace, Registers_x86& registers)
{
uint32_t savedRegistersOffset = EXTRACT_BITS(compactEncoding, UNWIND_X86_EBP_FRAME_OFFSET);
uint32_t savedRegistersLocations = EXTRACT_BITS(compactEncoding, UNWIND_X86_EBP_FRAME_REGISTERS);
uint64_t savedRegisters = registers.getEBP() - 4*savedRegistersOffset;
for (int i=0; i < 5; ++i) {
switch (savedRegistersLocations & 0x7) {
case UNWIND_X86_REG_NONE:
// no register saved in this slot
break;
case UNWIND_X86_REG_EBX:
registers.setEBX(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_ECX:
registers.setECX(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_EDX:
registers.setEDX(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_EDI:
registers.setEDI(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_ESI:
registers.setESI(addressSpace.get32(savedRegisters));
break;
default:
DEBUG_MESSAGE("bad register for EBP frame, encoding=%08X for function starting at 0x%X\n", compactEncoding, functionStart);
ABORT("invalid compact unwind encoding");
}
savedRegisters += 4;
savedRegistersLocations = (savedRegistersLocations >> 3);
}
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
}
template <typename A>
int CompactUnwinder_x86<A>::stepWithCompactEncodingFrameless(compact_unwind_encoding_t encoding, uint32_t functionStart,
A& addressSpace, Registers_x86& registers, bool indirectStackSize)
{
uint32_t stackSizeEncoded = EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_SIZE);
uint32_t stackAdjust = EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_ADJUST);
uint32_t regCount = EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_REG_COUNT);
uint32_t permutation = EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION);
uint32_t stackSize = stackSizeEncoded*4;
if ( indirectStackSize ) {
// stack size is encoded in subl $xxx,%esp instruction
uint32_t subl = addressSpace.get32(functionStart+stackSizeEncoded);
stackSize = subl + 4*stackAdjust;
}
// decompress permutation
int permunreg[6];
switch ( regCount ) {
case 6:
permunreg[0] = permutation/120;
permutation -= (permunreg[0]*120);
permunreg[1] = permutation/24;
permutation -= (permunreg[1]*24);
permunreg[2] = permutation/6;
permutation -= (permunreg[2]*6);
permunreg[3] = permutation/2;
permutation -= (permunreg[3]*2);
permunreg[4] = permutation;
permunreg[5] = 0;
break;
case 5:
permunreg[0] = permutation/120;
permutation -= (permunreg[0]*120);
permunreg[1] = permutation/24;
permutation -= (permunreg[1]*24);
permunreg[2] = permutation/6;
permutation -= (permunreg[2]*6);
permunreg[3] = permutation/2;
permutation -= (permunreg[3]*2);
permunreg[4] = permutation;
break;
case 4:
permunreg[0] = permutation/60;
permutation -= (permunreg[0]*60);
permunreg[1] = permutation/12;
permutation -= (permunreg[1]*12);
permunreg[2] = permutation/3;
permutation -= (permunreg[2]*3);
permunreg[3] = permutation;
break;
case 3:
permunreg[0] = permutation/20;
permutation -= (permunreg[0]*20);
permunreg[1] = permutation/4;
permutation -= (permunreg[1]*4);
permunreg[2] = permutation;
break;
case 2:
permunreg[0] = permutation/5;
permutation -= (permunreg[0]*5);
permunreg[1] = permutation;
break;
case 1:
permunreg[0] = permutation;
break;
}
// re-number registers back to standard numbers
int registersSaved[6];
bool used[7] = { false, false, false, false, false, false, false };
for (uint32_t i=0; i < regCount; ++i) {
int renum = 0;
for (int u=1; u < 7; ++u) {
if ( !used[u] ) {
if ( renum == permunreg[i] ) {
registersSaved[i] = u;
used[u] = true;
break;
}
++renum;
}
}
}
uint64_t savedRegisters = registers.getSP() + stackSize - 4 - 4*regCount;
for (uint32_t i=0; i < regCount; ++i) {
switch ( registersSaved[i] ) {
case UNWIND_X86_REG_EBX:
registers.setEBX(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_ECX:
registers.setECX(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_EDX:
registers.setEDX(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_EDI:
registers.setEDI(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_ESI:
registers.setESI(addressSpace.get32(savedRegisters));
break;
case UNWIND_X86_REG_EBP:
