blob: 5393fbf27785f2996bc38e21d66d861e681259ae [file] [log] [blame]
//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//
#if defined (__arm__)
#include "MacOSX/arm/DNBArchImpl.h"
#include "MacOSX/MachProcess.h"
#include "MacOSX/MachThread.h"
#include "DNBBreakpoint.h"
#include "DNBLog.h"
#include "DNBRegisterInfo.h"
#include "DNB.h"
#include "ARM_GCC_Registers.h"
#include "ARM_DWARF_Registers.h"
#include <sys/sysctl.h>
// BCR address match type
#define BCR_M_IMVA_MATCH ((uint32_t)(0u << 21))
#define BCR_M_CONTEXT_ID_MATCH ((uint32_t)(1u << 21))
#define BCR_M_IMVA_MISMATCH ((uint32_t)(2u << 21))
#define BCR_M_RESERVED ((uint32_t)(3u << 21))
// Link a BVR/BCR or WVR/WCR pair to another
#define E_ENABLE_LINKING ((uint32_t)(1u << 20))
// Byte Address Select
#define BAS_IMVA_PLUS_0 ((uint32_t)(1u << 5))
#define BAS_IMVA_PLUS_1 ((uint32_t)(1u << 6))
#define BAS_IMVA_PLUS_2 ((uint32_t)(1u << 7))
#define BAS_IMVA_PLUS_3 ((uint32_t)(1u << 8))
#define BAS_IMVA_0_1 ((uint32_t)(3u << 5))
#define BAS_IMVA_2_3 ((uint32_t)(3u << 7))
#define BAS_IMVA_ALL ((uint32_t)(0xfu << 5))
// Break only in priveleged or user mode
#define S_RSVD ((uint32_t)(0u << 1))
#define S_PRIV ((uint32_t)(1u << 1))
#define S_USER ((uint32_t)(2u << 1))
#define S_PRIV_USER ((S_PRIV) | (S_USER))
#define BCR_ENABLE ((uint32_t)(1u))
#define WCR_ENABLE ((uint32_t)(1u))
// Watchpoint load/store
#define WCR_LOAD ((uint32_t)(1u << 3))
#define WCR_STORE ((uint32_t)(1u << 4))
// Definitions for the Debug Status and Control Register fields:
// [5:2] => Method of debug entry
//#define WATCHPOINT_OCCURRED ((uint32_t)(2u))
// I'm seeing this, instead.
#define WATCHPOINT_OCCURRED ((uint32_t)(10u))
static const uint8_t g_arm_breakpoint_opcode[] = { 0xFE, 0xDE, 0xFF, 0xE7 };
static const uint8_t g_thumb_breakpooint_opcode[] = { 0xFE, 0xDE };
// ARM constants used during decoding
#define REG_RD 0
#define LDM_REGLIST 1
#define PC_REG 15
#define PC_REGLIST_BIT 0x8000
// ARM conditions
#define COND_EQ 0x0
#define COND_NE 0x1
#define COND_CS 0x2
#define COND_HS 0x2
#define COND_CC 0x3
#define COND_LO 0x3
#define COND_MI 0x4
#define COND_PL 0x5
#define COND_VS 0x6
#define COND_VC 0x7
#define COND_HI 0x8
#define COND_LS 0x9
#define COND_GE 0xA
#define COND_LT 0xB
#define COND_GT 0xC
#define COND_LE 0xD
#define COND_AL 0xE
#define COND_UNCOND 0xF
#define MASK_CPSR_T (1u << 5)
#define MASK_CPSR_J (1u << 24)
#define MNEMONIC_STRING_SIZE 32
#define OPERAND_STRING_SIZE 128
void
DNBArchMachARM::Initialize()
{
DNBArchPluginInfo arch_plugin_info =
{
CPU_TYPE_ARM,
DNBArchMachARM::Create,
DNBArchMachARM::GetRegisterSetInfo,
DNBArchMachARM::SoftwareBreakpointOpcode
};
// Register this arch plug-in with the main protocol class
DNBArchProtocol::RegisterArchPlugin (arch_plugin_info);
}
DNBArchProtocol *
DNBArchMachARM::Create (MachThread *thread)
{
DNBArchMachARM *obj = new DNBArchMachARM (thread);
return obj;
}
const uint8_t * const
DNBArchMachARM::SoftwareBreakpointOpcode (nub_size_t byte_size)
{
switch (byte_size)
{
case 2: return g_thumb_breakpooint_opcode;
case 4: return g_arm_breakpoint_opcode;
}
return NULL;
}
uint32_t
DNBArchMachARM::GetCPUType()
{
return CPU_TYPE_ARM;
}
uint64_t
DNBArchMachARM::GetPC(uint64_t failValue)
{
// Get program counter
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__pc;
return failValue;
}
kern_return_t
DNBArchMachARM::SetPC(uint64_t value)
{
// Get program counter
kern_return_t err = GetGPRState(false);
if (err == KERN_SUCCESS)
{
m_state.context.gpr.__pc = value;
err = SetGPRState();
}
return err == KERN_SUCCESS;
}
uint64_t
DNBArchMachARM::GetSP(uint64_t failValue)
{
// Get stack pointer
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__sp;
return failValue;
}
kern_return_t
DNBArchMachARM::GetGPRState(bool force)
{
int set = e_regSetGPR;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = ARM_THREAD_STATE_COUNT;
kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, &count);
uint32_t *r = &m_state.context.gpr.__r[0];
DNBLogThreadedIf(LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs r0=%8.8x r1=%8.8x r2=%8.8x r3=%8.8x r4=%8.8x r5=%8.8x r6=%8.8x r7=%8.8x r8=%8.8x r9=%8.8x r10=%8.8x r11=%8.8x s12=%8.8x sp=%8.8x lr=%8.8x pc=%8.8x cpsr=%8.8x",
m_thread->MachPortNumber(),
