blob: 589c30b50b9009a87aad9a61c6977f6293cddd6d [file] [log] [blame]
/* -*- mode: C++; c-basic-offset: 4; tab-width: 4 vi:set tabstop=4 expandtab: -*/
//===-- DwarfInstructions.hpp -----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// processor specific parsing of dwarf unwind instructions
//
#ifndef __DWARF_INSTRUCTIONS_HPP__
#define __DWARF_INSTRUCTIONS_HPP__
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <vector>
#include <libunwind.h>
#include <mach-o/compact_unwind_encoding.h>
#include "dwarf2.h"
#include "AddressSpace.hpp"
#include "Registers.hpp"
#include "DwarfParser.hpp"
#include "InternalMacros.h"
//#include "CompactUnwinder.hpp"
#define EXTRACT_BITS(value, mask) \
( (value >> __builtin_ctz(mask)) & (((1 << __builtin_popcount(mask)))-1) )
#define CFI_INVALID_ADDRESS ((pint_t)(-1))
namespace lldb_private {
///
/// Used by linker when parsing __eh_frame section
///
template <typename A>
struct CFI_Reference {
typedef typename A::pint_t pint_t;
uint8_t encodingOfTargetAddress;
uint32_t offsetInCFI;
pint_t targetAddress;
};
template <typename A>
struct CFI_Atom_Info {
typedef typename A::pint_t pint_t;
pint_t address;
uint32_t size;
bool isCIE;
union {
struct {
CFI_Reference<A> function;
CFI_Reference<A> cie;
CFI_Reference<A> lsda;
uint32_t compactUnwindInfo;
} fdeInfo;
struct {
CFI_Reference<A> personality;
} cieInfo;
} u;
};
typedef void (*WarnFunc)(void* ref, uint64_t funcAddr, const char* msg);
///
/// DwarfInstructions maps abtract dwarf unwind instructions to a particular architecture
///
template <typename A, typename R>
class DwarfInstructions
{
public:
typedef typename A::pint_t pint_t;
typedef typename A::sint_t sint_t;
static const char* parseCFIs(A& addressSpace, pint_t ehSectionStart, uint32_t sectionLength,
CFI_Atom_Info<A>* infos, uint32_t infosCount, void* ref, WarnFunc warn);
static compact_unwind_encoding_t createCompactEncodingFromFDE(A& addressSpace, pint_t fdeStart,
pint_t* lsda, pint_t* personality,
char warningBuffer[1024]);
static int stepWithDwarf(A& addressSpace, pint_t pc, pint_t fdeStart, R& registers);
private:
enum {
DW_X86_64_RET_ADDR = 16
};
enum {
DW_X86_RET_ADDR = 8
};
static pint_t evaluateExpression(pint_t expression, A& addressSpace, const R& registers, pint_t initialStackValue);
static pint_t getSavedRegister(A& addressSpace, const R& registers, pint_t cfa,
const typename CFI_Parser<A>::RegisterLocation& savedReg);
static double getSavedFloatRegister(A& addressSpace, const R& registers, pint_t cfa,
const typename CFI_Parser<A>::RegisterLocation& savedReg);
static v128 getSavedVectorRegister(A& addressSpace, const R& registers, pint_t cfa,
const typename CFI_Parser<A>::RegisterLocation& savedReg);
// x86 specific variants
static int lastRestoreReg(const Registers_x86&);
static bool isReturnAddressRegister(int regNum, const Registers_x86&);
static pint_t getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog, const Registers_x86&);
static uint32_t getEBPEncodedRegister(uint32_t reg, int32_t regOffsetFromBaseOffset, bool& failure);
static compact_unwind_encoding_t encodeToUseDwarf(const Registers_x86&);
static compact_unwind_encoding_t createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
const Registers_x86&, const typename CFI_Parser<A>::PrologInfo& prolog,
char warningBuffer[1024]);
// x86_64 specific variants
static int lastRestoreReg(const Registers_x86_64&);
static bool isReturnAddressRegister(int regNum, const Registers_x86_64&);
static pint_t getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog, const Registers_x86_64&);
static uint32_t getRBPEncodedRegister(uint32_t reg, int32_t regOffsetFromBaseOffset, bool& failure);
static compact_unwind_encoding_t encodeToUseDwarf(const Registers_x86_64&);
static compact_unwind_encoding_t createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
const Registers_x86_64&, const typename CFI_Parser<A>::PrologInfo& prolog,
char warningBuffer[1024]);
// ppc specific variants
static int lastRestoreReg(const Registers_ppc&);
static bool isReturnAddressRegister(int regNum, const Registers_ppc&);
static pint_t getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog, const Registers_ppc&);
static compact_unwind_encoding_t encodeToUseDwarf(const Registers_ppc&);
static compact_unwind_encoding_t createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
const Registers_ppc&, const typename CFI_Parser<A>::PrologInfo& prolog,
char warningBuffer[1024]);
};
template <typename A, typename R>
const char* DwarfInstructions<A,R>::parseCFIs(A& addressSpace, pint_t ehSectionStart, uint32_t sectionLength,
CFI_Atom_Info<A>* infos, uint32_t infosCount, void* ref, WarnFunc warn)
{
typename CFI_Parser<A>::CIE_Info cieInfo;
CFI_Atom_Info<A>* entry = infos;
CFI_Atom_Info<A>* end = &infos[infosCount];
const pint_t ehSectionEnd = ehSectionStart + sectionLength;
for (pint_t p=ehSectionStart; p < ehSectionEnd; ) {
pint_t currentCFI = p;
uint64_t cfiLength = addressSpace.get32(p);
p += 4;
if ( cfiLength == 0xffffffff ) {
// 0xffffffff means length is really next 8 bytes
cfiLength = addressSpace.get64(p);
p += 8;
}
if ( cfiLength == 0 )
return NULL; // end marker
if ( entry >= end )
return "too little space allocated for parseCFIs";
pint_t nextCFI = p + cfiLength;
uint32_t id = addressSpace.get32(p);
if ( id == 0 ) {
// is CIE
const char* err = CFI_Parser<A>::parseCIE(addressSpace, currentCFI, &cieInfo);
if ( err != NULL )
return err;
entry->address = currentCFI;
entry->size = nextCFI - currentCFI;
entry->isCIE = true;
entry->u.cieInfo.personality.targetAddress = cieInfo.personality;
entry->u.cieInfo.personality.offsetInCFI = cieInfo.personalityOffsetInCIE;
entry->u.cieInfo.personality.encodingOfTargetAddress = cieInfo.personalityEncoding;
++entry;
}
else {
// is FDE
entry->address = currentCFI;
entry->size = nextCFI - currentCFI;
entry->isCIE = false;
entry->u.fdeInfo.function.targetAddress = CFI_INVALID_ADDRESS;
