blob: 9338ea2839af3c2783eb78abee436fa7a6377a3d [file] [log] [blame]
//===-- Type.cpp ------------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Other libraries and framework includes
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/SymbolContextScope.h"
#include "lldb/Symbol/SymbolFile.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Symbol/TypeList.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
lldb_private::Type::Type
(
lldb::user_id_t uid,
SymbolFile* symbol_file,
const ConstString &name,
uint64_t byte_size,
SymbolContextScope *context,
lldb::user_id_t encoding_uid,
EncodingUIDType encoding_uid_type,
const Declaration& decl,
void *clang_type
) :
UserID (uid),
m_name (name),
m_byte_size (byte_size),
m_symbol_file (symbol_file),
m_context (context),
m_encoding_uid (encoding_uid),
m_encoding_uid_type (encoding_uid_type),
m_decl (decl),
m_clang_qual_type (clang_type)
{
}
lldb_private::Type::Type () :
UserID (0),
m_name ("<INVALID TYPE>"),
m_byte_size (0),
m_symbol_file (NULL),
m_context (),
m_encoding_uid (0),
m_encoding_uid_type (eTypeInvalid),
m_decl (),
m_clang_qual_type (NULL)
{
}
const lldb_private::Type&
lldb_private::Type::operator= (const Type& rhs)
{
if (this != &rhs)
{
UserID::operator= (rhs);
m_name = rhs.m_name;
m_byte_size = rhs.m_byte_size;
m_symbol_file = rhs.m_symbol_file;
m_context = rhs.m_context;
m_encoding_uid = rhs.m_encoding_uid;
m_decl = rhs.m_decl;
m_clang_qual_type = rhs.m_clang_qual_type;
}
return *this;
}
void
lldb_private::Type::Dump (Stream *s, bool show_context)
{
s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
s->Indent();
*s << "Type" << (const UserID&)*this << ' ';
if (m_name)
*s << ", name = \"" << m_name << "\"";
if (m_byte_size != 0)
s->Printf(", size = %zu", m_byte_size);
if (show_context && m_context != NULL)
{
s->PutCString(", context = ( ");
m_context->DumpSymbolContext(s);
s->PutCString(" )");
}
m_decl.Dump(s);
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(m_clang_qual_type));
if (qual_type.getTypePtr())
{
*s << ", clang_type = ";
clang::TagType *tag_type = dyn_cast<clang::TagType>(qual_type.getTypePtr());
clang::TagDecl *tag_decl = NULL;
if (tag_type)
tag_decl = tag_type->getDecl();
if (tag_decl)
{
s->EOL();
s->EOL();
tag_decl->print(llvm::fouts(), 0);
s->EOL();
}
else
{
const clang::TypedefType *typedef_type = qual_type->getAs<clang::TypedefType>();
if (typedef_type)
{
const clang::TypedefDecl *typedef_decl = typedef_type->getDecl();
std::string clang_typedef_name (typedef_decl->getQualifiedNameAsString());
if (!clang_typedef_name.empty())
*s << " (" << clang_typedef_name.c_str() << ')';
}
else
{
// We have a clang type, lets show it
TypeList *type_list = GetTypeList();
if (type_list)
{
clang::ASTContext *ast_context = GetClangAST();
if (ast_context)
{
std::string clang_type_name(qual_type.getAsString());
if (!clang_type_name.empty())
*s << " (" << clang_type_name.c_str() << ')';
}
}
}
}
}
else if (m_encoding_uid != LLDB_INVALID_UID)
{
*s << ", type_uid = " << m_encoding_uid;
switch (m_encoding_uid_type)
{
case eIsTypeWithUID: s->PutCString(" (unresolved type)"); break;
case eIsConstTypeWithUID: s->PutCString(" (unresolved const type)"); break;
case eIsRestrictTypeWithUID: s->PutCString(" (unresolved restrict type)"); break;
case eIsVolatileTypeWithUID: s->PutCString(" (unresolved volatile type)"); break;
case eTypedefToTypeWithUID: s->PutCString(" (unresolved typedef)"); break;
case ePointerToTypeWithUID: s->PutCString(" (unresolved pointer)"); break;
case eLValueReferenceToTypeWithUID: s->PutCString(" (unresolved L value reference)"); break;
case eRValueReferenceToTypeWithUID: s->PutCString(" (unresolved R value reference)"); break;
}
}
//
// if (m_access)
// s->Printf(", access = %u", m_access);
s->EOL();
}
const lldb_private::ConstString &
lldb_private::Type::GetName()
{
if (!(m_name))
{
if (ResolveClangType())
{
std::string type_name = ClangASTContext::GetTypeName (m_clang_qual_type);
if (!type_name.empty())
m_name.SetCString (type_name.c_str());
}
}
return m_name;
}
int
lldb_private::Type::DumpClangTypeName(Stream *s, void *clang_type)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
std::string type_name;
const clang::TypedefType *typedef_type = qual_type->getAs<clang::TypedefType>();
if (typedef_type)
{
const clang::TypedefDecl *typedef_decl = typedef_type->getDecl();
type_name = typedef_decl->getQualifiedNameAsString();
}
else
{
type_name = qual_type.getAsString();
}
if (!type_name.empty())
return s->Printf("(%s) ", type_name.c_str());
return 0;
}
lldb_private::ConstString
lldb_private::Type::GetClangTypeName (void *clang_type)
{
ConstString clang_type_name;
if (clang_type)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
const clang::TypedefType *typedef_type = qual_type->getAs<clang::TypedefType>();
if (typedef_type)
{
const clang::TypedefDecl *typedef_decl = typedef_type->getDecl();
std::string clang_typedef_name (typedef_decl->getQualifiedNameAsString());
if (!clang_typedef_name.empty())
clang_type_name.SetCString (clang_typedef_name.c_str());
}
else
{