registers.setEBP(addressSpace.get32(savedRegisters));
break;
default:
DEBUG_MESSAGE("bad register for frameless, encoding=%08X for function starting at 0x%X\n", encoding, functionStart);
ABORT("invalid compact unwind encoding");
}
savedRegisters += 4;
}
framelessUnwind(addressSpace, savedRegisters, registers);
return UNW_STEP_SUCCESS;
}
#if SUPPORT_OLD_BINARIES
template <typename A>
int CompactUnwinder_x86<A>::stepWithCompactEncodingCompat(compact_unwind_encoding_t compactEncoding, uint32_t functionStart, A& addressSpace, Registers_x86& registers)
{
//fprintf(stderr, "stepWithCompactEncoding(0x%08X)\n", compactEncoding);
typename A::pint_t savedRegisters;
uint32_t stackValue = EXTRACT_BITS(compactEncoding, UNWIND_X86_STACK_SIZE);
uint32_t stackSize;
uint32_t stackAdjust;
switch (compactEncoding & UNWIND_X86_CASE_MASK ) {
case UNWIND_X86_UNWIND_INFO_UNSPECIFIED:
return UNW_ENOINFO;
case UNWIND_X86_EBP_FRAME_NO_REGS:
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_EBP_FRAME_EBX:
savedRegisters = registers.getEBP() - 4;
registers.setEBX(addressSpace.get32(savedRegisters));
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_EBP_FRAME_ESI:
savedRegisters = registers.getEBP() - 4;
registers.setESI(addressSpace.get32(savedRegisters));
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_EBP_FRAME_EDI:
savedRegisters = registers.getEBP() - 4;
registers.setEDI(addressSpace.get32(savedRegisters));
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_EBP_FRAME_EBX_ESI:
savedRegisters = registers.getEBP() - 8;
registers.setEBX(addressSpace.get32(savedRegisters));
registers.setESI(addressSpace.get32(savedRegisters+4));
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_EBP_FRAME_ESI_EDI:
savedRegisters = registers.getEBP() - 8;
registers.setESI(addressSpace.get32(savedRegisters));
registers.setEDI(addressSpace.get32(savedRegisters+4));
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_EBP_FRAME_EBX_ESI_EDI:
savedRegisters = registers.getEBP() - 12;
registers.setEBX(addressSpace.get32(savedRegisters));
registers.setESI(addressSpace.get32(savedRegisters+4));
registers.setEDI(addressSpace.get32(savedRegisters+8));
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_EBP_FRAME_EBX_EDI:
savedRegisters = registers.getEBP() - 8;
registers.setEBX(addressSpace.get32(savedRegisters));
registers.setEDI(addressSpace.get32(savedRegisters+4));
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_IMM_STK_NO_REGS:
stackSize = stackValue * 4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*0;
framelessUnwind(addressSpace, savedRegisters+4*0, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_IMM_STK_EBX:
stackSize = stackValue * 4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*1;
registers.setEBX(addressSpace.get32(savedRegisters));
framelessUnwind(addressSpace, savedRegisters+4*1, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_IMM_STK_ESI:
stackSize = stackValue * 4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*1;
registers.setESI(addressSpace.get32(savedRegisters));
framelessUnwind(addressSpace, savedRegisters+4*1, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_IMM_STK_EDI:
stackSize = stackValue * 4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*1;
registers.setEDI(addressSpace.get32(savedRegisters));
framelessUnwind(addressSpace, savedRegisters+4*1, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_IMM_STK_EBX_ESI:
stackSize = stackValue * 4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*2;
registers.setEBX(addressSpace.get32(savedRegisters));
registers.setESI(addressSpace.get32(savedRegisters+4));
framelessUnwind(addressSpace, savedRegisters+4*2, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_IMM_STK_ESI_EDI:
stackSize = stackValue * 4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*2;
registers.setESI(addressSpace.get32(savedRegisters));
registers.setEDI(addressSpace.get32(savedRegisters+4));
framelessUnwind(addressSpace, savedRegisters+4*2, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_IMM_STK_ESI_EDI_EBP:
stackSize = stackValue * 4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*3;