ARM_THREAD_STATE,
ARM_THREAD_STATE_COUNT,
kret,
count,
r[0],
r[1],
r[2],
r[3],
r[4],
r[5],
r[6],
r[7],
r[8],
r[9],
r[10],
r[11],
r[12],
r[13],
r[14],
r[15],
r[16]);
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t
DNBArchMachARM::GetVFPState(bool force)
{
int set = e_regSetVFP;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = ARM_VFP_STATE_COUNT;
kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, &count);
if (DNBLogEnabledForAny (LOG_THREAD))
{
uint32_t *r = &m_state.context.vfp.__r[0];
DNBLogThreaded ("thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)",
m_thread->MachPortNumber(),
ARM_THREAD_STATE,
ARM_THREAD_STATE_COUNT,
kret,
count);
DNBLogThreaded(" s0=%8.8x s1=%8.8x s2=%8.8x s3=%8.8x s4=%8.8x s5=%8.8x s6=%8.8x s7=%8.8x",r[ 0],r[ 1],r[ 2],r[ 3],r[ 4],r[ 5],r[ 6],r[ 7]);
DNBLogThreaded(" s8=%8.8x s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x s13=%8.8x s14=%8.8x s15=%8.8x",r[ 8],r[ 9],r[10],r[11],r[12],r[13],r[14],r[15]);
DNBLogThreaded(" s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x s21=%8.8x s22=%8.8x s23=%8.8x",r[16],r[17],r[18],r[19],r[20],r[21],r[22],r[23]);
DNBLogThreaded(" s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x s29=%8.8x s30=%8.8x s31=%8.8x",r[24],r[25],r[26],r[27],r[28],r[29],r[30],r[31]);
DNBLogThreaded(" s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x s37=%8.8x s38=%8.8x s39=%8.8x",r[32],r[33],r[34],r[35],r[36],r[37],r[38],r[39]);
DNBLogThreaded(" s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x s45=%8.8x s46=%8.8x s47=%8.8x",r[40],r[41],r[42],r[43],r[44],r[45],r[46],r[47]);
DNBLogThreaded(" s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x s53=%8.8x s54=%8.8x s55=%8.8x",r[48],r[49],r[50],r[51],r[52],r[53],r[54],r[55]);
DNBLogThreaded(" s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",r[56],r[57],r[58],r[59],r[60],r[61],r[62],r[63],r[64]);
}
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t
DNBArchMachARM::GetEXCState(bool force)
{
int set = e_regSetEXC;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = ARM_EXCEPTION_STATE_COUNT;
kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, &count);
m_state.SetError(set, Read, kret);
return kret;
}
static void
DumpDBGState(const DNBArchMachARM::DBG& dbg)
{
uint32_t i = 0;
for (i=0; i<16; i++) {
DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
i, i, dbg.__bvr[i], dbg.__bcr[i],
i, i, dbg.__wvr[i], dbg.__wcr[i]);
}
}
kern_return_t
DNBArchMachARM::GetDBGState(bool force)
{
int set = e_regSetDBG;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = ARM_DEBUG_STATE_COUNT;
kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, &count);
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t
DNBArchMachARM::SetGPRState()
{
int set = e_regSetGPR;
kern_return_t kret = ::thread_set_state(m_thread->MachPortNumber(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, ARM_THREAD_STATE_COUNT);
m_state.SetError(set, Write, kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
return kret; // Return the error code
}
kern_return_t
DNBArchMachARM::SetVFPState()
{
int set = e_regSetVFP;
kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, ARM_VFP_STATE_COUNT);
m_state.SetError(set, Write, kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
return kret; // Return the error code
}
kern_return_t
DNBArchMachARM::SetEXCState()
{
int set = e_regSetEXC;
kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, ARM_EXCEPTION_STATE_COUNT);
m_state.SetError(set, Write, kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
return kret; // Return the error code
}
kern_return_t
DNBArchMachARM::SetDBGState(bool also_set_on_task)
{
int set = e_regSetDBG;
kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
if (also_set_on_task)
{
kern_return_t task_kret = ::task_set_state (m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
if (task_kret != KERN_SUCCESS)
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::SetDBGState failed to set debug control register state: 0x%8.8x.", kret);
}
m_state.SetError(set, Write, kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
return kret; // Return the error code
}
void
DNBArchMachARM::ThreadWillResume()
{
// Do we need to step this thread? If so, let the mach thread tell us so.