std::string type_name(qual_type.getAsString());
if (!type_name.empty())
clang_type_name.SetCString (type_name.c_str());
}
}
else
{
clang_type_name.SetCString ("<invalid>");
}
return clang_type_name;
}
void
lldb_private::Type::DumpTypeName(Stream *s)
{
GetName().Dump(s, "<invalid-type-name>");
}
void
lldb_private::Type::DumpValue
(
lldb_private::ExecutionContext *exe_ctx,
lldb_private::Stream *s,
const lldb_private::DataExtractor &data,
uint32_t data_byte_offset,
bool show_types,
bool show_summary,
bool verbose,
lldb::Format format
)
{
if (ResolveClangType())
{
if (show_types)
{
s->PutChar('(');
if (verbose)
s->Printf("Type{0x%8.8x} ", GetID());
DumpTypeName (s);
s->PutCString(") ");
}
lldb_private::Type::DumpValue (exe_ctx,
GetClangAST (),
m_clang_qual_type,
s,
format == lldb::eFormatDefault ? GetFormat() : format,
data,
data_byte_offset,
GetByteSize(),
0, // Bitfield bit size
0, // Bitfield bit offset
show_types,
show_summary,
verbose,
0);
}
}
void
lldb_private::Type::DumpSummary
(
ExecutionContext *exe_ctx,
clang::ASTContext *ast_context,
void *clang_type,
Stream *s,
const lldb_private::DataExtractor &data,
uint32_t data_byte_offset,
size_t data_byte_size
)
{
uint32_t length = 0;
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
if (ClangASTContext::IsCStringType (clang_type, length))
{
if (exe_ctx && exe_ctx->process)
{
uint32_t offset = data_byte_offset;
lldb::addr_t pointer_addresss = data.GetMaxU64(&offset, data_byte_size);
const size_t k_max_buf_size = length ? length : 256;
uint8_t buf[k_max_buf_size + 1];
lldb_private::DataExtractor data(buf, k_max_buf_size, exe_ctx->process->GetByteOrder(), 4);
buf[k_max_buf_size] = '\0';
size_t bytes_read;
size_t total_cstr_len = 0;
Error error;
while ((bytes_read = exe_ctx->process->ReadMemory (pointer_addresss, buf, k_max_buf_size, error)) > 0)
{
const size_t len = strlen((const char *)buf);
if (len == 0)
break;
if (total_cstr_len == 0)
s->PutCString (" \"");
data.Dump(s, 0, lldb::eFormatChar, 1, len, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0);
total_cstr_len += len;
if (len < k_max_buf_size)
break;
pointer_addresss += total_cstr_len;
}
if (total_cstr_len > 0)
s->PutChar ('"');
}
}
}
#define DEPTH_INCREMENT 2
void
lldb_private::Type::DumpValue
(
ExecutionContext *exe_ctx,
clang::ASTContext *ast_context,
void *clang_type,
Stream *s,
lldb::Format format,
const lldb_private::DataExtractor &data,
uint32_t data_byte_offset,
size_t data_byte_size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset,
bool show_types,
bool show_summary,
bool verbose,
uint32_t depth
)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
switch (qual_type->getTypeClass())
{
case clang::Type::Record:
{
const clang::RecordType *record_type = cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
uint32_t field_bit_offset = 0;
uint32_t field_byte_offset = 0;
const clang::ASTRecordLayout &record_layout = ast_context->getASTRecordLayout(record_decl);
uint32_t child_idx = 0;
const clang::CXXRecordDecl *cxx_record_decl = dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
// We might have base classes to print out first
clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
const clang::CXXRecordDecl *base_class_decl = cast<clang::CXXRecordDecl>(base_class->getType()->getAs<clang::RecordType>()->getDecl());
// Skip empty base classes
if (verbose == false && ClangASTContext::RecordHasFields(base_class_decl) == false)
continue;
if (base_class->isVirtual())
field_bit_offset = record_layout.getVBaseClassOffset(base_class_decl);
else
field_bit_offset = record_layout.getBaseClassOffset(base_class_decl);
field_byte_offset = field_bit_offset / 8;
assert (field_bit_offset % 8 == 0);
if (child_idx == 0)
s->PutChar('{');
else
s->PutChar(',');
clang::QualType base_class_qual_type = base_class->getType();
std::string base_class_type_name(base_class_qual_type.getAsString());
// Indent and print the base class type name
s->Printf("\n%*s%s ", depth + DEPTH_INCREMENT, "", base_class_type_name.c_str());
std::pair<uint64_t, unsigned> base_class_type_info = ast_context->getTypeInfo(base_class_qual_type);
// Dump the value of the member
Type::DumpValue (
exe_ctx,
ast_context, // The clang AST context for this type
base_class_qual_type.getAsOpaquePtr(),// The clang type we want to dump
s, // Stream to dump to
Type::GetFormat(base_class_qual_type.getAsOpaquePtr()), // The format with which to display the member
data, // Data buffer containing all bytes for this type
data_byte_offset + field_byte_offset,// Offset into "data" where to grab value from
base_class_type_info.first / 8, // Size of this type in bytes
0, // Bitfield bit size
0, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth + DEPTH_INCREMENT); // Scope depth for any types that have children
++child_idx;
}
}
const unsigned num_fields = record_layout.getFieldCount();
uint32_t field_idx = 0;
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++field_idx, ++child_idx)
{
// Print the starting squiggly bracket (if this is the
// first member) or comman (for member 2 and beyong) for
// the struct/union/class member.