registers.setESI(addressSpace.get32(savedRegisters));
registers.setEDI(addressSpace.get32(savedRegisters+4));
registers.setEBP(addressSpace.get32(savedRegisters+8));
framelessUnwind(addressSpace, savedRegisters+4*3, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_IMM_STK_EBX_ESI_EDI:
stackSize = stackValue * 4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*3;
registers.setEBX(addressSpace.get32(savedRegisters));
registers.setESI(addressSpace.get32(savedRegisters+4));
registers.setEDI(addressSpace.get32(savedRegisters+8));
framelessUnwind(addressSpace, savedRegisters+4*3, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_IMM_STK_EBX_ESI_EDI_EBP:
stackSize = stackValue * 4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*4;
registers.setEBX(addressSpace.get32(savedRegisters));
registers.setESI(addressSpace.get32(savedRegisters+4));
registers.setEDI(addressSpace.get32(savedRegisters+8));
registers.setEBP(addressSpace.get32(savedRegisters+12));
framelessUnwind(addressSpace, savedRegisters+4*4, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_IND_STK_NO_REGS:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_STACK_ADJUST);
stackSize += stackAdjust*4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*0;
framelessUnwind(addressSpace, savedRegisters+4*0, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_IND_STK_EBX:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_STACK_ADJUST);
stackSize += stackAdjust*4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*1;
registers.setEBX(addressSpace.get32(savedRegisters));
framelessUnwind(addressSpace, savedRegisters+4*1, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_IND_STK_ESI:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_STACK_ADJUST);
stackSize += stackAdjust*4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*1;
registers.setESI(addressSpace.get32(savedRegisters));
framelessUnwind(addressSpace, savedRegisters+4*1, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_IND_STK_EDI:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_STACK_ADJUST);
stackSize += stackAdjust*4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*1;
registers.setEDI(addressSpace.get32(savedRegisters));
return UNW_STEP_SUCCESS;
framelessUnwind(addressSpace, savedRegisters+4*1, registers);
case UNWIND_X86_IND_STK_EBX_ESI:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_STACK_ADJUST);
stackSize += stackAdjust*4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*2;
registers.setEBX(addressSpace.get32(savedRegisters));
registers.setESI(addressSpace.get32(savedRegisters+4));
framelessUnwind(addressSpace, savedRegisters+4*2, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_IND_STK_ESI_EDI:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_STACK_ADJUST);
stackSize += stackAdjust*4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*2;
registers.setESI(addressSpace.get32(savedRegisters));
registers.setEDI(addressSpace.get32(savedRegisters+4));
framelessUnwind(addressSpace, savedRegisters+4*2, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_IND_STK_ESI_EDI_EBP:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_STACK_ADJUST);
stackSize += stackAdjust*4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*3;
registers.setESI(addressSpace.get32(savedRegisters));
registers.setEDI(addressSpace.get32(savedRegisters+4));
registers.setEBP(addressSpace.get32(savedRegisters+8));
framelessUnwind(addressSpace, savedRegisters+4*3, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_IND_STK_EBX_ESI_EDI:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_STACK_ADJUST);
stackSize += stackAdjust*4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*3;
registers.setEBX(addressSpace.get32(savedRegisters));
registers.setESI(addressSpace.get32(savedRegisters+4));
registers.setEDI(addressSpace.get32(savedRegisters+8));
framelessUnwind(addressSpace, savedRegisters+4*3, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_IND_STK_EBX_ESI_EDI_EBP:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_STACK_ADJUST);