if (m_thread->IsStepping())
{
// This is the primary thread, let the arch do anything it needs
if (NumSupportedHardwareBreakpoints() > 0)
{
if (EnableHardwareSingleStep(true) != KERN_SUCCESS)
{
DNBLogThreaded("DNBArchMachARM::ThreadWillResume() failed to enable hardware single step");
}
}
}
// Disable the triggered watchpoint temporarily before we resume.
// Plus, we try to enable hardware single step to execute past the instruction which triggered our watchpoint.
if (m_watchpoint_did_occur)
{
if (m_watchpoint_hw_index >= 0)
{
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS && !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) {
// The watchpoint might have been disabled by the user. We don't need to do anything at all
// to enable hardware single stepping.
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
return;
}
DisableHardwareWatchpoint0(m_watchpoint_hw_index, true);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() DisableHardwareWatchpoint(%d) called",
m_watchpoint_hw_index);
// Enable hardware single step to move past the watchpoint-triggering instruction.
m_watchpoint_resume_single_step_enabled = (EnableHardwareSingleStep(true) == KERN_SUCCESS);
// If we are not able to enable single step to move past the watchpoint-triggering instruction,
// at least we should reset the two watchpoint member variables so that the next time around
// this callback function is invoked, the enclosing logical branch is skipped.
if (!m_watchpoint_resume_single_step_enabled) {
// Reset the two watchpoint member variables.
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() failed to enable single step");
}
else
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() succeeded to enable single step");
}
}
}
bool
DNBArchMachARM::ThreadDidStop()
{
bool success = true;
m_state.InvalidateRegisterSetState (e_regSetALL);
if (m_watchpoint_resume_single_step_enabled)
{
// Great! We now disable the hardware single step as well as re-enable the hardware watchpoint.
// See also ThreadWillResume().
if (EnableHardwareSingleStep(false) == KERN_SUCCESS)
{
if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0)
{
EnableHardwareWatchpoint0(m_watchpoint_hw_index, true);
m_watchpoint_resume_single_step_enabled = false;
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
}
else
{
DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) does not hold!");
}
}
else
{
DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but unable to disable single step!");
}
}
// Are we stepping a single instruction?
if (GetGPRState(true) == KERN_SUCCESS)
{
// We are single stepping, was this the primary thread?
if (m_thread->IsStepping())
{
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
}
else
{
// The MachThread will automatically restore the suspend count
// in ThreadDidStop(), so we don't need to do anything here if
// we weren't the primary thread the last time
}
}
return success;
}
bool
DNBArchMachARM::NotifyException(MachException::Data& exc)
{
switch (exc.exc_type)
{
default:
break;
case EXC_BREAKPOINT:
if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG)
{
// exc_code = EXC_ARM_DA_DEBUG
//
// Check whether this corresponds to a watchpoint hit event.
// If yes, retrieve the exc_sub_code as the data break address.
if (!HasWatchpointOccurred())
break;
// The data break address is passed as exc_data[1].
nub_addr_t addr = exc.exc_data[1];
// Find the hardware index with the side effect of possibly massaging the
// addr to return the starting address as seen from the debugger side.
uint32_t hw_index = GetHardwareWatchpointHit(addr);
if (hw_index != INVALID_NUB_HW_INDEX)
{
m_watchpoint_did_occur = true;
m_watchpoint_hw_index = hw_index;
exc.exc_data[1] = addr;
// Piggyback the hw_index in the exc.data.