if (child_idx == 0)
s->PutChar('{');
else
s->PutChar(',');
// Indent
s->Printf("\n%*s", depth + DEPTH_INCREMENT, "");
clang::QualType field_type = field->getType();
// Print the member type if requested
// Figure out the type byte size (field_type_info.first) and
// alignment (field_type_info.second) from the AST context.
std::pair<uint64_t, unsigned> field_type_info = ast_context->getTypeInfo(field_type);
assert(field_idx < num_fields);
// Figure out the field offset within the current struct/union/class type
field_bit_offset = record_layout.getFieldOffset (field_idx);
field_byte_offset = field_bit_offset / 8;
uint32_t field_bitfield_bit_size = 0;
uint32_t field_bitfield_bit_offset = 0;
if (ClangASTContext::FieldIsBitfield (ast_context, *field, field_bitfield_bit_size))
field_bitfield_bit_offset = field_bit_offset % 8;
if (show_types)
{
std::string field_type_name(field_type.getAsString());
if (field_bitfield_bit_size > 0)
s->Printf("(%s:%u) ", field_type_name.c_str(), field_bitfield_bit_size);
else
s->Printf("(%s) ", field_type_name.c_str());
}
// Print the member name and equal sign
s->Printf("%s = ", field->getNameAsString().c_str());
// Dump the value of the member
Type::DumpValue (
exe_ctx,
ast_context, // The clang AST context for this type
field_type.getAsOpaquePtr(), // The clang type we want to dump
s, // Stream to dump to
Type::GetFormat(field_type.getAsOpaquePtr()), // The format with which to display the member
data, // Data buffer containing all bytes for this type
data_byte_offset + field_byte_offset,// Offset into "data" where to grab value from
field_type_info.first / 8, // Size of this type in bytes
field_bitfield_bit_size, // Bitfield bit size
field_bitfield_bit_offset, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth + DEPTH_INCREMENT); // Scope depth for any types that have children
}
// Indent the trailing squiggly bracket
if (child_idx > 0)
s->Printf("\n%*s}", depth, "");
}
return;
case clang::Type::Enum:
{
const clang::EnumType *enum_type = cast<clang::EnumType>(qual_type.getTypePtr());
const clang::EnumDecl *enum_decl = enum_type->getDecl();
assert(enum_decl);
clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos;
uint32_t offset = data_byte_offset;
const int64_t enum_value = data.GetMaxU64Bitfield(&offset, data_byte_size, bitfield_bit_size, bitfield_bit_offset);
for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos)
{
if (enum_pos->getInitVal() == enum_value)
{
s->Printf("%s", enum_pos->getNameAsCString());
return;
}
}
// If we have gotten here we didn't get find the enumerator in the
// enum decl, so just print the integer.
s->Printf("%lli", enum_value);
}
return;
case clang::Type::ConstantArray:
{
const clang::ConstantArrayType *array = cast<clang::ConstantArrayType>(qual_type.getTypePtr());
bool is_array_of_characters = false;
clang::QualType element_qual_type = array->getElementType();
clang::Type *canonical_type = element_qual_type->getCanonicalTypeInternal().getTypePtr();
if (canonical_type)
is_array_of_characters = canonical_type->isCharType();
const uint64_t element_count = array->getSize().getLimitedValue();
std::pair<uint64_t, unsigned> field_type_info = ast_context->getTypeInfo(element_qual_type);
uint32_t element_idx = 0;
uint32_t element_offset = 0;
uint64_t element_byte_size = field_type_info.first / 8;
uint32_t element_stride = element_byte_size;
if (is_array_of_characters)
{
s->PutChar('"');
data.Dump(s, data_byte_offset, lldb::eFormatChar, element_byte_size, element_count, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('"');
return;
}
else
{
lldb::Format element_format = Type::GetFormat(element_qual_type.getAsOpaquePtr());
for (element_idx = 0; element_idx < element_count; ++element_idx)
{
// Print the starting squiggly bracket (if this is the
// first member) or comman (for member 2 and beyong) for
// the struct/union/class member.