stackSize += stackAdjust*4;
savedRegisters = registers.getSP() + stackSize - 4 - 4*4;
registers.setEBX(addressSpace.get32(savedRegisters));
registers.setESI(addressSpace.get32(savedRegisters+4));
registers.setEDI(addressSpace.get32(savedRegisters+8));
registers.setEBP(addressSpace.get32(savedRegisters+12));
framelessUnwind(addressSpace, savedRegisters+4*4, registers);
return UNW_STEP_SUCCESS;
default:
DEBUG_MESSAGE("unknown compact unwind encoding %08X for function starting at 0x%X\n",
compactEncoding & UNWIND_X86_CASE_MASK, functionStart);
ABORT("unknown compact unwind encoding");
}
return UNW_EINVAL;
}
#endif // SUPPORT_OLD_BINARIES
template <typename A>
void CompactUnwinder_x86<A>::frameUnwind(A& addressSpace, Registers_x86& registers)
{
typename A::pint_t bp = registers.getEBP();
// ebp points to old ebp
registers.setEBP(addressSpace.get32(bp));
// old esp is ebp less saved ebp and return address
registers.setSP(bp+8);
// pop return address into eip
registers.setIP(addressSpace.get32(bp+4));
}
template <typename A>
void CompactUnwinder_x86<A>::framelessUnwind(A& addressSpace, typename A::pint_t returnAddressLocation, Registers_x86& registers)
{
// return address is on stack after last saved register
registers.setIP(addressSpace.get32(returnAddressLocation));
// old esp is before return address
registers.setSP(returnAddressLocation+4);
}
///
/// CompactUnwinder_x86_64 uses a compact unwind info to virtually "step" (aka unwind) by
/// modifying a Registers_x86_64 register set
///
template <typename A>
class CompactUnwinder_x86_64
{
public:
static int stepWithCompactEncoding(compact_unwind_encoding_t compactEncoding, uint64_t functionStart, A& addressSpace, Registers_x86_64& registers);
private:
typename A::pint_t pint_t;
static void frameUnwind(A& addressSpace, Registers_x86_64& registers);
static void framelessUnwind(A& addressSpace, uint64_t returnAddressLocation, Registers_x86_64& registers);
static int stepWithCompactEncodingRBPFrame(compact_unwind_encoding_t compactEncoding, uint64_t functionStart, A& addressSpace, Registers_x86_64& registers);
static int stepWithCompactEncodingFrameless(compact_unwind_encoding_t compactEncoding, uint64_t functionStart, A& addressSpace, Registers_x86_64& registers, bool indirectStackSize);
#if SUPPORT_OLD_BINARIES
static int stepWithCompactEncodingCompat(compact_unwind_encoding_t compactEncoding, uint64_t functionStart, A& addressSpace, Registers_x86_64& registers);
#endif
};
template <typename A>
int CompactUnwinder_x86_64<A>::stepWithCompactEncoding(compact_unwind_encoding_t compactEncoding, uint64_t functionStart, A& addressSpace, Registers_x86_64& registers)
{
//fprintf(stderr, "stepWithCompactEncoding(0x%08X)\n", compactEncoding);
switch ( compactEncoding & UNWIND_X86_64_MODE_MASK ) {
#if SUPPORT_OLD_BINARIES
case UNWIND_X86_64_MODE_COMPATIBILITY:
return stepWithCompactEncodingCompat(compactEncoding, functionStart, addressSpace, registers);
#endif
case UNWIND_X86_64_MODE_RBP_FRAME:
return stepWithCompactEncodingRBPFrame(compactEncoding, functionStart, addressSpace, registers);
case UNWIND_X86_64_MODE_STACK_IMMD:
return stepWithCompactEncodingFrameless(compactEncoding, functionStart, addressSpace, registers, false);
case UNWIND_X86_64_MODE_STACK_IND:
return stepWithCompactEncodingFrameless(compactEncoding, functionStart, addressSpace, registers, true);
}
ABORT("invalid compact unwind encoding");
}
template <typename A>
int CompactUnwinder_x86_64<A>::stepWithCompactEncodingRBPFrame(compact_unwind_encoding_t compactEncoding, uint64_t functionStart,
A& addressSpace, Registers_x86_64& registers)
{
uint32_t savedRegistersOffset = EXTRACT_BITS(compactEncoding, UNWIND_X86_64_RBP_FRAME_OFFSET);
uint32_t savedRegistersLocations = EXTRACT_BITS(compactEncoding, UNWIND_X86_64_RBP_FRAME_REGISTERS);
uint64_t savedRegisters = registers.getRBP() - 8*savedRegistersOffset;
for (int i=0; i < 5; ++i) {
int readerr = 0;
switch (savedRegistersLocations & 0x7) {
case UNWIND_X86_64_REG_NONE:
// no register saved in this slot
break;
case UNWIND_X86_64_REG_RBX:
registers.setRBX(addressSpace.get64(savedRegisters, readerr));
break;
case UNWIND_X86_64_REG_R12:
registers.setR12(addressSpace.get64(savedRegisters, readerr));
break;
case UNWIND_X86_64_REG_R13:
registers.setR13(addressSpace.get64(savedRegisters, readerr));
break;
case UNWIND_X86_64_REG_R14:
registers.setR14(addressSpace.get64(savedRegisters, readerr));
break;
case UNWIND_X86_64_REG_R15:
registers.setR15(addressSpace.get64(savedRegisters, readerr));
break;
default:
DEBUG_MESSAGE("bad register for RBP frame, encoding=%08X for function starting at 0x%llX\n", compactEncoding, functionStart);
ABORT("invalid compact unwind encoding");
}
// Error reading memory while doing a remote unwind?
if (readerr)
return UNW_STEP_END;
savedRegisters += 8;
savedRegistersLocations = (savedRegistersLocations >> 3);
}
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
}
template <typename A>
int CompactUnwinder_x86_64<A>::stepWithCompactEncodingFrameless(compact_unwind_encoding_t encoding, uint64_t functionStart,
A& addressSpace, Registers_x86_64& registers, bool indirectStackSize)
{
uint32_t stackSizeEncoded = EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_SIZE);
uint32_t stackAdjust = EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_ADJUST);
uint32_t regCount = EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT);
uint32_t permutation = EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION);
uint32_t stackSize = stackSizeEncoded*8;
if ( indirectStackSize ) {
// stack size is encoded in subl $xxx,%esp instruction
uint32_t subl = addressSpace.get32(functionStart+stackSizeEncoded);
stackSize = subl + 8*stackAdjust;
}
// decompress permutation
int permunreg[6];
switch ( regCount ) {
case 6:
permunreg[0] = permutation/120;
permutation -= (permunreg[0]*120);
permunreg[1] = permutation/24;
permutation -= (permunreg[1]*24);
permunreg[2] = permutation/6;
permutation -= (permunreg[2]*6);
permunreg[3] = permutation/2;
permutation -= (permunreg[3]*2);
permunreg[4] = permutation;
permunreg[5] = 0;
break;
case 5:
permunreg[0] = permutation/120;
permutation -= (permunreg[0]*120);
permunreg[1] = permutation/24;
permutation -= (permunreg[1]*24);
permunreg[2] = permutation/6;
permutation -= (permunreg[2]*6);
permunreg[3] = permutation/2;
permutation -= (permunreg[3]*2);
permunreg[4] = permutation;
break;
case 4:
permunreg[0] = permutation/60;
permutation -= (permunreg[0]*60);
permunreg[1] = permutation/12;
permutation -= (permunreg[1]*12);
permunreg[2] = permutation/3;
permutation -= (permunreg[2]*3);
permunreg[3] = permutation;
break;
case 3:
permunreg[0] = permutation/20;
permutation -= (permunreg[0]*20);
permunreg[1] = permutation/4;
permutation -= (permunreg[1]*4);
permunreg[2] = permutation;
break;
case 2:
permunreg[0] = permutation/5;
permutation -= (permunreg[0]*5);
permunreg[1] = permutation;
break;
case 1:
permunreg[0] = permutation;
break;
}
// re-number registers back to standard numbers
int registersSaved[6];
bool used[7] = { false, false, false, false, false, false, false };
for (uint32_t i=0; i < regCount; ++i) {
int renum = 0;
for (int u=1; u < 7; ++u) {
if ( !used[u] ) {
if ( renum == permunreg[i] ) {
registersSaved[i] = u;
used[u] = true;
break;
}
++renum;
}
}
}
uint64_t savedRegisters = registers.getSP() + stackSize - 8 - 8*regCount;
for (uint32_t i=0; i < regCount; ++i) {
switch ( registersSaved[i] ) {
case UNWIND_X86_64_REG_RBX:
registers.setRBX(addressSpace.get64(savedRegisters));
break;
case UNWIND_X86_64_REG_R12:
registers.setR12(addressSpace.get64(savedRegisters));
break;
case UNWIND_X86_64_REG_R13:
registers.setR13(addressSpace.get64(savedRegisters));
break;
case UNWIND_X86_64_REG_R14:
registers.setR14(addressSpace.get64(savedRegisters));
break;
case UNWIND_X86_64_REG_R15:
registers.setR15(addressSpace.get64(savedRegisters));
break;
case UNWIND_X86_64_REG_RBP:
registers.setRBP(addressSpace.get64(savedRegisters));
break;
default:
DEBUG_MESSAGE("bad register for frameless, encoding=%08X for function starting at 0x%llX\n", encoding, functionStart);
ABORT("invalid compact unwind encoding");
}
savedRegisters += 8;