entry->u.fdeInfo.cie.targetAddress = CFI_INVALID_ADDRESS;
entry->u.fdeInfo.lsda.targetAddress = CFI_INVALID_ADDRESS;
uint32_t ciePointer = addressSpace.get32(p);
pint_t cieStart = p-ciePointer;
// validate pointer to CIE is within section
if ( (cieStart < ehSectionStart) || (cieStart > ehSectionEnd) )
return "FDE points to CIE outside __eh_frame section";
// optimize usual case where cie is same for all FDEs
if ( cieStart != cieInfo.cieStart ) {
const char* err = CFI_Parser<A>::parseCIE(addressSpace, cieStart, &cieInfo);
if ( err != NULL )
return err;
}
entry->u.fdeInfo.cie.targetAddress = cieStart;
entry->u.fdeInfo.cie.offsetInCFI = p-currentCFI;
entry->u.fdeInfo.cie.encodingOfTargetAddress = DW_EH_PE_sdata4 | DW_EH_PE_pcrel;
p += 4;
// parse pc begin and range
pint_t offsetOfFunctionAddress = p-currentCFI;
pint_t pcStart = addressSpace.getEncodedP(p, nextCFI, cieInfo.pointerEncoding);
pint_t pcRange = addressSpace.getEncodedP(p, nextCFI, cieInfo.pointerEncoding & 0x0F);
//fprintf(stderr, "FDE with pcRange [0x%08llX, 0x%08llX)\n",(uint64_t)pcStart, (uint64_t)(pcStart+pcRange));
// test if pc is within the function this FDE covers
entry->u.fdeInfo.function.targetAddress = pcStart;
entry->u.fdeInfo.function.offsetInCFI = offsetOfFunctionAddress;
entry->u.fdeInfo.function.encodingOfTargetAddress = cieInfo.pointerEncoding;
// check for augmentation length
if ( cieInfo.fdesHaveAugmentationData ) {
uintptr_t augLen = addressSpace.getULEB128(p, nextCFI);
pint_t endOfAug = p + augLen;
if ( cieInfo.lsdaEncoding != 0 ) {
// peek at value (without indirection). Zero means no lsda
pint_t lsdaStart = p;
if ( addressSpace.getEncodedP(p, nextCFI, cieInfo.lsdaEncoding & 0x0F) != 0 ) {
// reset pointer and re-parse lsda address
p = lsdaStart;
pint_t offsetOfLSDAAddress = p-currentCFI;
entry->u.fdeInfo.lsda.targetAddress = addressSpace.getEncodedP(p, nextCFI, cieInfo.lsdaEncoding);
entry->u.fdeInfo.lsda.offsetInCFI = offsetOfLSDAAddress;
entry->u.fdeInfo.lsda.encodingOfTargetAddress = cieInfo.lsdaEncoding;
}
}
p = endOfAug;
}
// compute compact unwind encoding
typename CFI_Parser<A>::FDE_Info fdeInfo;
fdeInfo.fdeStart = currentCFI;
fdeInfo.fdeLength = nextCFI - currentCFI;
fdeInfo.fdeInstructions = p;
fdeInfo.pcStart = pcStart;
fdeInfo.pcEnd = pcStart + pcRange;
fdeInfo.lsda = entry->u.fdeInfo.lsda.targetAddress;
typename CFI_Parser<A>::PrologInfo prolog;
R dummy; // for proper selection of architecture specific functions
if ( CFI_Parser<A>::parseFDEInstructions(addressSpace, fdeInfo, cieInfo, CFI_INVALID_ADDRESS, &prolog) ) {
char warningBuffer[1024];
entry->u.fdeInfo.compactUnwindInfo = createCompactEncodingFromProlog(addressSpace, fdeInfo.pcStart, dummy, prolog, warningBuffer);
if ( fdeInfo.lsda != CFI_INVALID_ADDRESS )
entry->u.fdeInfo.compactUnwindInfo |= UNWIND_HAS_LSDA;
if ( warningBuffer[0] != '\0' )
warn(ref, fdeInfo.pcStart, warningBuffer);
}
else {
warn(ref, CFI_INVALID_ADDRESS, "dwarf unwind instructions could not be parsed");
entry->u.fdeInfo.compactUnwindInfo = encodeToUseDwarf(dummy);
}
++entry;
}
p = nextCFI;
}
if ( entry != end )
return "wrong entry count for parseCFIs";
return NULL; // success
}
template <typename A, typename R>
compact_unwind_encoding_t DwarfInstructions<A,R>::createCompactEncodingFromFDE(A& addressSpace, pint_t fdeStart,
pint_t* lsda, pint_t* personality,
char warningBuffer[1024])
{
typename CFI_Parser<A>::FDE_Info fdeInfo;
typename CFI_Parser<A>::CIE_Info cieInfo;
R dummy; // for proper selection of architecture specific functions
if ( CFI_Parser<A>::decodeFDE(addressSpace, fdeStart, &fdeInfo, &cieInfo) == NULL ) {
typename CFI_Parser<A>::PrologInfo prolog;
if ( CFI_Parser<A>::parseFDEInstructions(addressSpace, fdeInfo, cieInfo, CFI_INVALID_ADDRESS, &prolog) ) {
*lsda = fdeInfo.lsda;
*personality = cieInfo.personality;
compact_unwind_encoding_t encoding;
encoding = createCompactEncodingFromProlog(addressSpace, fdeInfo.pcStart, dummy, prolog, warningBuffer);
if ( fdeInfo.lsda != 0 )
encoding |= UNWIND_HAS_LSDA;
return encoding;
}
else {
strcpy(warningBuffer, "dwarf unwind instructions could not be parsed");
return encodeToUseDwarf(dummy);
}
}
else {
strcpy(warningBuffer, "dwarf FDE could not be parsed");
return encodeToUseDwarf(dummy);
}
}
template <typename A, typename R>
typename A::pint_t DwarfInstructions<A,R>::getSavedRegister(A& addressSpace, const R& registers, pint_t cfa,
const typename CFI_Parser<A>::RegisterLocation& savedReg)
{
switch ( savedReg.location ) {
case CFI_Parser<A>::kRegisterInCFA:
return addressSpace.getP(cfa + savedReg.value);
case CFI_Parser<A>::kRegisterAtExpression:
return addressSpace.getP(evaluateExpression(savedReg.value, addressSpace, registers, cfa));
case CFI_Parser<A>::kRegisterIsExpression:
return evaluateExpression(savedReg.value, addressSpace, registers, cfa);
case CFI_Parser<A>::kRegisterInRegister:
return registers.getRegister(savedReg.value);
case CFI_Parser<A>::kRegisterUnused:
case CFI_Parser<A>::kRegisterOffsetFromCFA:
// FIX ME
break;
}
ABORT("unsupported restore location for register");
}
template <typename A, typename R>
double DwarfInstructions<A,R>::getSavedFloatRegister(A& addressSpace, const R& registers, pint_t cfa,
const typename CFI_Parser<A>::RegisterLocation& savedReg)
{
switch ( savedReg.location ) {
case CFI_Parser<A>::kRegisterInCFA:
return addressSpace.getDouble(cfa + savedReg.value);
case CFI_Parser<A>::kRegisterAtExpression:
return addressSpace.getDouble(evaluateExpression(savedReg.value, addressSpace, registers, cfa));
case CFI_Parser<A>::kRegisterIsExpression:
case CFI_Parser<A>::kRegisterUnused:
case CFI_Parser<A>::kRegisterOffsetFromCFA:
case CFI_Parser<A>::kRegisterInRegister:
// FIX ME
break;
}
ABORT("unsupported restore location for float register");
}
template <typename A, typename R>
v128 DwarfInstructions<A,R>::getSavedVectorRegister(A& addressSpace, const R& registers, pint_t cfa,
const typename CFI_Parser<A>::RegisterLocation& savedReg)