if (element_idx == 0)
s->PutChar('{');
else
s->PutChar(',');
// Indent and print the index
s->Printf("\n%*s[%u] ", depth + DEPTH_INCREMENT, "", element_idx);
// Figure out the field offset within the current struct/union/class type
element_offset = element_idx * element_stride;
// Dump the value of the member
Type::DumpValue (
exe_ctx,
ast_context, // The clang AST context for this type
element_qual_type.getAsOpaquePtr(), // The clang type we want to dump
s, // Stream to dump to
element_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
data_byte_offset + element_offset,// Offset into "data" where to grab value from
element_byte_size, // Size of this type in bytes
0, // Bitfield bit size
0, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth + DEPTH_INCREMENT); // Scope depth for any types that have children
}
// Indent the trailing squiggly bracket
if (element_idx > 0)
s->Printf("\n%*s}", depth, "");
}
}
return;
case clang::Type::Typedef:
{
clang::QualType typedef_qual_type = cast<clang::TypedefType>(qual_type)->LookThroughTypedefs();
lldb::Format typedef_format = lldb_private::Type::GetFormat(typedef_qual_type.getAsOpaquePtr());
std::pair<uint64_t, unsigned> typedef_type_info = ast_context->getTypeInfo(typedef_qual_type);
uint64_t typedef_byte_size = typedef_type_info.first / 8;
return Type::DumpValue(
exe_ctx,
ast_context, // The clang AST context for this type
typedef_qual_type.getAsOpaquePtr(), // The clang type we want to dump
s, // Stream to dump to
typedef_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
data_byte_offset, // Offset into "data" where to grab value from
typedef_byte_size, // Size of this type in bytes
bitfield_bit_size, // Bitfield bit size
bitfield_bit_offset,// Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth); // Scope depth for any types that have children
}
break;
default:
// We are down the a scalar type that we just need to display.
data.Dump(s, data_byte_offset, format, data_byte_size, 1, UINT32_MAX, LLDB_INVALID_ADDRESS, bitfield_bit_size, bitfield_bit_offset);
if (show_summary)
Type::DumpSummary (exe_ctx, ast_context, clang_type, s, data, data_byte_offset, data_byte_size);
break;
}
}
bool
lldb_private::Type::DumpTypeValue
(
Stream *s,
clang::ASTContext *ast_context,
void *clang_type,
lldb::Format format,
const lldb_private::DataExtractor &data,
uint32_t byte_offset,
size_t byte_size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset
)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
if (ClangASTContext::IsAggregateType (clang_type))
{
return 0;
}
else
{
switch (qual_type->getTypeClass())
{
case clang::Type::Enum:
{
const clang::EnumType *enum_type = cast<clang::EnumType>(qual_type.getTypePtr());
const clang::EnumDecl *enum_decl = enum_type->getDecl();
assert(enum_decl);
clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos;
uint32_t offset = byte_offset;
const int64_t enum_value = data.GetMaxU64Bitfield (&offset, byte_size, bitfield_bit_size, bitfield_bit_offset);
for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos)
{
if (enum_pos->getInitVal() == enum_value)
{
s->PutCString (enum_pos->getNameAsCString());
return true;
}
}
// If we have gotten here we didn't get find the enumerator in the
// enum decl, so just print the integer.
s->Printf("%lli", enum_value);
return true;
}
break;
case clang::Type::Typedef:
{
clang::QualType typedef_qual_type = cast<clang::TypedefType>(qual_type)->LookThroughTypedefs();
lldb::Format typedef_format = Type::GetFormat(typedef_qual_type.getAsOpaquePtr());
std::pair<uint64_t, unsigned> typedef_type_info = ast_context->getTypeInfo(typedef_qual_type);
uint64_t typedef_byte_size = typedef_type_info.first / 8;
return Type::DumpTypeValue(
s,
ast_context, // The clang AST context for this type
typedef_qual_type.getAsOpaquePtr(), // The clang type we want to dump
typedef_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
byte_offset, // Offset into "data" where to grab value from
typedef_byte_size, // Size of this type in bytes
bitfield_bit_size, // Size in bits of a bitfield value, if zero don't treat as a bitfield
bitfield_bit_offset); // Offset in bits of a bitfield value if bitfield_bit_size != 0
}
break;
default:
// We are down the a scalar type that we just need to display.