}
framelessUnwind(addressSpace, savedRegisters, registers);
return UNW_STEP_SUCCESS;
}
#if SUPPORT_OLD_BINARIES
template <typename A>
int CompactUnwinder_x86_64<A>::stepWithCompactEncodingCompat(compact_unwind_encoding_t compactEncoding, uint64_t functionStart, A& addressSpace, Registers_x86_64& registers)
{
uint64_t savedRegisters;
uint32_t stackValue = EXTRACT_BITS(compactEncoding, UNWIND_X86_64_STACK_SIZE);
uint64_t stackSize;
uint32_t stackAdjust;
switch (compactEncoding & UNWIND_X86_64_CASE_MASK ) {
case UNWIND_X86_64_UNWIND_INFO_UNSPECIFIED:
return UNW_ENOINFO;
case UNWIND_X86_64_RBP_FRAME_NO_REGS:
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_RBP_FRAME_RBX:
savedRegisters = registers.getRBP() - 8*1;
registers.setRBX(addressSpace.get64(savedRegisters));
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_RBP_FRAME_RBX_R12:
savedRegisters = registers.getRBP() - 8*2;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setR12(addressSpace.get64(savedRegisters+8));
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_RBP_FRAME_RBX_R12_R13:
savedRegisters = registers.getRBP() - 8*3;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setR12(addressSpace.get64(savedRegisters+8));
registers.setR13(addressSpace.get64(savedRegisters+16));
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_RBP_FRAME_RBX_R12_R13_R14:
savedRegisters = registers.getRBP() - 8*4;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setR12(addressSpace.get64(savedRegisters+8));
registers.setR13(addressSpace.get64(savedRegisters+16));
registers.setR14(addressSpace.get64(savedRegisters+24));
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_RBP_FRAME_RBX_R12_R13_R14_R15:
savedRegisters = registers.getRBP() - 8*5;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setR12(addressSpace.get64(savedRegisters+8));
registers.setR13(addressSpace.get64(savedRegisters+16));
registers.setR14(addressSpace.get64(savedRegisters+24));
registers.setR15(addressSpace.get64(savedRegisters+32));
frameUnwind(addressSpace, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IMM_STK_NO_REGS:
stackSize = stackValue * 8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*0;
framelessUnwind(addressSpace, savedRegisters+8*0, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IMM_STK_RBX:
stackSize = stackValue * 8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*1;
registers.setRBX(addressSpace.get64(savedRegisters));
framelessUnwind(addressSpace, savedRegisters+8*1, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IMM_STK_RBX_R12:
stackSize = stackValue * 8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*2;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setR12(addressSpace.get64(savedRegisters+8));
framelessUnwind(addressSpace, savedRegisters+8*2, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IMM_STK_RBX_RBP:
stackSize = stackValue * 8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*2;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setRBP(addressSpace.get64(savedRegisters+8));
framelessUnwind(addressSpace, savedRegisters+8*2, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IMM_STK_RBX_R12_R13:
stackSize = stackValue * 8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*3;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setR12(addressSpace.get64(savedRegisters+8));
registers.setR13(addressSpace.get64(savedRegisters+16));
framelessUnwind(addressSpace, savedRegisters+8*3, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IMM_STK_RBX_R12_R13_R14:
stackSize = stackValue * 8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*4;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setR12(addressSpace.get64(savedRegisters+8));
registers.setR13(addressSpace.get64(savedRegisters+16));
registers.setR14(addressSpace.get64(savedRegisters+24));
framelessUnwind(addressSpace, savedRegisters+8*4, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IMM_STK_RBX_R12_R13_R14_R15:
stackSize = stackValue * 8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*5;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setR12(addressSpace.get64(savedRegisters+8));