{
switch ( savedReg.location ) {
case CFI_Parser<A>::kRegisterInCFA:
return addressSpace.getVector(cfa + savedReg.value);
case CFI_Parser<A>::kRegisterAtExpression:
return addressSpace.getVector(evaluateExpression(savedReg.value, addressSpace, registers, cfa));
case CFI_Parser<A>::kRegisterIsExpression:
case CFI_Parser<A>::kRegisterUnused:
case CFI_Parser<A>::kRegisterOffsetFromCFA:
case CFI_Parser<A>::kRegisterInRegister:
// FIX ME
break;
}
ABORT("unsupported restore location for vector register");
}
template <typename A, typename R>
int DwarfInstructions<A,R>::stepWithDwarf(A& addressSpace, pint_t pc, pint_t fdeStart, R& registers)
{
//fprintf(stderr, "stepWithDwarf(pc=0x%0llX, fdeStart=0x%0llX)\n", (uint64_t)pc, (uint64_t)fdeStart);
typename CFI_Parser<A>::FDE_Info fdeInfo;
typename CFI_Parser<A>::CIE_Info cieInfo;
if ( CFI_Parser<A>::decodeFDE(addressSpace, fdeStart, &fdeInfo, &cieInfo) == NULL ) {
typename CFI_Parser<A>::PrologInfo prolog;
if ( CFI_Parser<A>::parseFDEInstructions(addressSpace, fdeInfo, cieInfo, pc, &prolog) ) {
R newRegisters = registers;
// get pointer to cfa (architecture specific)
pint_t cfa = getCFA(addressSpace, prolog, registers);
// restore registers that dwarf says were saved
pint_t returnAddress = 0;
for (int i=0; i <= lastRestoreReg(newRegisters); ++i) {
if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterUnused ) {
if ( registers.validFloatRegister(i) )
newRegisters.setFloatRegister(i, getSavedFloatRegister(addressSpace, registers, cfa, prolog.savedRegisters[i]));
else if ( registers.validVectorRegister(i) )
newRegisters.setVectorRegister(i, getSavedVectorRegister(addressSpace, registers, cfa, prolog.savedRegisters[i]));
else if ( isReturnAddressRegister(i, registers) )
returnAddress = getSavedRegister(addressSpace, registers, cfa, prolog.savedRegisters[i]);
else if ( registers.validRegister(i) )
newRegisters.setRegister(i, getSavedRegister(addressSpace, registers, cfa, prolog.savedRegisters[i]));
else
return UNW_EBADREG;
}
}
// by definition the CFA is the stack pointer at the call site, so restoring SP means setting it to CFA
newRegisters.setSP(cfa);
// return address is address after call site instruction, so setting IP to that does a return
newRegisters.setIP(returnAddress);
// do the actual step by replacing the register set with the new ones
registers = newRegisters;
return UNW_STEP_SUCCESS;
}
}
return UNW_EBADFRAME;
}
template <typename A, typename R>
typename A::pint_t DwarfInstructions<A,R>::evaluateExpression(pint_t expression, A& addressSpace,
const R& registers, pint_t initialStackValue)
{
const bool log = false;
pint_t p = expression;
pint_t expressionEnd = expression+20; // just need something until length is read
uint64_t length = addressSpace.getULEB128(p, expressionEnd);
expressionEnd = p + length;
if (log) fprintf(stderr, "evaluateExpression(): length=%llu\n", length);
pint_t stack[100];
pint_t* sp = stack;
*(++sp) = initialStackValue;
while ( p < expressionEnd ) {
if (log) {
for(pint_t* t = sp; t > stack; --t) {
fprintf(stderr, "sp[] = 0x%llX\n", (uint64_t)(*t));
}
}
uint8_t opcode = addressSpace.get8(p++);
sint_t svalue;
pint_t value;
uint32_t reg;
switch (opcode) {
case DW_OP_addr:
// push immediate address sized value
value = addressSpace.getP(p);
p += sizeof(pint_t);
*(++sp) = value;
if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
break;
case DW_OP_deref:
// pop stack, dereference, push result
value = *sp--;
*(++sp) = addressSpace.getP(value);
if (log) fprintf(stderr, "dereference 0x%llX\n", (uint64_t)value);
break;
case DW_OP_const1u:
// push immediate 1 byte value
value = addressSpace.get8(p);
p += 1;
*(++sp) = value;
if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
break;
case DW_OP_const1s:
// push immediate 1 byte signed value
svalue = (int8_t)addressSpace.get8(p);
p += 1;
*(++sp) = svalue;
if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)svalue);
break;
case DW_OP_const2u:
// push immediate 2 byte value
value = addressSpace.get16(p);
p += 2;
*(++sp) = value;
if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
break;
case DW_OP_const2s:
// push immediate 2 byte signed value
svalue = (int16_t)addressSpace.get16(p);
p += 2;
*(++sp) = svalue;
if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)svalue);
break;
case DW_OP_const4u:
// push immediate 4 byte value
value = addressSpace.get32(p);
p += 4;
*(++sp) = value;
if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
break;
case DW_OP_const4s:
// push immediate 4 byte signed value
svalue = (int32_t)addressSpace.get32(p);
p += 4;
*(++sp) = svalue;
if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)svalue);
break;
case DW_OP_const8u:
// push immediate 8 byte value
value = addressSpace.get64(p);
p += 8;
*(++sp) = value;
if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
break;
case DW_OP_const8s:
// push immediate 8 byte signed value
value = (int32_t)addressSpace.get64(p);
p += 8;
*(++sp) = value;
if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
break;
case DW_OP_constu:
// push immediate ULEB128 value
value = addressSpace.getULEB128(p, expressionEnd);
*(++sp) = value;
if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
break;
case DW_OP_consts:
// push immediate SLEB128 value
svalue = addressSpace.getSLEB128(p, expressionEnd);
*(++sp) = svalue;
if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)svalue);
break;
case DW_OP_dup:
// push top of stack
value = *sp;
*(++sp) = value;
if (log) fprintf(stderr, "duplicate top of stack\n");
break;
case DW_OP_drop:
// pop
--sp;
if (log) fprintf(stderr, "pop top of stack\n");
break;
case DW_OP_over:
// dup second
value = sp[-1];
*(++sp) = value;
if (log) fprintf(stderr, "duplicate second in stack\n");
break;
case DW_OP_pick:
// pick from
reg = addressSpace.get8(p);
p += 1;
value = sp[-reg];
*(++sp) = value;
if (log) fprintf(stderr, "duplicate %d in stack\n", reg);
break;
case DW_OP_swap:
// swap top two
value = sp[0];
sp[0] = sp[-1];
sp[-1] = value;
if (log) fprintf(stderr, "swap top of stack\n");
break;
case DW_OP_rot:
// rotate top three
value = sp[0];
sp[0] = sp[-1];
sp[-1] = sp[-2];
sp[-2] = value;
if (log) fprintf(stderr, "rotate top three of stack\n");
break;
case DW_OP_xderef:
// pop stack, dereference, push result
value = *sp--;
*sp = *((uint64_t*)value);
if (log) fprintf(stderr, "x-dereference 0x%llX\n", (uint64_t)value);
break;
case DW_OP_abs:
svalue = *sp;
if ( svalue < 0 )
*sp = -svalue;
if (log) fprintf(stderr, "abs\n");
break;
case DW_OP_and:
value = *sp--;
*sp &= value;
if (log) fprintf(stderr, "and\n");
break;
case DW_OP_div:
svalue = *sp--;
*sp = *sp / svalue;
if (log) fprintf(stderr, "div\n");
break;
case DW_OP_minus:
svalue = *sp--;
*sp = *sp - svalue;
if (log) fprintf(stderr, "minus\n");
break;
case DW_OP_mod:
svalue = *sp--;
*sp = *sp % svalue;
if (log) fprintf(stderr, "module\n");
break;
case DW_OP_mul:
svalue = *sp--;
*sp = *sp * svalue;
if (log) fprintf(stderr, "mul\n");
break;
case DW_OP_neg:
*sp = 0 - *sp;
if (log) fprintf(stderr, "neg\n");
break;
case DW_OP_not:
svalue = *sp;
*sp = ~svalue;
if (log) fprintf(stderr, "not\n");
break;
case DW_OP_or:
value = *sp--;
*sp |= value;
if (log) fprintf(stderr, "or\n");
break;
case DW_OP_plus:
value = *sp--;
*sp += value;
if (log) fprintf(stderr, "plus\n");
break;
case DW_OP_plus_uconst:
// pop stack, add uelb128 constant, push result
*sp += addressSpace.getULEB128(p, expressionEnd);
if (log) fprintf(stderr, "add constant\n");
break;
case DW_OP_shl:
value = *sp--;
*sp = *sp << value;
if (log) fprintf(stderr, "shift left\n");
break;
case DW_OP_shr:
value = *sp--;
*sp = *sp >> value;
if (log) fprintf(stderr, "shift left\n");
break;
case DW_OP_shra:
value = *sp--;
svalue = *sp;
*sp = svalue >> value;
if (log) fprintf(stderr, "shift left arithmetric\n");
break;
case DW_OP_xor:
value = *sp--;
*sp ^= value;
if (log) fprintf(stderr, "xor\n");
break;
case DW_OP_skip:
svalue = (int16_t)addressSpace.get16(p);
p += 2;
p += svalue;
if (log) fprintf(stderr, "skip %lld\n", (uint64_t)svalue);
break;
case DW_OP_bra:
svalue = (int16_t)addressSpace.get16(p);
p += 2;
if ( *sp-- )
p += svalue;
if (log) fprintf(stderr, "bra %lld\n", (uint64_t)svalue);
break;
case DW_OP_eq:
value = *sp--;
*sp = (*sp == value);
if (log) fprintf(stderr, "eq\n");
break;
case DW_OP_ge:
value = *sp--;
*sp = (*sp >= value);
if (log) fprintf(stderr, "ge\n");
break;
case DW_OP_gt:
value = *sp--;
*sp = (*sp > value);
if (log) fprintf(stderr, "gt\n");
break;
case DW_OP_le:
value = *sp--;
*sp = (*sp <= value);
if (log) fprintf(stderr, "le\n");
break;
case DW_OP_lt:
value = *sp--;
*sp = (*sp < value);
if (log) fprintf(stderr, "lt\n");
break;
case DW_OP_ne:
value = *sp--;
*sp = (*sp != value);
if (log) fprintf(stderr, "ne\n");
break;
case DW_OP_lit0:
case DW_OP_lit1:
case DW_OP_lit2:
case DW_OP_lit3:
case DW_OP_lit4:
case DW_OP_lit5:
case DW_OP_lit6:
case DW_OP_lit7:
case DW_OP_lit8:
case DW_OP_lit9:
case DW_OP_lit10:
case DW_OP_lit11:
case DW_OP_lit12:
case DW_OP_lit13:
case DW_OP_lit14:
case DW_OP_lit15:
case DW_OP_lit16:
case DW_OP_lit17:
case DW_OP_lit18:
case DW_OP_lit19:
case DW_OP_lit20:
case DW_OP_lit21:
case DW_OP_lit22:
case DW_OP_lit23:
case DW_OP_lit24:
case DW_OP_lit25:
case DW_OP_lit26:
case DW_OP_lit27:
case DW_OP_lit28:
case DW_OP_lit29:
case DW_OP_lit30:
case DW_OP_lit31:
value = opcode - DW_OP_lit0;
*(++sp) = value;
if (log) fprintf(stderr, "push literal 0x%llX\n", (uint64_t)value);
break;
case DW_OP_reg0:
case DW_OP_reg1:
case DW_OP_reg2:
case DW_OP_reg3:
case DW_OP_reg4:
case DW_OP_reg5:
case DW_OP_reg6:
case DW_OP_reg7:
case DW_OP_reg8:
case DW_OP_reg9:
case DW_OP_reg10:
case DW_OP_reg11:
case DW_OP_reg12:
case DW_OP_reg13:
case DW_OP_reg14:
case DW_OP_reg15:
case DW_OP_reg16:
case DW_OP_reg17:
case DW_OP_reg18:
case DW_OP_reg19:
case DW_OP_reg20:
case DW_OP_reg21:
case DW_OP_reg22:
case DW_OP_reg23:
case DW_OP_reg24:
case DW_OP_reg25:
case DW_OP_reg26:
case DW_OP_reg27:
case DW_OP_reg28:
case DW_OP_reg29:
case DW_OP_reg30:
case DW_OP_reg31:
reg = opcode - DW_OP_reg0;
*(++sp) = registers.getRegister(reg);
if (log) fprintf(stderr, "push reg %d\n", reg);
break;
case DW_OP_regx:
reg = addressSpace.getULEB128(p, expressionEnd);
*(++sp) = registers.getRegister(reg);
if (log) fprintf(stderr, "push reg %d + 0x%llX\n", reg, (uint64_t)svalue);
break;
case DW_OP_breg0:
case DW_OP_breg1:
case DW_OP_breg2:
case DW_OP_breg3:
case DW_OP_breg4:
case DW_OP_breg5:
case DW_OP_breg6:
case DW_OP_breg7:
case DW_OP_breg8:
case DW_OP_breg9:
case DW_OP_breg10:
case DW_OP_breg11:
case DW_OP_breg12:
case DW_OP_breg13:
case DW_OP_breg14:
case DW_OP_breg15:
case DW_OP_breg16:
case DW_OP_breg17:
case DW_OP_breg18:
case DW_OP_breg19:
case DW_OP_breg20:
case DW_OP_breg21:
case DW_OP_breg22:
case DW_OP_breg23:
case DW_OP_breg24:
case DW_OP_breg25:
case DW_OP_breg26:
case DW_OP_breg27:
case DW_OP_breg28:
case DW_OP_breg29:
case DW_OP_breg30:
case DW_OP_breg31:
reg = opcode - DW_OP_breg0;
svalue = addressSpace.getSLEB128(p, expressionEnd);
*(++sp) = registers.getRegister(reg) + svalue;
if (log) fprintf(stderr, "push reg %d + 0x%llX\n", reg, (uint64_t)svalue);
break;
case DW_OP_bregx:
reg = addressSpace.getULEB128(p, expressionEnd);
svalue = addressSpace.getSLEB128(p, expressionEnd);
*(++sp) = registers.getRegister(reg) + svalue;
if (log) fprintf(stderr, "push reg %d + 0x%llX\n", reg, (uint64_t)svalue);
break;
case DW_OP_fbreg:
ABORT("DW_OP_fbreg not implemented");
break;
case DW_OP_piece:
ABORT("DW_OP_piece not implemented");
break;
case DW_OP_deref_size:
// pop stack, dereference, push result
value = *sp--;
switch ( addressSpace.get8(p++) ) {
case 1:
value = addressSpace.get8(value);
break;
case 2:
value = addressSpace.get16(value);
break;
case 4:
value = addressSpace.get32(value);
break;
case 8:
value = addressSpace.get64(value);
break;
default:
ABORT("DW_OP_deref_size with bad size");