exc.exc_data.push_back(hw_index);
}
return true;
}
break;
}
return false;
}
bool
DNBArchMachARM::StepNotComplete ()
{
if (m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS)
{
kern_return_t kret = KERN_INVALID_ARGUMENT;
kret = GetGPRState(false);
if (kret == KERN_SUCCESS)
{
if (m_state.context.gpr.__pc == m_hw_single_chained_step_addr)
{
DNBLogThreadedIf(LOG_STEP, "Need to step some more at 0x%8.8x", m_hw_single_chained_step_addr);
return true;
}
}
}
m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
return false;
}
// Set the single step bit in the processor status register.
kern_return_t
DNBArchMachARM::EnableHardwareSingleStep (bool enable)
{
DNBError err;
DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
err = GetGPRState(false);
if (err.Fail())
{
err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
return err.Error();
}
err = GetDBGState(false);
if (err.Fail())
{
err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
return err.Error();
}
const uint32_t i = 0;
if (enable)
{
m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
// Save our previous state
m_dbg_save = m_state.dbg;
// Set a breakpoint that will stop when the PC doesn't match the current one!
m_state.dbg.__bvr[i] = m_state.context.gpr.__pc & 0xFFFFFFFCu; // Set the current PC as the breakpoint address
m_state.dbg.__bcr[i] = BCR_M_IMVA_MISMATCH | // Stop on address mismatch
S_USER | // Stop only in user mode
BCR_ENABLE; // Enable this breakpoint
if (m_state.context.gpr.__cpsr & 0x20)
{
// Thumb breakpoint
if (m_state.context.gpr.__pc & 2)
m_state.dbg.__bcr[i] |= BAS_IMVA_2_3;
else
m_state.dbg.__bcr[i] |= BAS_IMVA_0_1;
uint16_t opcode;
if (sizeof(opcode) == m_thread->Process()->Task().ReadMemory(m_state.context.gpr.__pc, sizeof(opcode), &opcode))
{
if (((opcode & 0xE000) == 0xE000) && opcode & 0x1800)
{
// 32 bit thumb opcode...
if (m_state.context.gpr.__pc & 2)
{
// We can't take care of a 32 bit thumb instruction single step
// with just IVA mismatching. We will need to chain an extra
// hardware single step in order to complete this single step...
m_hw_single_chained_step_addr = m_state.context.gpr.__pc + 2;
}
else
{
// Extend the number of bits to ignore for the mismatch
m_state.dbg.__bcr[i] |= BAS_IMVA_ALL;
}
}
}
}
else
{
// ARM breakpoint
m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; // Stop when any address bits change
}
DNBLogThreadedIf(LOG_STEP, "%s: BVR%u=0x%8.8x BCR%u=0x%8.8x", __FUNCTION__, i, m_state.dbg.__bvr[i], i, m_state.dbg.__bcr[i]);
for (uint32_t j=i+1; j<16; ++j)
{
// Disable all others
m_state.dbg.__bvr[j] = 0;
m_state.dbg.__bcr[j] = 0;
}
}
else
{
// Just restore the state we had before we did single stepping
m_state.dbg = m_dbg_save;
}
return SetDBGState(false);
}
// return 1 if bit "BIT" is set in "value"
static inline uint32_t bit(uint32_t value, uint32_t bit)
{
return (value >> bit) & 1u;
}
// return the bitfield "value[msbit:lsbit]".
static inline uint32_t bits(uint32_t value, uint32_t msbit, uint32_t lsbit)
{
assert(msbit >= lsbit);
uint32_t shift_left = sizeof(value) * 8 - 1 - msbit;
value <<= shift_left; // shift anything above the msbit off of the unsigned edge
value >>= (shift_left + lsbit); // shift it back again down to the lsbit (including undoing any shift from above)
return value; // return our result
}
bool
DNBArchMachARM::ConditionPassed(uint8_t condition, uint32_t cpsr)
{
uint32_t cpsr_n = bit(cpsr, 31); // Negative condition code flag
uint32_t cpsr_z = bit(cpsr, 30); // Zero condition code flag
uint32_t cpsr_c = bit(cpsr, 29); // Carry condition code flag
uint32_t cpsr_v = bit(cpsr, 28); // Overflow condition code flag
switch (condition) {
case COND_EQ: // (0x0)
if (cpsr_z == 1) return true;
break;
case COND_NE: // (0x1)
if (cpsr_z == 0) return true;
break;
case COND_CS: // (0x2)
if (cpsr_c == 1) return true;
break;
case COND_CC: // (0x3)
if (cpsr_c == 0) return true;
break;
case COND_MI: // (0x4)
if (cpsr_n == 1) return true;
break;
case COND_PL: // (0x5)
if (cpsr_n == 0) return true;
break;
case COND_VS: // (0x6)
if (cpsr_v == 1) return true;
break;
case COND_VC: // (0x7)
if (cpsr_v == 0) return true;
break;
case COND_HI: // (0x8)
if ((cpsr_c == 1) && (cpsr_z == 0)) return true;
break;
case COND_LS: // (0x9)
if ((cpsr_c == 0) || (cpsr_z == 1)) return true;
break;
case COND_GE: // (0xA)
if (cpsr_n == cpsr_v) return true;
break;
case COND_LT: // (0xB)
if (cpsr_n != cpsr_v) return true;
break;
case COND_GT: // (0xC)
if ((cpsr_z == 0) && (cpsr_n == cpsr_v)) return true;
break;
case COND_LE: // (0xD)
if ((cpsr_z == 1) || (cpsr_n != cpsr_v)) return true;
break;
default:
return true;
break;
}
return false;
}
uint32_t
DNBArchMachARM::NumSupportedHardwareBreakpoints()
{
// Set the init value to something that will let us know that we need to
// autodetect how many breakpoints are supported dynamically...