return data.Dump(s,
byte_offset,
format,
byte_size,
1,
UINT32_MAX,
LLDB_INVALID_ADDRESS,
bitfield_bit_size,
bitfield_bit_offset);
break;
}
}
return 0;
}
bool
lldb_private::Type::GetValueAsScalar
(
clang::ASTContext *ast_context,
void *clang_type,
const lldb_private::DataExtractor &data,
uint32_t data_byte_offset,
size_t data_byte_size,
Scalar &value
)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
if (ClangASTContext::IsAggregateType (clang_type))
{
return false; // Aggregate types don't have scalar values
}
else
{
uint32_t count = 0;
lldb::Encoding encoding = Type::GetEncoding (clang_type, count);
if (encoding == lldb::eEncodingInvalid || count != 1)
return false;
uint64_t bit_width = ast_context->getTypeSize(qual_type);
uint32_t byte_size = (bit_width + 7 ) / 8;
uint32_t offset = data_byte_offset;
switch (encoding)
{
case lldb::eEncodingUint:
if (byte_size <= sizeof(unsigned long long))
{
uint64_t uval64 = data.GetMaxU64 (&offset, byte_size);
if (byte_size <= sizeof(unsigned int))
{
value = (unsigned int)uval64;
return true;
}
else if (byte_size <= sizeof(unsigned long))
{
value = (unsigned long)uval64;
return true;
}
else if (byte_size <= sizeof(unsigned long long))
{
value = (unsigned long long )uval64;
return true;
}
else
value.Clear();
}
break;
case lldb::eEncodingSint:
if (byte_size <= sizeof(long long))
{
int64_t sval64 = (int64_t)data.GetMaxU64 (&offset, byte_size);
if (byte_size <= sizeof(int))
{
value = (int)sval64;
return true;
}
else if (byte_size <= sizeof(long))
{
value = (long)sval64;
return true;
}
else if (byte_size <= sizeof(long long))
{
value = (long long )sval64;
return true;
}
else
value.Clear();
}
break;
case lldb::eEncodingIEEE754:
if (byte_size <= sizeof(long double))
{
uint32_t u32;
uint64_t u64;
if (byte_size == sizeof(float))
{
if (sizeof(float) == sizeof(uint32_t))
{
u32 = data.GetU32(&offset);
value = *((float *)&u32);
return true;
}
else if (sizeof(float) == sizeof(uint64_t))
{
u64 = data.GetU64(&offset);
value = *((float *)&u64);
return true;
}
}
else
if (byte_size == sizeof(double))
{
if (sizeof(double) == sizeof(uint32_t))
{
u32 = data.GetU32(&offset);
value = *((double *)&u32);
return true;
}
else if (sizeof(double) == sizeof(uint64_t))
{
u64 = data.GetU64(&offset);
value = *((double *)&u64);
return true;
}
}
else
if (byte_size == sizeof(long double))
{
if (sizeof(long double) == sizeof(uint32_t))
{
u32 = data.GetU32(&offset);
value = *((long double *)&u32);
return true;
}
else if (sizeof(long double) == sizeof(uint64_t))
{
u64 = data.GetU64(&offset);
value = *((long double *)&u64);
return true;
}
}
}
break;
}
}
return false;
}
bool
lldb_private::Type::SetValueFromScalar
(
clang::ASTContext *ast_context,
void *clang_type,
const Scalar &value,
Stream &strm
)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
// Aggregate types don't have scalar values
if (!ClangASTContext::IsAggregateType (clang_type))
{
strm.GetFlags().Set(Stream::eBinary);
uint32_t count = 0;
lldb::Encoding encoding = Type::GetEncoding (clang_type, count);
if (encoding == lldb::eEncodingInvalid || count != 1)
return false;
uint64_t bit_width = ast_context->getTypeSize(qual_type);
// This function doesn't currently handle non-byte aligned assignments
if ((bit_width % 8) != 0)
return false;
uint32_t byte_size = (bit_width + 7 ) / 8;
switch (encoding)
{
case lldb::eEncodingUint:
switch (byte_size)
{
case 1: strm.PutHex8(value.UInt()); return true;
case 2: strm.PutHex16(value.UInt()); return true;
case 4: strm.PutHex32(value.UInt()); return true;
case 8: strm.PutHex64(value.ULongLong()); return true;
default:
break;
}
break;
case lldb::eEncodingSint:
switch (byte_size)
{
case 1: strm.PutHex8(value.SInt()); return true;
case 2: strm.PutHex16(value.SInt()); return true;
case 4: strm.PutHex32(value.SInt()); return true;
case 8: strm.PutHex64(value.SLongLong()); return true;
default:
break;
}
break;
case lldb::eEncodingIEEE754:
if (byte_size <= sizeof(long double))
{
if (byte_size == sizeof(float))
{
strm.PutFloat(value.Float());
return true;
}
else
if (byte_size == sizeof(double))
{
strm.PutDouble(value.Double());
return true;
}
else
if (byte_size == sizeof(long double))
{
strm.PutDouble(value.LongDouble());
return true;
}
}
break;
}
}
return false;
}
uint64_t
lldb_private::Type::GetByteSize()
{
if (m_byte_size == 0)
{
switch (m_encoding_uid_type)
{
case eIsTypeWithUID:
case eIsConstTypeWithUID:
case eIsRestrictTypeWithUID:
case eIsVolatileTypeWithUID:
case eTypedefToTypeWithUID:
if (m_encoding_uid != LLDB_INVALID_UID)
{
Type *encoding_type = m_symbol_file->ResolveTypeUID (m_encoding_uid);
if (encoding_type)
m_byte_size = encoding_type->GetByteSize();
}
if (m_byte_size == 0)
{
uint64_t bit_width = GetClangAST()->getTypeSize(clang::QualType::getFromOpaquePtr(GetOpaqueClangQualType()));
m_byte_size = (bit_width + 7 ) / 8;
}
break;
// If we are a pointer or reference, then this is just a pointer size;
case ePointerToTypeWithUID:
case eLValueReferenceToTypeWithUID:
case eRValueReferenceToTypeWithUID:
m_byte_size = GetTypeList()->GetClangASTContext().GetPointerBitSize() / 8;
break;
}
}
return m_byte_size;
}
uint32_t
lldb_private::Type::GetNumChildren (bool omit_empty_base_classes)
{
if (!ResolveClangType())
return 0;
return ClangASTContext::GetNumChildren (m_clang_qual_type, omit_empty_base_classes);
}
bool
lldb_private::Type::IsAggregateType ()
{
if (ResolveClangType())
return ClangASTContext::IsAggregateType (m_clang_qual_type);
return false;
}
lldb::Format
lldb_private::Type::GetFormat ()
{
// Make sure we resolve our type if it already hasn't been.