}
*(++sp) = value;
if (log) fprintf(stderr, "sized dereference 0x%llX\n", (uint64_t)value);
break;
case DW_OP_xderef_size:
case DW_OP_nop:
case DW_OP_push_object_addres:
case DW_OP_call2:
case DW_OP_call4:
case DW_OP_call_ref:
default:
ABORT("dwarf opcode not implemented");
}
}
if (log) fprintf(stderr, "expression evaluates to 0x%llX\n", (uint64_t)*sp);
return *sp;
}
//
// x86_64 specific functions
//
template <typename A, typename R>
int DwarfInstructions<A,R>::lastRestoreReg(const Registers_x86_64&)
{
COMPILE_TIME_ASSERT( (int)CFI_Parser<A>::kMaxRegisterNumber > (int)DW_X86_64_RET_ADDR );
return DW_X86_64_RET_ADDR;
}
template <typename A, typename R>
bool DwarfInstructions<A,R>::isReturnAddressRegister(int regNum, const Registers_x86_64&)
{
return (regNum == DW_X86_64_RET_ADDR);
}
template <typename A, typename R>
typename A::pint_t DwarfInstructions<A,R>::getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog,
const Registers_x86_64& registers)
{
if ( prolog.cfaRegister != 0 )
return registers.getRegister(prolog.cfaRegister) + prolog.cfaRegisterOffset;
else if ( prolog.cfaExpression != 0 )
return evaluateExpression(prolog.cfaExpression, addressSpace, registers, 0);
else
ABORT("getCFA(): unknown location for x86_64 cfa");
}
template <typename A, typename R>
compact_unwind_encoding_t DwarfInstructions<A,R>::encodeToUseDwarf(const Registers_x86_64&)
{
return UNWIND_X86_64_MODE_DWARF;
}
template <typename A, typename R>
compact_unwind_encoding_t DwarfInstructions<A,R>::encodeToUseDwarf(const Registers_x86&)
{
return UNWIND_X86_MODE_DWARF;
}
template <typename A, typename R>
uint32_t DwarfInstructions<A,R>::getRBPEncodedRegister(uint32_t reg, int32_t regOffsetFromBaseOffset, bool& failure)
{
if ( (regOffsetFromBaseOffset < 0) || (regOffsetFromBaseOffset > 32) ) {
failure = true;
return 0;
}
unsigned int slotIndex = regOffsetFromBaseOffset/8;
switch ( reg ) {
case UNW_X86_64_RBX:
return UNWIND_X86_64_REG_RBX << (slotIndex*3);
case UNW_X86_64_R12:
return UNWIND_X86_64_REG_R12 << (slotIndex*3);
case UNW_X86_64_R13:
return UNWIND_X86_64_REG_R13 << (slotIndex*3);
case UNW_X86_64_R14:
return UNWIND_X86_64_REG_R14 << (slotIndex*3);
case UNW_X86_64_R15:
return UNWIND_X86_64_REG_R15 << (slotIndex*3);
}
// invalid register
failure = true;
return 0;
}
template <typename A, typename R>
compact_unwind_encoding_t DwarfInstructions<A,R>::createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
const Registers_x86_64& r, const typename CFI_Parser<A>::PrologInfo& prolog,
char warningBuffer[1024])
{
warningBuffer[0] = '\0';
// don't create compact unwind info for unsupported dwarf kinds
if ( prolog.registerSavedMoreThanOnce ) {
strcpy(warningBuffer, "register saved more than once (might be shrink wrap)");
return UNWIND_X86_64_MODE_DWARF;
}
if ( prolog.cfaOffsetWasNegative ) {
strcpy(warningBuffer, "cfa had negative offset (dwarf might contain epilog)");
return UNWIND_X86_64_MODE_DWARF;
}
if ( prolog.spExtraArgSize != 0 ) {
strcpy(warningBuffer, "dwarf uses DW_CFA_GNU_args_size");
return UNWIND_X86_64_MODE_DWARF;
}
// figure out which kind of frame this function uses
bool standardRBPframe = (
(prolog.cfaRegister == UNW_X86_64_RBP)
&& (prolog.cfaRegisterOffset == 16)
&& (prolog.savedRegisters[UNW_X86_64_RBP].location == CFI_Parser<A>::kRegisterInCFA)
&& (prolog.savedRegisters[UNW_X86_64_RBP].value == -16) );
bool standardRSPframe = (prolog.cfaRegister == UNW_X86_64_RSP);
if ( !standardRBPframe && !standardRSPframe ) {
// no compact encoding for this
strcpy(warningBuffer, "does not use RBP or RSP based frame");
return UNWIND_X86_64_MODE_DWARF;
}
// scan which registers are saved
int saveRegisterCount = 0;
bool rbxSaved = false;
bool r12Saved = false;
bool r13Saved = false;
bool r14Saved = false;
bool r15Saved = false;
bool rbpSaved = false;
for (int i=0; i < 64; ++i) {
if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterUnused ) {
if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterInCFA ) {
sprintf(warningBuffer, "register %d saved somewhere other that in frame", i);
return UNWIND_X86_64_MODE_DWARF;
}
switch (i) {
case UNW_X86_64_RBX:
rbxSaved = true;
++saveRegisterCount;
break;
case UNW_X86_64_R12:
r12Saved = true;
++saveRegisterCount;
break;
case UNW_X86_64_R13:
r13Saved = true;
++saveRegisterCount;
break;
case UNW_X86_64_R14:
r14Saved = true;
++saveRegisterCount;
break;
case UNW_X86_64_R15:
r15Saved = true;
++saveRegisterCount;
break;
case UNW_X86_64_RBP:
rbpSaved = true;
++saveRegisterCount;
break;
case DW_X86_64_RET_ADDR:
break;
default:
sprintf(warningBuffer, "non-standard register %d being saved in prolog", i);
return UNWIND_X86_64_MODE_DWARF;
}
}
}
const int64_t cfaOffsetRBX = prolog.savedRegisters[UNW_X86_64_RBX].value;
const int64_t cfaOffsetR12 = prolog.savedRegisters[UNW_X86_64_R12].value;
const int64_t cfaOffsetR13 = prolog.savedRegisters[UNW_X86_64_R13].value;
const int64_t cfaOffsetR14 = prolog.savedRegisters[UNW_X86_64_R14].value;
const int64_t cfaOffsetR15 = prolog.savedRegisters[UNW_X86_64_R15].value;
const int64_t cfaOffsetRBP = prolog.savedRegisters[UNW_X86_64_RBP].value;
// encode standard RBP frames
compact_unwind_encoding_t encoding = 0;
if ( standardRBPframe ) {
// | |
// +--------------+ <- CFA
// | ret addr |
// +--------------+
// | rbp |
// +--------------+ <- rbp
// ~ ~
// +--------------+
// | saved reg3 |
// +--------------+ <- CFA - offset+16
// | saved reg2 |
// +--------------+ <- CFA - offset+8
// | saved reg1 |
// +--------------+ <- CFA - offset
// | |
// +--------------+
// | |
// <- rsp
//
encoding = UNWIND_X86_64_MODE_RBP_FRAME;
// find save location of farthest register from rbp
int furthestCfaOffset = 0;
if ( rbxSaved & (cfaOffsetRBX < furthestCfaOffset) )
furthestCfaOffset = cfaOffsetRBX;
if ( r12Saved & (cfaOffsetR12 < furthestCfaOffset) )
furthestCfaOffset = cfaOffsetR12;
if ( r13Saved & (cfaOffsetR13 < furthestCfaOffset) )
furthestCfaOffset = cfaOffsetR13;