static uint32_t g_num_supported_hw_breakpoints = UINT_MAX;
if (g_num_supported_hw_breakpoints == UINT_MAX)
{
// Set this to zero in case we can't tell if there are any HW breakpoints
g_num_supported_hw_breakpoints = 0;
size_t len;
uint32_t n = 0;
len = sizeof (n);
if (::sysctlbyname("hw.optional.breakpoint", &n, &len, NULL, 0) == 0)
{
g_num_supported_hw_breakpoints = n;
DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u", n);
}
else
{
// Read the DBGDIDR to get the number of available hardware breakpoints
// However, in some of our current armv7 processors, hardware
// breakpoints/watchpoints were not properly connected. So detect those
// cases using a field in a sysctl. For now we are using "hw.cpusubtype"
// field to distinguish CPU architectures. This is a hack until we can
// get <rdar://problem/6372672> fixed, at which point we will switch to
// using a different sysctl string that will tell us how many BRPs
// are available to us directly without having to read DBGDIDR.
uint32_t register_DBGDIDR;
asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
uint32_t numBRPs = bits(register_DBGDIDR, 27, 24);
// Zero is reserved for the BRP count, so don't increment it if it is zero
if (numBRPs > 0)
numBRPs++;
DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number BRP pairs = %u)", register_DBGDIDR, numBRPs);
if (numBRPs > 0)
{
uint32_t cpusubtype;
len = sizeof(cpusubtype);
// TODO: remove this hack and change to using hw.optional.xx when implmented
if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
{
DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=%d", cpusubtype);
if (cpusubtype == CPU_SUBTYPE_ARM_V7)
DNBLogThreadedIf(LOG_THREAD, "Hardware breakpoints disabled for armv7 (rdar://problem/6372672)");
else
g_num_supported_hw_breakpoints = numBRPs;
}
}
}
}
return g_num_supported_hw_breakpoints;
}
uint32_t
DNBArchMachARM::NumSupportedHardwareWatchpoints()
{
// Set the init value to something that will let us know that we need to
// autodetect how many watchpoints are supported dynamically...
static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
if (g_num_supported_hw_watchpoints == UINT_MAX)
{
// Set this to zero in case we can't tell if there are any HW breakpoints
g_num_supported_hw_watchpoints = 0;
size_t len;
uint32_t n = 0;
len = sizeof (n);
if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0)
{
g_num_supported_hw_watchpoints = n;
DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n);
}
else
{
// Read the DBGDIDR to get the number of available hardware breakpoints
// However, in some of our current armv7 processors, hardware
// breakpoints/watchpoints were not properly connected. So detect those
// cases using a field in a sysctl. For now we are using "hw.cpusubtype"
// field to distinguish CPU architectures. This is a hack until we can
// get <rdar://problem/6372672> fixed, at which point we will switch to
// using a different sysctl string that will tell us how many WRPs
// are available to us directly without having to read DBGDIDR.