registers.setR13(addressSpace.get64(savedRegisters+16));
registers.setR14(addressSpace.get64(savedRegisters+24));
registers.setR15(addressSpace.get64(savedRegisters+32));
framelessUnwind(addressSpace, savedRegisters+8*5, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IMM_STK_RBX_RBP_R12_R13_R14_R15:
stackSize = stackValue * 8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*6;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setRBP(addressSpace.get64(savedRegisters+8));
registers.setR12(addressSpace.get64(savedRegisters+16));
registers.setR13(addressSpace.get64(savedRegisters+24));
registers.setR14(addressSpace.get64(savedRegisters+32));
registers.setR15(addressSpace.get64(savedRegisters+40));
framelessUnwind(addressSpace, savedRegisters+8*6, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IMM_STK_RBX_RBP_R12:
stackSize = stackValue * 8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*3;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setRBP(addressSpace.get64(savedRegisters+8));
registers.setR12(addressSpace.get64(savedRegisters+16));
framelessUnwind(addressSpace, savedRegisters+8*3, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IMM_STK_RBX_RBP_R12_R13:
stackSize = stackValue * 8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*4;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setRBP(addressSpace.get64(savedRegisters+8));
registers.setR12(addressSpace.get64(savedRegisters+16));
registers.setR13(addressSpace.get64(savedRegisters+24));
framelessUnwind(addressSpace, savedRegisters+8*4, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IMM_STK_RBX_RBP_R12_R13_R14:
stackSize = stackValue * 8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*5;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setRBP(addressSpace.get64(savedRegisters+8));
registers.setR12(addressSpace.get64(savedRegisters+16));
registers.setR13(addressSpace.get64(savedRegisters+24));
registers.setR14(addressSpace.get64(savedRegisters+32));
framelessUnwind(addressSpace, savedRegisters+8*5, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IND_STK_NO_REGS:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_64_STACK_ADJUST);
stackSize += stackAdjust*8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*0;
framelessUnwind(addressSpace, savedRegisters+8*0, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IND_STK_RBX:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_64_STACK_ADJUST);
stackSize += stackAdjust*8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*1;
registers.setRBX(addressSpace.get64(savedRegisters));
framelessUnwind(addressSpace, savedRegisters+8*1, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IND_STK_RBX_R12:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_64_STACK_ADJUST);
stackSize += stackAdjust*8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*2;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setR12(addressSpace.get64(savedRegisters+8));
framelessUnwind(addressSpace, savedRegisters+8*2, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IND_STK_RBX_RBP:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_64_STACK_ADJUST);
stackSize += stackAdjust*8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*2;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setRBP(addressSpace.get64(savedRegisters+8));
framelessUnwind(addressSpace, savedRegisters+8*2, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IND_STK_RBX_R12_R13:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_64_STACK_ADJUST);
stackSize += stackAdjust*8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*3;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setR12(addressSpace.get64(savedRegisters+8));
registers.setR13(addressSpace.get64(savedRegisters+16));
framelessUnwind(addressSpace, savedRegisters+8*3, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IND_STK_RBX_R12_R13_R14:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_64_STACK_ADJUST);