if ( r14Saved & (cfaOffsetR14 < furthestCfaOffset) )
furthestCfaOffset = cfaOffsetR14;
if ( r15Saved & (cfaOffsetR15 < furthestCfaOffset) )
furthestCfaOffset = cfaOffsetR15;
if ( furthestCfaOffset == 0 ) {
// no registers saved, nothing more to encode
return encoding;
}
// add stack offset to encoding
int rbpOffset = furthestCfaOffset + 16;
int encodedOffset = rbpOffset/(-8);
if ( encodedOffset > 255 ) {
strcpy(warningBuffer, "offset of saved registers too far to encode");
return UNWIND_X86_64_MODE_DWARF;
}
encoding |= (encodedOffset << __builtin_ctz(UNWIND_X86_64_RBP_FRAME_OFFSET));
// add register saved from each stack location
bool encodingFailure = false;
if ( rbxSaved )
encoding |= getRBPEncodedRegister(UNW_X86_64_RBX, cfaOffsetRBX - furthestCfaOffset, encodingFailure);
if ( r12Saved )
encoding |= getRBPEncodedRegister(UNW_X86_64_R12, cfaOffsetR12 - furthestCfaOffset, encodingFailure);
if ( r13Saved )
encoding |= getRBPEncodedRegister(UNW_X86_64_R13, cfaOffsetR13 - furthestCfaOffset, encodingFailure);
if ( r14Saved )
encoding |= getRBPEncodedRegister(UNW_X86_64_R14, cfaOffsetR14 - furthestCfaOffset, encodingFailure);
if ( r15Saved )
encoding |= getRBPEncodedRegister(UNW_X86_64_R15, cfaOffsetR15 - furthestCfaOffset, encodingFailure);
if ( encodingFailure ){
strcpy(warningBuffer, "saved registers not contiguous");
return UNWIND_X86_64_MODE_DWARF;
}
return encoding;
}
else {
// | |
// +--------------+ <- CFA
// | ret addr |
// +--------------+
// | saved reg1 |
// +--------------+ <- CFA - 16
// | saved reg2 |
// +--------------+ <- CFA - 24
// | saved reg3 |
// +--------------+ <- CFA - 32
// | saved reg4 |
// +--------------+ <- CFA - 40
// | saved reg5 |
// +--------------+ <- CFA - 48
// | saved reg6 |
// +--------------+ <- CFA - 56
// | |
// <- esp
//
// for RSP based frames we need to encode stack size in unwind info
encoding = UNWIND_X86_64_MODE_STACK_IMMD;
uint64_t stackValue = prolog.cfaRegisterOffset / 8;
uint32_t stackAdjust = 0;
bool immedStackSize = true;
const uint32_t stackMaxImmedValue = EXTRACT_BITS(0xFFFFFFFF,UNWIND_X86_64_FRAMELESS_STACK_SIZE);
if ( stackValue > stackMaxImmedValue ) {
// stack size is too big to fit as an immediate value, so encode offset of subq instruction in function
pint_t functionContentAdjustStackIns = funcAddr + prolog.codeOffsetAtStackDecrement - 4;
uint32_t stackDecrementInCode = addressSpace.get32(functionContentAdjustStackIns);
stackAdjust = (prolog.cfaRegisterOffset - stackDecrementInCode)/8;
stackValue = functionContentAdjustStackIns - funcAddr;
immedStackSize = false;
if ( stackAdjust > 7 ) {
strcpy(warningBuffer, "stack subq instruction is too different from dwarf stack size");
return UNWIND_X86_64_MODE_DWARF;
}
encoding = UNWIND_X86_64_MODE_STACK_IND;
}
// validate that saved registers are all within 6 slots abutting return address
int registers[6];
for (int i=0; i < 6;++i)
registers[i] = 0;
if ( r15Saved ) {
if ( cfaOffsetR15 < -56 ) {
strcpy(warningBuffer, "r15 is saved too far from return address");
return UNWIND_X86_64_MODE_DWARF;
}
registers[(cfaOffsetR15+56)/8] = UNWIND_X86_64_REG_R15;
}
if ( r14Saved ) {
if ( cfaOffsetR14 < -56 ) {
strcpy(warningBuffer, "r14 is saved too far from return address");
return UNWIND_X86_64_MODE_DWARF;
}
registers[(cfaOffsetR14+56)/8] = UNWIND_X86_64_REG_R14;
}
if ( r13Saved ) {
if ( cfaOffsetR13 < -56 ) {
strcpy(warningBuffer, "r13 is saved too far from return address");
return UNWIND_X86_64_MODE_DWARF;
}
registers[(cfaOffsetR13+56)/8] = UNWIND_X86_64_REG_R13;
}
if ( r12Saved ) {
if ( cfaOffsetR12 < -56 ) {
strcpy(warningBuffer, "r12 is saved too far from return address");
return UNWIND_X86_64_MODE_DWARF;
}
registers[(cfaOffsetR12+56)/8] = UNWIND_X86_64_REG_R12;
}
if ( rbxSaved ) {
if ( cfaOffsetRBX < -56 ) {
strcpy(warningBuffer, "rbx is saved too far from return address");
return UNWIND_X86_64_MODE_DWARF;
}
registers[(cfaOffsetRBX+56)/8] = UNWIND_X86_64_REG_RBX;
}
if ( rbpSaved ) {
if ( cfaOffsetRBP < -56 ) {
strcpy(warningBuffer, "rbp is saved too far from return address");
return UNWIND_X86_64_MODE_DWARF;
}
registers[(cfaOffsetRBP+56)/8] = UNWIND_X86_64_REG_RBP;
}
// validate that saved registers are contiguous and abut return address on stack
for (int i=0; i < saveRegisterCount; ++i) {
if ( registers[5-i] == 0 ) {
strcpy(warningBuffer, "registers not save contiguously in stack");
return UNWIND_X86_64_MODE_DWARF;
}
}
// encode register permutation
// the 10-bits are encoded differently depending on the number of registers saved
int renumregs[6];
for (int i=6-saveRegisterCount; i < 6; ++i) {
int countless = 0;
for (int j=6-saveRegisterCount; j < i; ++j) {
if ( registers[j] < registers[i] )
++countless;
}
renumregs[i] = registers[i] - countless -1;
}
uint32_t permutationEncoding = 0;
switch ( saveRegisterCount ) {
case 6:
permutationEncoding |= (120*renumregs[0] + 24*renumregs[1] + 6*renumregs[2] + 2*renumregs[3] + renumregs[4]);
break;
case 5:
permutationEncoding |= (120*renumregs[1] + 24*renumregs[2] + 6*renumregs[3] + 2*renumregs[4] + renumregs[5]);
break;
case 4:
permutationEncoding |= (60*renumregs[2] + 12*renumregs[3] + 3*renumregs[4] + renumregs[5]);
break;
case 3:
permutationEncoding |= (20*renumregs[3] + 4*renumregs[4] + renumregs[5]);
break;
case 2:
permutationEncoding |= (5*renumregs[4] + renumregs[5]);
break;
case 1:
permutationEncoding |= (renumregs[5]);
break;
}
encoding |= (stackValue << __builtin_ctz(UNWIND_X86_64_FRAMELESS_STACK_SIZE));
encoding |= (stackAdjust << __builtin_ctz(UNWIND_X86_64_FRAMELESS_STACK_ADJUST));
encoding |= (saveRegisterCount << __builtin_ctz(UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT));
encoding |= (permutationEncoding << __builtin_ctz(UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION));
return encoding;
}
}
//
// x86 specific functions
//
template <typename A, typename R>
int DwarfInstructions<A,R>::lastRestoreReg(const Registers_x86&)
{