uint32_t register_DBGDIDR;
asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
uint32_t numWRPs = bits(register_DBGDIDR, 31, 28) + 1;
DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number WRP pairs = %u)", register_DBGDIDR, numWRPs);
if (numWRPs > 0)
{
uint32_t cpusubtype;
size_t len;
len = sizeof(cpusubtype);
// TODO: remove this hack and change to using hw.optional.xx when implmented
if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
{
DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);
if (cpusubtype == CPU_SUBTYPE_ARM_V7)
DNBLogThreadedIf(LOG_THREAD, "Hardware watchpoints disabled for armv7 (rdar://problem/6372672)");
else
g_num_supported_hw_watchpoints = numWRPs;
}
}
}
}
return g_num_supported_hw_watchpoints;
}
uint32_t
DNBArchMachARM::EnableHardwareBreakpoint (nub_addr_t addr, nub_size_t size)
{
// Make sure our address isn't bogus
if (addr & 1)
return INVALID_NUB_HW_INDEX;
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS)
{
const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints();
uint32_t i;
for (i=0; i<num_hw_breakpoints; ++i)
{
if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0)
break; // We found an available hw breakpoint slot (in i)
}
// See if we found an available hw breakpoint slot above
if (i < num_hw_breakpoints)
{
// Make sure bits 1:0 are clear in our address
m_state.dbg.__bvr[i] = addr & ~((nub_addr_t)3);
if (size == 2 || addr & 2)
{
uint32_t byte_addr_select = (addr & 2) ? BAS_IMVA_2_3 : BAS_IMVA_0_1;
// We have a thumb breakpoint
// We have an ARM breakpoint
m_state.dbg.__bcr[i] = BCR_M_IMVA_MATCH | // Stop on address mismatch
byte_addr_select | // Set the correct byte address select so we only trigger on the correct opcode
S_USER | // Which modes should this breakpoint stop in?
BCR_ENABLE; // Enable this hardware breakpoint
DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (Thumb)",
(uint64_t)addr,
(uint64_t)size,
i,
i,
m_state.dbg.__bvr[i],
m_state.dbg.__bcr[i]);
}
else if (size == 4)
{
// We have an ARM breakpoint
m_state.dbg.__bcr[i] = BCR_M_IMVA_MATCH | // Stop on address mismatch
BAS_IMVA_ALL | // Stop on any of the four bytes following the IMVA
S_USER | // Which modes should this breakpoint stop in?
BCR_ENABLE; // Enable this hardware breakpoint
DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (ARM)",
(uint64_t)addr,
(uint64_t)size,
i,
i,
m_state.dbg.__bvr[i],
m_state.dbg.__bcr[i]);
}
kret = SetDBGState(false);
DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint() SetDBGState() => 0x%8.8x.", kret);
if (kret == KERN_SUCCESS)
return i;
}
else
{
DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint(addr = 0x%8.8llx, size = %llu) => all hardware breakpoint resources are being used.", (uint64_t)addr, (uint64_t)size);
}
}
return INVALID_NUB_HW_INDEX;
}
bool
DNBArchMachARM::DisableHardwareBreakpoint (uint32_t hw_index)
{
kern_return_t kret = GetDBGState(false);
const uint32_t num_hw_points = NumSupportedHardwareBreakpoints();
if (kret == KERN_SUCCESS)
{
if (hw_index < num_hw_points)
{
m_state.dbg.__bcr[hw_index] = 0;
DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::SetHardwareBreakpoint( %u ) - BVR%u = 0x%8.8x BCR%u = 0x%8.8x",
hw_index,
hw_index,
m_state.dbg.__bvr[hw_index],
hw_index,
m_state.dbg.__bcr[hw_index]);
kret = SetDBGState(false);
if (kret == KERN_SUCCESS)
return true;
}
}
return false;
}
// This stores the lo->hi mappings. It's safe to initialize to all 0's
// since hi > lo and therefore LoHi[i] cannot be 0.
static uint32_t LoHi[16] = { 0 };
uint32_t
DNBArchMachARM::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write, bool also_set_on_task)
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(addr = 0x%8.8llx, size = %llu, read = %u, write = %u)", (uint64_t)addr, (uint64_t)size, read, write);
const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
// Can't watch zero bytes
if (size == 0)
return INVALID_NUB_HW_INDEX;
// We must watch for either read or write
if (read == false && write == false)
return INVALID_NUB_HW_INDEX;
// Divide-and-conquer for size == 8.
if (size == 8)
{
uint32_t lo = EnableHardwareWatchpoint(addr, 4, read, write);
if (lo == INVALID_NUB_HW_INDEX)
return INVALID_NUB_HW_INDEX;
uint32_t hi = EnableHardwareWatchpoint(addr+4, 4, read, write);
if (hi == INVALID_NUB_HW_INDEX)
{
DisableHardwareWatchpoint(lo);
return INVALID_NUB_HW_INDEX;
}
// Tag this lo->hi mapping in our database.
LoHi[lo] = hi;
return lo;
}
// Otherwise, can't watch more than 4 bytes per WVR/WCR pair
if (size > 4)
return INVALID_NUB_HW_INDEX;
// We can only watch up to four bytes that follow a 4 byte aligned address
// per watchpoint register pair. Since we can only watch until the next 4
// byte boundary, we need to make sure we can properly encode this.