if (!ResolveClangType())
return lldb::eFormatInvalid;
return lldb_private::Type::GetFormat (m_clang_qual_type);
}
lldb::Format
lldb_private::Type::GetFormat (void *clang_type)
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
switch (qual_type->getTypeClass())
{
case clang::Type::FunctionNoProto:
case clang::Type::FunctionProto:
break;
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
break;
case clang::Type::ConstantArray:
break;
case clang::Type::ExtVector:
case clang::Type::Vector:
break;
case clang::Type::Builtin:
switch (cast<clang::BuiltinType>(qual_type)->getKind())
{
default: assert(0 && "Unknown builtin type!");
case clang::BuiltinType::Void:
break;
case clang::BuiltinType::Bool: return lldb::eFormatBoolean;
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar: return lldb::eFormatChar;
case clang::BuiltinType::Char16: return lldb::eFormatUnicode16;
case clang::BuiltinType::Char32: return lldb::eFormatUnicode32;
case clang::BuiltinType::UShort: return lldb::eFormatHex;
case clang::BuiltinType::Short: return lldb::eFormatDecimal;
case clang::BuiltinType::UInt: return lldb::eFormatHex;
case clang::BuiltinType::Int: return lldb::eFormatDecimal;
case clang::BuiltinType::ULong: return lldb::eFormatHex;
case clang::BuiltinType::Long: return lldb::eFormatDecimal;
case clang::BuiltinType::ULongLong: return lldb::eFormatHex;
case clang::BuiltinType::LongLong: return lldb::eFormatDecimal;
case clang::BuiltinType::UInt128: return lldb::eFormatHex;
case clang::BuiltinType::Int128: return lldb::eFormatDecimal;
case clang::BuiltinType::Float: return lldb::eFormatFloat;
case clang::BuiltinType::Double: return lldb::eFormatFloat;
case clang::BuiltinType::LongDouble: return lldb::eFormatFloat;
case clang::BuiltinType::NullPtr: return lldb::eFormatHex;
}
break;
case clang::Type::ObjCObjectPointer: return lldb::eFormatHex;
case clang::Type::BlockPointer: return lldb::eFormatHex;
case clang::Type::Pointer: return lldb::eFormatHex;
case clang::Type::LValueReference:
case clang::Type::RValueReference: return lldb::eFormatHex;
case clang::Type::MemberPointer: break;
case clang::Type::Complex: return lldb::eFormatComplex;
case clang::Type::ObjCInterface: break;
case clang::Type::Record: break;
case clang::Type::Enum: return lldb::eFormatEnum;
case clang::Type::Typedef:
return lldb_private::Type::GetFormat(cast<clang::TypedefType>(qual_type)->LookThroughTypedefs().getAsOpaquePtr());
case clang::Type::TypeOfExpr:
case clang::Type::TypeOf:
case clang::Type::Decltype:
// case clang::Type::QualifiedName:
case clang::Type::TemplateSpecialization: break;
}
// We don't know hot to display this type...
return lldb::eFormatBytes;
}
lldb::Encoding
lldb_private::Type::GetEncoding (uint32_t &count)
{
// Make sure we resolve our type if it already hasn't been.
if (!ResolveClangType())
return lldb::eEncodingInvalid;
return Type::GetEncoding (m_clang_qual_type, count);
}
lldb::Encoding
lldb_private::Type::GetEncoding (void *clang_type, uint32_t &count)
{
count = 1;
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
switch (qual_type->getTypeClass())
{
case clang::Type::FunctionNoProto:
case clang::Type::FunctionProto:
break;
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
break;
case clang::Type::ConstantArray:
break;
case clang::Type::ExtVector:
case clang::Type::Vector:
// TODO: Set this to more than one???
break;
case clang::Type::Builtin:
switch (cast<clang::BuiltinType>(qual_type)->getKind())
{
default: assert(0 && "Unknown builtin type!");
case clang::BuiltinType::Void:
break;
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128: return lldb::eEncodingSint;
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128: return lldb::eEncodingUint;
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble: return lldb::eEncodingIEEE754;
case clang::BuiltinType::NullPtr: return lldb::eEncodingUint;
}
break;
// All pointer types are represented as unsigned integer encodings.