COMPILE_TIME_ASSERT( (int)CFI_Parser<A>::kMaxRegisterNumber > (int)DW_X86_RET_ADDR );
return DW_X86_RET_ADDR;
}
template <typename A, typename R>
bool DwarfInstructions<A,R>::isReturnAddressRegister(int regNum, const Registers_x86&)
{
return (regNum == DW_X86_RET_ADDR);
}
template <typename A, typename R>
typename A::pint_t DwarfInstructions<A,R>::getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog,
const Registers_x86& registers)
{
if ( prolog.cfaRegister != 0 )
return registers.getRegister(prolog.cfaRegister) + prolog.cfaRegisterOffset;
else if ( prolog.cfaExpression != 0 )
return evaluateExpression(prolog.cfaExpression, addressSpace, registers, 0);
else
ABORT("getCFA(): unknown location for x86 cfa");
}
template <typename A, typename R>
uint32_t DwarfInstructions<A,R>::getEBPEncodedRegister(uint32_t reg, int32_t regOffsetFromBaseOffset, bool& failure)
{
if ( (regOffsetFromBaseOffset < 0) || (regOffsetFromBaseOffset > 16) ) {
failure = true;
return 0;
}
unsigned int slotIndex = regOffsetFromBaseOffset/4;
switch ( reg ) {
case UNW_X86_EBX:
return UNWIND_X86_REG_EBX << (slotIndex*3);
case UNW_X86_ECX:
return UNWIND_X86_REG_ECX << (slotIndex*3);
case UNW_X86_EDX:
return UNWIND_X86_REG_EDX << (slotIndex*3);
case UNW_X86_EDI:
return UNWIND_X86_REG_EDI << (slotIndex*3);
case UNW_X86_ESI:
return UNWIND_X86_REG_ESI << (slotIndex*3);
}
// invalid register
failure = true;
return 0;
}
template <typename A, typename R>
compact_unwind_encoding_t DwarfInstructions<A,R>::createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
const Registers_x86& r, const typename CFI_Parser<A>::PrologInfo& prolog,
char warningBuffer[1024])
{
warningBuffer[0] = '\0';
// don't create compact unwind info for unsupported dwarf kinds
if ( prolog.registerSavedMoreThanOnce ) {
strcpy(warningBuffer, "register saved more than once (might be shrink wrap)");
return UNWIND_X86_MODE_DWARF;
}
if ( prolog.spExtraArgSize != 0 ) {
strcpy(warningBuffer, "dwarf uses DW_CFA_GNU_args_size");
return UNWIND_X86_MODE_DWARF;
}
// figure out which kind of frame this function uses
bool standardEBPframe = (
(prolog.cfaRegister == UNW_X86_EBP)
&& (prolog.cfaRegisterOffset == 8)
&& (prolog.savedRegisters[UNW_X86_EBP].location == CFI_Parser<A>::kRegisterInCFA)
&& (prolog.savedRegisters[UNW_X86_EBP].value == -8) );
bool standardESPframe = (prolog.cfaRegister == UNW_X86_ESP);
if ( !standardEBPframe && !standardESPframe ) {
// no compact encoding for this
strcpy(warningBuffer, "does not use EBP or ESP based frame");
return UNWIND_X86_MODE_DWARF;
}
// scan which registers are saved
int saveRegisterCount = 0;
bool ebxSaved = false;
bool ecxSaved = false;
bool edxSaved = false;
bool esiSaved = false;
bool ediSaved = false;
bool ebpSaved = false;
for (int i=0; i < 64; ++i) {
if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterUnused ) {
if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterInCFA ) {
sprintf(warningBuffer, "register %d saved somewhere other that in frame", i);
return UNWIND_X86_MODE_DWARF;
}
switch (i) {
case UNW_X86_EBX:
ebxSaved = true;
++saveRegisterCount;
break;
case UNW_X86_ECX:
ecxSaved = true;
++saveRegisterCount;
break;
case UNW_X86_EDX:
edxSaved = true;
++saveRegisterCount;
break;
case UNW_X86_ESI:
esiSaved = true;
++saveRegisterCount;
break;
case UNW_X86_EDI:
ediSaved = true;
++saveRegisterCount;
break;
case UNW_X86_EBP:
ebpSaved = true;
++saveRegisterCount;
break;
case DW_X86_RET_ADDR:
break;
default:
sprintf(warningBuffer, "non-standard register %d being saved in prolog", i);
return UNWIND_X86_MODE_DWARF;
}
}
}
const int32_t cfaOffsetEBX = prolog.savedRegisters[UNW_X86_EBX].value;
const int32_t cfaOffsetECX = prolog.savedRegisters[UNW_X86_ECX].value;
const int32_t cfaOffsetEDX = prolog.savedRegisters[UNW_X86_EDX].value;
const int32_t cfaOffsetEDI = prolog.savedRegisters[UNW_X86_EDI].value;
const int32_t cfaOffsetESI = prolog.savedRegisters[UNW_X86_ESI].value;
const int32_t cfaOffsetEBP = prolog.savedRegisters[UNW_X86_EBP].value;
// encode standard RBP frames
compact_unwind_encoding_t encoding = 0;
if ( standardEBPframe ) {
// | |
// +--------------+ <- CFA
// | ret addr |
// +--------------+
// | ebp |
// +--------------+ <- ebp
// ~ ~
// +--------------+
// | saved reg3 |
// +--------------+ <- CFA - offset+8
// | saved reg2 |
// +--------------+ <- CFA - offset+e
// | saved reg1 |
// +--------------+ <- CFA - offset
// | |
// +--------------+
// | |
// <- esp
//
encoding = UNWIND_X86_MODE_EBP_FRAME;
// find save location of farthest register from ebp
int furthestCfaOffset = 0;
if ( ebxSaved & (cfaOffsetEBX < furthestCfaOffset) )
furthestCfaOffset = cfaOffsetEBX;
if ( ecxSaved & (cfaOffsetECX < furthestCfaOffset) )
furthestCfaOffset = cfaOffsetECX;
if ( edxSaved & (cfaOffsetEDX < furthestCfaOffset) )
furthestCfaOffset = cfaOffsetEDX;
if ( ediSaved & (cfaOffsetEDI < furthestCfaOffset) )
furthestCfaOffset = cfaOffsetEDI;
if ( esiSaved & (cfaOffsetESI < furthestCfaOffset) )
furthestCfaOffset = cfaOffsetESI;
if ( furthestCfaOffset == 0 ) {
// no registers saved, nothing more to encode
return encoding;
}
// add stack offset to encoding
int ebpOffset = furthestCfaOffset + 8;
int encodedOffset = ebpOffset/(-4);
if ( encodedOffset > 255 ) {
strcpy(warningBuffer, "offset of saved registers too far to encode");
return UNWIND_X86_MODE_DWARF;
}
encoding |= (encodedOffset << __builtin_ctz(UNWIND_X86_EBP_FRAME_OFFSET));
// add register saved from each stack location
bool encodingFailure = false;
if ( ebxSaved )
encoding |= getEBPEncodedRegister(UNW_X86_EBX, cfaOffsetEBX - furthestCfaOffset, encodingFailure);
if ( ecxSaved )
encoding |= getEBPEncodedRegister(UNW_X86_ECX, cfaOffsetECX - furthestCfaOffset, encodingFailure);
if ( edxSaved )
encoding |= getEBPEncodedRegister(UNW_X86_EDX, cfaOffsetEDX - furthestCfaOffset, encodingFailure);
if ( ediSaved )
encoding |= getEBPEncodedRegister(UNW_X86_EDI, cfaOffsetEDI - furthestCfaOffset, encodingFailure);