// addr_word_offset = addr % 4, i.e, is in set([0, 1, 2, 3])
//
// +---+---+---+---+
// | 0 | 1 | 2 | 3 |
// +---+---+---+---+
// ^
// |
// word address (4-byte aligned) = addr & 0xFFFFFFFC => goes into WVR
//
// examples:
// 1. addr_word_offset = 1, size = 1 to watch a uint_8 => byte_mask = (0b0001 << 1) = 0b0010
// 2. addr_word_offset = 2, size = 2 to watch a uint_16 => byte_mask = (0b0011 << 2) = 0b1100
//
// where byte_mask goes into WCR[8:5]
uint32_t addr_word_offset = addr % 4;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - addr_word_offset = 0x%8.8x", addr_word_offset);
uint32_t byte_mask = ((1u << size) - 1u) << addr_word_offset;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - byte_mask = 0x%8.8x", byte_mask);
if (byte_mask > 0xfu)
return INVALID_NUB_HW_INDEX;
// Read the debug state
kern_return_t kret = GetDBGState(true);
if (kret == KERN_SUCCESS)
{
// Check to make sure we have the needed hardware support
uint32_t i = 0;
for (i=0; i<num_hw_watchpoints; ++i)
{
if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
break; // We found an available hw watchpoint slot (in i)
}
// See if we found an available hw watchpoint slot above
if (i < num_hw_watchpoints)
{
//DumpDBGState(m_state.dbg);
// Make the byte_mask into a valid Byte Address Select mask
uint32_t byte_address_select = byte_mask << 5;
// Make sure bits 1:0 are clear in our address
m_state.dbg.__wvr[i] = addr & ~((nub_addr_t)3); // DVA (Data Virtual Address)
m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow the DVA that we will watch
S_USER | // Stop only in user mode
(read ? WCR_LOAD : 0) | // Stop on read access?
(write ? WCR_STORE : 0) | // Stop on write access?
WCR_ENABLE; // Enable this watchpoint;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() adding watchpoint on address 0x%llx with control register value 0x%x", (uint64_t) m_state.dbg.__wvr[i], (uint32_t) m_state.dbg.__wcr[i]);
kret = SetDBGState(also_set_on_task);
//DumpDBGState(m_state.dbg);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret);
if (kret == KERN_SUCCESS)
return i;
}
else
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints);
}
}
return INVALID_NUB_HW_INDEX;
}
bool
DNBArchMachARM::EnableHardwareWatchpoint0 (uint32_t hw_index, bool Delegate)
{
kern_return_t kret = GetDBGState(false);
if (kret != KERN_SUCCESS)
return false;
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
if (hw_index >= num_hw_points)
return false;
if (Delegate && LoHi[hw_index]) {
// Enable lo and hi watchpoint hardware indexes.
return EnableHardwareWatchpoint0(hw_index, false) &&
EnableHardwareWatchpoint0(LoHi[hw_index], false);
}
m_state.dbg.__wcr[hw_index] |= (nub_addr_t)WCR_ENABLE;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8x WCR%u = 0x%8.8x",
hw_index,
hw_index,
m_state.dbg.__wvr[hw_index],
hw_index,
m_state.dbg.__wcr[hw_index]);
kret = SetDBGState(false);
return (kret == KERN_SUCCESS);
}
bool
DNBArchMachARM::DisableHardwareWatchpoint (uint32_t hw_index)
{
return DisableHardwareWatchpoint0(hw_index, true);
}
bool
DNBArchMachARM::DisableHardwareWatchpoint0 (uint32_t hw_index, bool Delegate)
{
kern_return_t kret = GetDBGState(false);
if (kret != KERN_SUCCESS)
return false;
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
if (hw_index >= num_hw_points)
return false;
if (Delegate && LoHi[hw_index]) {
// Disable lo and hi watchpoint hardware indexes.
return DisableHardwareWatchpoint0(hw_index, false) &&
DisableHardwareWatchpoint0(LoHi[hw_index], false);
}
m_state.dbg.__wcr[hw_index] &= ~((nub_addr_t)WCR_ENABLE);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::DisableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8x WCR%u = 0x%8.8x",
hw_index,
hw_index,
m_state.dbg.__wvr[hw_index],
hw_index,
m_state.dbg.__wcr[hw_index]);
kret = SetDBGState();
return (kret == KERN_SUCCESS);
}
// Returns -1 if the trailing bit patterns are not one of:
// { 0b???1, 0b??10, 0b?100, 0b1000 }.
static inline
int32_t
LowestBitSet(uint32_t val)
{
for (unsigned i = 0; i < 4; ++i) {
if (bit(val, i))
return i;
}
return -1;
}
// Iterate through the debug registers; return the index of the first watchpoint whose address matches.