// We may nee to add a eEncodingPointer if we ever need to know the
// difference
case clang::Type::ObjCObjectPointer:
case clang::Type::BlockPointer:
case clang::Type::Pointer:
case clang::Type::LValueReference:
case clang::Type::RValueReference:
case clang::Type::MemberPointer: return lldb::eEncodingUint;
// Complex numbers are made up of floats
case clang::Type::Complex:
count = 2;
return lldb::eEncodingIEEE754;
case clang::Type::ObjCInterface: break;
case clang::Type::Record: break;
case clang::Type::Enum: return lldb::eEncodingSint;
case clang::Type::Typedef:
return Type::GetEncoding(cast<clang::TypedefType>(qual_type)->LookThroughTypedefs().getAsOpaquePtr(), count);
break;
case clang::Type::TypeOfExpr:
case clang::Type::TypeOf:
case clang::Type::Decltype:
// case clang::Type::QualifiedName:
case clang::Type::TemplateSpecialization: break;
}
count = 0;
return lldb::eEncodingInvalid;
}
bool
lldb_private::Type::DumpValueInMemory
(
lldb_private::ExecutionContext *exe_ctx,
lldb_private::Stream *s,
lldb::addr_t address,
lldb::AddressType address_type,
bool show_types,
bool show_summary,
bool verbose
)
{
if (address != LLDB_INVALID_ADDRESS)
{
lldb_private::DataExtractor data;
data.SetByteOrder (exe_ctx->process->GetByteOrder());
if (ReadFromMemory (exe_ctx, address, address_type, data))
{
DumpValue(exe_ctx, s, data, 0, show_types, show_summary, verbose);
return true;
}
}
return false;
}
bool
lldb_private::Type::ReadFromMemory
(
lldb_private::ExecutionContext *exe_ctx,
clang::ASTContext *ast_context,
void *clang_type,
lldb::addr_t addr,
lldb::AddressType address_type,
lldb_private::DataExtractor &data
)
{
if (address_type == lldb::eAddressTypeFile)
{
// Can't convert a file address to anything valid without more
// context (which Module it came from)
return false;
}
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
const uint32_t byte_size = (ast_context->getTypeSize (qual_type) + 7) / 8;
if (data.GetByteSize() < byte_size)
{
lldb::DataBufferSP data_sp(new DataBufferHeap (byte_size, '\0'));
data.SetData(data_sp);
}
uint8_t* dst = (uint8_t*)data.PeekData(0, byte_size);
if (dst != NULL)
{
if (address_type == lldb::eAddressTypeHost)
{
// The address is an address in this process, so just copy it
memcpy (dst, (uint8_t*)NULL + addr, byte_size);
return true;
}
else
{
if (exe_ctx && exe_ctx->process)
{
Error error;
return exe_ctx->process->ReadMemory(addr, dst, byte_size, error) == byte_size;
}
}
}
return false;
}
bool
lldb_private::Type::WriteToMemory
(
lldb_private::ExecutionContext *exe_ctx,
clang::ASTContext *ast_context,
void *clang_type,
lldb::addr_t addr,
lldb::AddressType address_type,
StreamString &new_value
)
{
if (address_type == lldb::eAddressTypeFile)
{
// Can't convert a file address to anything valid without more
// context (which Module it came from)
return false;
}
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(clang_type));
const uint32_t byte_size = (ast_context->getTypeSize (qual_type) + 7) / 8;
if (byte_size > 0)
{
if (address_type == lldb::eAddressTypeHost)
{
// The address is an address in this process, so just copy it
memcpy ((void *)addr, new_value.GetData(), byte_size);
return true;
}
else
{
if (exe_ctx && exe_ctx->process)
{
Error error;
return exe_ctx->process->WriteMemory(addr, new_value.GetData(), byte_size, error) == byte_size;
}
}
}
return false;
}
bool
lldb_private::Type::ReadFromMemory (lldb_private::ExecutionContext *exe_ctx, lldb::addr_t addr, lldb::AddressType address_type, lldb_private::DataExtractor &data)
{
if (address_type == lldb::eAddressTypeFile)
{
// Can't convert a file address to anything valid without more
// context (which Module it came from)
return false;
}
const uint32_t byte_size = GetByteSize();
if (data.GetByteSize() < byte_size)
{
lldb::DataBufferSP data_sp(new DataBufferHeap (byte_size, '\0'));
data.SetData(data_sp);
}
uint8_t* dst = (uint8_t*)data.PeekData(0, byte_size);
if (dst != NULL)
{
if (address_type == lldb::eAddressTypeHost)
{
// The address is an address in this process, so just copy it
memcpy (dst, (uint8_t*)NULL + addr, byte_size);
return true;
}
else
{
if (exe_ctx && exe_ctx->process)
{
Error error;
return exe_ctx->process->ReadMemory(addr, dst, byte_size, error) == byte_size;
}
}
}
return false;
}
bool
lldb_private::Type::WriteToMemory (lldb_private::ExecutionContext *exe_ctx, lldb::addr_t addr, lldb::AddressType address_type, lldb_private::DataExtractor &data)
{
return false;
}
lldb_private::TypeList*
lldb_private::Type::GetTypeList()
{
return GetSymbolFile()->GetObjectFile()->GetModule()->GetTypeList();
}
bool
lldb_private::Type::ResolveClangType()
{
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(m_clang_qual_type));
if (qual_type.getTypePtr() == NULL)
{
clang::QualType resolved_qual_type;
TypeList *type_list = GetTypeList();
if (m_encoding_uid != LLDB_INVALID_UID)
{
Type *encoding_type = m_symbol_file->ResolveTypeUID(m_encoding_uid);
if (encoding_type)
{
switch (m_encoding_uid_type)
{
case eIsTypeWithUID:
resolved_qual_type = clang::QualType::getFromOpaquePtr(encoding_type->GetOpaqueClangQualType());
break;
case eIsConstTypeWithUID:
resolved_qual_type = clang::QualType::getFromOpaquePtr(ClangASTContext::AddConstModifier (encoding_type->GetOpaqueClangQualType()));
break;
case eIsRestrictTypeWithUID:
resolved_qual_type = clang::QualType::getFromOpaquePtr(ClangASTContext::AddRestrictModifier (encoding_type->GetOpaqueClangQualType()));
break;
case eIsVolatileTypeWithUID:
resolved_qual_type = clang::QualType::getFromOpaquePtr(ClangASTContext::AddVolatileModifier (encoding_type->GetOpaqueClangQualType()));
break;
case eTypedefToTypeWithUID:
resolved_qual_type = clang::QualType::getFromOpaquePtr(type_list->CreateClangTypedefType (this, encoding_type));
// Clear the name so it can get fully qualified in case the
// typedef is in a namespace.