stackSize += stackAdjust*8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*4;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setR12(addressSpace.get64(savedRegisters+8));
registers.setR13(addressSpace.get64(savedRegisters+16));
registers.setR14(addressSpace.get64(savedRegisters+24));
framelessUnwind(addressSpace, savedRegisters+8*4, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IND_STK_RBX_R12_R13_R14_R15:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_64_STACK_ADJUST);
stackSize += stackAdjust*8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*5;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setR12(addressSpace.get64(savedRegisters+8));
registers.setR13(addressSpace.get64(savedRegisters+16));
registers.setR14(addressSpace.get64(savedRegisters+24));
registers.setR15(addressSpace.get64(savedRegisters+32));
framelessUnwind(addressSpace, savedRegisters+8*5, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IND_STK_RBX_RBP_R12_R13_R14_R15:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_64_STACK_ADJUST);
stackSize += stackAdjust*8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*6;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setRBP(addressSpace.get64(savedRegisters+8));
registers.setR12(addressSpace.get64(savedRegisters+16));
registers.setR13(addressSpace.get64(savedRegisters+24));
registers.setR14(addressSpace.get64(savedRegisters+32));
registers.setR15(addressSpace.get64(savedRegisters+40));
framelessUnwind(addressSpace, savedRegisters+8*6, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IND_STK_RBX_RBP_R12:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_64_STACK_ADJUST);
stackSize += stackAdjust*8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*3;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setRBP(addressSpace.get64(savedRegisters+8));
registers.setR12(addressSpace.get64(savedRegisters+16));
framelessUnwind(addressSpace, savedRegisters+8*3, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IND_STK_RBX_RBP_R12_R13:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_64_STACK_ADJUST);
stackSize += stackAdjust*8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*4;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setRBP(addressSpace.get64(savedRegisters+8));
registers.setR12(addressSpace.get64(savedRegisters+16));
registers.setR13(addressSpace.get64(savedRegisters+24));
framelessUnwind(addressSpace, savedRegisters+8*4, registers);
return UNW_STEP_SUCCESS;
case UNWIND_X86_64_IND_STK_RBX_RBP_R12_R13_R14:
stackSize = addressSpace.get32(functionStart+stackValue);
stackAdjust = EXTRACT_BITS(compactEncoding, UNWIND_X86_64_STACK_ADJUST);
stackSize += stackAdjust*8;
savedRegisters = registers.getSP() + stackSize - 8 - 8*5;
registers.setRBX(addressSpace.get64(savedRegisters));
registers.setRBP(addressSpace.get64(savedRegisters+8));
registers.setR12(addressSpace.get64(savedRegisters+16));
registers.setR13(addressSpace.get64(savedRegisters+24));
registers.setR14(addressSpace.get64(savedRegisters+32));
framelessUnwind(addressSpace, savedRegisters+8*5, registers);
return UNW_STEP_SUCCESS;
default:
DEBUG_MESSAGE("unknown compact unwind encoding %08X for function starting at 0x%llX\n",
compactEncoding & UNWIND_X86_64_CASE_MASK, functionStart);
ABORT("unknown compact unwind encoding");
}
return UNW_EINVAL;
}
#endif // SUPPORT_OLD_BINARIES
template <typename A>
void CompactUnwinder_x86_64<A>::frameUnwind(A& addressSpace, Registers_x86_64& registers)
{
uint64_t rbp = registers.getRBP();
// ebp points to old ebp
registers.setRBP(addressSpace.get64(rbp));
// old esp is ebp less saved ebp and return address
registers.setSP(rbp+16);
// pop return address into eip
registers.setIP(addressSpace.get64(rbp+8));
}
template <typename A>
void CompactUnwinder_x86_64<A>::framelessUnwind(A& addressSpace, uint64_t returnAddressLocation, Registers_x86_64& registers)
{
// return address is on stack after last saved register
registers.setIP(addressSpace.get64(returnAddressLocation));
// old esp is before return address
registers.setSP(returnAddressLocation+8);
}
}; // namespace lldb_private
#endif // __COMPACT_UNWINDER_HPP__