if ( esiSaved )
encoding |= getEBPEncodedRegister(UNW_X86_ESI, cfaOffsetESI - furthestCfaOffset, encodingFailure);
if ( encodingFailure ){
strcpy(warningBuffer, "saved registers not contiguous");
return UNWIND_X86_MODE_DWARF;
}
return encoding;
}
else {
// | |
// +--------------+ <- CFA
// | ret addr |
// +--------------+
// | saved reg1 |
// +--------------+ <- CFA - 8
// | saved reg2 |
// +--------------+ <- CFA - 12
// | saved reg3 |
// +--------------+ <- CFA - 16
// | saved reg4 |
// +--------------+ <- CFA - 20
// | saved reg5 |
// +--------------+ <- CFA - 24
// | saved reg6 |
// +--------------+ <- CFA - 28
// | |
// <- esp
//
// for ESP based frames we need to encode stack size in unwind info
encoding = UNWIND_X86_MODE_STACK_IMMD;
uint64_t stackValue = prolog.cfaRegisterOffset / 4;
uint32_t stackAdjust = 0;
bool immedStackSize = true;
const uint32_t stackMaxImmedValue = EXTRACT_BITS(0xFFFFFFFF,UNWIND_X86_FRAMELESS_STACK_SIZE);
if ( stackValue > stackMaxImmedValue ) {
// stack size is too big to fit as an immediate value, so encode offset of subq instruction in function
pint_t functionContentAdjustStackIns = funcAddr + prolog.codeOffsetAtStackDecrement - 4;
uint32_t stackDecrementInCode = addressSpace.get32(functionContentAdjustStackIns);
stackAdjust = (prolog.cfaRegisterOffset - stackDecrementInCode)/4;
stackValue = functionContentAdjustStackIns - funcAddr;
immedStackSize = false;
if ( stackAdjust > 7 ) {
strcpy(warningBuffer, "stack subq instruction is too different from dwarf stack size");
return UNWIND_X86_MODE_DWARF;
}
encoding = UNWIND_X86_MODE_STACK_IND;
}
// validate that saved registers are all within 6 slots abutting return address
int registers[6];
for (int i=0; i < 6;++i)
registers[i] = 0;
if ( ebxSaved ) {
if ( cfaOffsetEBX < -28 ) {
strcpy(warningBuffer, "ebx is saved too far from return address");
return UNWIND_X86_MODE_DWARF;
}
registers[(cfaOffsetEBX+28)/4] = UNWIND_X86_REG_EBX;
}
if ( ecxSaved ) {
if ( cfaOffsetECX < -28 ) {
strcpy(warningBuffer, "ecx is saved too far from return address");
return UNWIND_X86_MODE_DWARF;
}
registers[(cfaOffsetECX+28)/4] = UNWIND_X86_REG_ECX;
}
if ( edxSaved ) {
if ( cfaOffsetEDX < -28 ) {
strcpy(warningBuffer, "edx is saved too far from return address");
return UNWIND_X86_MODE_DWARF;
}
registers[(cfaOffsetEDX+28)/4] = UNWIND_X86_REG_EDX;
}
if ( ediSaved ) {
if ( cfaOffsetEDI < -28 ) {
strcpy(warningBuffer, "edi is saved too far from return address");
return UNWIND_X86_MODE_DWARF;
}
registers[(cfaOffsetEDI+28)/4] = UNWIND_X86_REG_EDI;
}
if ( esiSaved ) {
if ( cfaOffsetESI < -28 ) {
strcpy(warningBuffer, "esi is saved too far from return address");
return UNWIND_X86_MODE_DWARF;
}
registers[(cfaOffsetESI+28)/4] = UNWIND_X86_REG_ESI;
}
if ( ebpSaved ) {
if ( cfaOffsetEBP < -28 ) {
strcpy(warningBuffer, "ebp is saved too far from return address");
return UNWIND_X86_MODE_DWARF;
}
registers[(cfaOffsetEBP+28)/4] = UNWIND_X86_REG_EBP;
}
// validate that saved registers are contiguous and abut return address on stack
for (int i=0; i < saveRegisterCount; ++i) {
if ( registers[5-i] == 0 ) {
strcpy(warningBuffer, "registers not save contiguously in stack");
return UNWIND_X86_MODE_DWARF;
}
}
// encode register permutation
// the 10-bits are encoded differently depending on the number of registers saved
int renumregs[6];
for (int i=6-saveRegisterCount; i < 6; ++i) {
int countless = 0;
for (int j=6-saveRegisterCount; j < i; ++j) {
if ( registers[j] < registers[i] )
++countless;
}
renumregs[i] = registers[i] - countless -1;
}
uint32_t permutationEncoding = 0;
switch ( saveRegisterCount ) {
case 6:
permutationEncoding |= (120*renumregs[0] + 24*renumregs[1] + 6*renumregs[2] + 2*renumregs[3] + renumregs[4]);
break;
case 5:
permutationEncoding |= (120*renumregs[1] + 24*renumregs[2] + 6*renumregs[3] + 2*renumregs[4] + renumregs[5]);
break;
case 4:
permutationEncoding |= (60*renumregs[2] + 12*renumregs[3] + 3*renumregs[4] + renumregs[5]);
break;
case 3:
permutationEncoding |= (20*renumregs[3] + 4*renumregs[4] + renumregs[5]);
break;
case 2:
permutationEncoding |= (5*renumregs[4] + renumregs[5]);
break;
case 1:
permutationEncoding |= (renumregs[5]);
break;
}
encoding |= (stackValue << __builtin_ctz(UNWIND_X86_FRAMELESS_STACK_SIZE));
encoding |= (stackAdjust << __builtin_ctz(UNWIND_X86_FRAMELESS_STACK_ADJUST));
encoding |= (saveRegisterCount << __builtin_ctz(UNWIND_X86_FRAMELESS_STACK_REG_COUNT));
encoding |= (permutationEncoding << __builtin_ctz(UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION));
return encoding;
}
}
//
// ppc specific functions
//
template <typename A, typename R>
int DwarfInstructions<A,R>::lastRestoreReg(const Registers_ppc&)
{
COMPILE_TIME_ASSERT( (int)CFI_Parser<A>::kMaxRegisterNumber > (int)UNW_PPC_SPEFSCR );
return UNW_PPC_SPEFSCR;
}
template <typename A, typename R>
bool DwarfInstructions<A,R>::isReturnAddressRegister(int regNum, const Registers_ppc&)
{
return (regNum == UNW_PPC_LR);
}
template <typename A, typename R>
typename A::pint_t DwarfInstructions<A,R>::getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog,
const Registers_ppc& registers)
{
if ( prolog.cfaRegister != 0 )
return registers.getRegister(prolog.cfaRegister) + prolog.cfaRegisterOffset;
else if ( prolog.cfaExpression != 0 )
return evaluateExpression(prolog.cfaExpression, addressSpace, registers, 0);
else
ABORT("getCFA(): unknown location for ppc cfa");
}
template <typename A, typename R>
compact_unwind_encoding_t DwarfInstructions<A,R>::encodeToUseDwarf(const Registers_ppc&)
{
return UNWIND_X86_MODE_DWARF;
}
template <typename A, typename R>
compact_unwind_encoding_t DwarfInstructions<A,R>::createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
const Registers_ppc& r, const typename CFI_Parser<A>::PrologInfo& prolog,
char warningBuffer[1024])
{
warningBuffer[0] = '\0';
return UNWIND_X86_MODE_DWARF;
}
} // namespace lldb_private
#endif // __DWARF_INSTRUCTIONS_HPP__