m_name.Clear();
break;
case ePointerToTypeWithUID:
resolved_qual_type = clang::QualType::getFromOpaquePtr(type_list->CreateClangPointerType (encoding_type));
break;
case eLValueReferenceToTypeWithUID:
resolved_qual_type = clang::QualType::getFromOpaquePtr(type_list->CreateClangLValueReferenceType (encoding_type));
break;
case eRValueReferenceToTypeWithUID:
resolved_qual_type = clang::QualType::getFromOpaquePtr(type_list->CreateClangRValueReferenceType (encoding_type));
break;
default:
assert(!"Unhandled encoding_uid_type.");
break;
}
}
}
else
{
// We have no encoding type, return void?
void *void_clang_type = type_list->GetClangASTContext().GetVoidBuiltInType();
switch (m_encoding_uid_type)
{
case eIsTypeWithUID:
resolved_qual_type = clang::QualType::getFromOpaquePtr(void_clang_type);
break;
case eIsConstTypeWithUID:
resolved_qual_type = clang::QualType::getFromOpaquePtr (ClangASTContext::AddConstModifier (void_clang_type));
break;
case eIsRestrictTypeWithUID:
resolved_qual_type = clang::QualType::getFromOpaquePtr (ClangASTContext::AddRestrictModifier (void_clang_type));
break;
case eIsVolatileTypeWithUID:
resolved_qual_type = clang::QualType::getFromOpaquePtr (ClangASTContext::AddVolatileModifier (void_clang_type));
break;
case eTypedefToTypeWithUID:
resolved_qual_type = clang::QualType::getFromOpaquePtr(type_list->GetClangASTContext().CreateTypedefType (m_name.AsCString(), void_clang_type, NULL));
break;
case ePointerToTypeWithUID:
resolved_qual_type = clang::QualType::getFromOpaquePtr(type_list->GetClangASTContext().CreatePointerType (void_clang_type));
break;
case eLValueReferenceToTypeWithUID:
resolved_qual_type = clang::QualType::getFromOpaquePtr(type_list->GetClangASTContext().CreateLValueReferenceType (void_clang_type));
break;
case eRValueReferenceToTypeWithUID:
resolved_qual_type = clang::QualType::getFromOpaquePtr(type_list->GetClangASTContext().CreateRValueReferenceType (void_clang_type));
break;
default:
assert(!"Unhandled encoding_uid_type.");
break;
}
}
if (resolved_qual_type.getTypePtr())
{
m_clang_qual_type = resolved_qual_type.getAsOpaquePtr();
}
}
return m_clang_qual_type != NULL;
}
void *
lldb_private::Type::GetChildClangTypeAtIndex
(
const char *parent_name,
uint32_t idx,
bool transparent_pointers,
bool omit_empty_base_classes,
ConstString& name,
uint32_t &child_byte_size,
int32_t &child_byte_offset,
uint32_t &child_bitfield_bit_size,
uint32_t &child_bitfield_bit_offset
)
{
if (!ResolveClangType())
return false;
std::string name_str;
void *child_qual_type = GetClangASTContext().GetChildClangTypeAtIndex (
parent_name,
m_clang_qual_type,
idx,
transparent_pointers,
omit_empty_base_classes,
name_str,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset);
if (child_qual_type)
{
if (!name_str.empty())
name.SetCString(name_str.c_str());
else
name.Clear();
}
return child_qual_type;
}
void *
lldb_private::Type::GetOpaqueClangQualType ()
{
ResolveClangType();
return m_clang_qual_type;
}
clang::ASTContext *
lldb_private::Type::GetClangAST ()
{
TypeList *type_list = GetTypeList();
if (type_list)
return type_list->GetClangASTContext().getASTContext();
return NULL;
}
lldb_private::ClangASTContext &
lldb_private::Type::GetClangASTContext ()
{
return GetTypeList()->GetClangASTContext();
}
int
lldb_private::Type::Compare(const Type &a, const Type &b)
{
// Just compare the UID values for now...
lldb::user_id_t a_uid = a.GetID();
lldb::user_id_t b_uid = b.GetID();
if (a_uid < b_uid)
return -1;
if (a_uid > b_uid)
return 1;
return 0;
// if (a.getQualType() == b.getQualType())
// return 0;
}