// As a side effect, the starting address as understood by the debugger is returned which could be
// different from 'addr' passed as an in/out argument.
uint32_t
DNBArchMachARM::GetHardwareWatchpointHit(nub_addr_t &addr)
{
// Read the debug state
kern_return_t kret = GetDBGState(true);
//DumpDBGState(m_state.dbg);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.", kret);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() addr = 0x%llx", (uint64_t)addr);
// This is the watchpoint value to match against, i.e., word address.
nub_addr_t wp_val = addr & ~((nub_addr_t)3);
if (kret == KERN_SUCCESS)
{
DBG &debug_state = m_state.dbg;
uint32_t i, num = NumSupportedHardwareWatchpoints();
for (i = 0; i < num; ++i)
{
nub_addr_t wp_addr = GetWatchAddress(debug_state, i);
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM::GetHardwareWatchpointHit() slot: %u (addr = 0x%llx).",
i, (uint64_t)wp_addr);
if (wp_val == wp_addr) {
uint32_t byte_mask = bits(debug_state.__wcr[i], 8, 5);
// Sanity check the byte_mask, first.
if (LowestBitSet(byte_mask) < 0)
continue;
// Compute the starting address (from the point of view of the debugger).
addr = wp_addr + LowestBitSet(byte_mask);
return i;
}
}
}
return INVALID_NUB_HW_INDEX;
}
// ThreadWillResume() calls this to clear bits[5:2] (Method of entry bits) of
// the Debug Status and Control Register (DSCR).
//
// b0010 = a watchpoint occurred
// b0000 is the reset value
void
DNBArchMachARM::ClearWatchpointOccurred()
{
uint32_t register_DBGDSCR;
asm("mrc p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
if (bits(register_DBGDSCR, 5, 2) == WATCHPOINT_OCCURRED)
{
uint32_t mask = ~(0xF << 2);
register_DBGDSCR &= mask;
asm("mcr p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
}
return;
}
// NotifyException() calls this to double check that a watchpoint has occurred
// by inspecting the bits[5:2] field of the Debug Status and Control Register
// (DSCR).
//
// b0010 = a watchpoint occurred
bool
DNBArchMachARM::HasWatchpointOccurred()
{
uint32_t register_DBGDSCR;
asm("mrc p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
return (bits(register_DBGDSCR, 5, 2) == WATCHPOINT_OCCURRED);
}
bool
DNBArchMachARM::IsWatchpointEnabled(const DBG &debug_state, uint32_t hw_index)
{
// Watchpoint Control Registers, bitfield definitions
// ...
// Bits Value Description
// [0] 0 Watchpoint disabled
// 1 Watchpoint enabled.
return (debug_state.__wcr[hw_index] & 1u);
}
nub_addr_t
DNBArchMachARM::GetWatchAddress(const DBG &debug_state, uint32_t hw_index)
{
// Watchpoint Value Registers, bitfield definitions
// Bits Description
// [31:2] Watchpoint value (word address, i.e., 4-byte aligned)
// [1:0] RAZ/SBZP
return bits(debug_state.__wvr[hw_index], 31, 0);
}
//----------------------------------------------------------------------
// Register information defintions for 32 bit ARMV7.
//----------------------------------------------------------------------
enum gpr_regnums
{
gpr_r0 = 0,
gpr_r1,
gpr_r2,
gpr_r3,
gpr_r4,
gpr_r5,
gpr_r6,
gpr_r7,
gpr_r8,
gpr_r9,
gpr_r10,
gpr_r11,
gpr_r12,
gpr_sp,
gpr_lr,
gpr_pc,
gpr_cpsr
};
enum
{
vfp_s0 = 17, // match the g_gdb_register_map_arm table in RNBRemote.cpp
vfp_s1,
vfp_s2,
vfp_s3,
vfp_s4,
vfp_s5,
vfp_s6,
vfp_s7,
vfp_s8,
vfp_s9,
vfp_s10,
vfp_s11,
vfp_s12,
vfp_s13,
vfp_s14,
vfp_s15,
vfp_s16,
vfp_s17,
vfp_s18,
vfp_s19,
vfp_s20,
vfp_s21,
vfp_s22,
vfp_s23,
vfp_s24,
vfp_s25,
vfp_s26,
vfp_s27,
vfp_s28,
vfp_s29,
vfp_s30,
vfp_s31
};
enum
{
vfp_d0 = 49, // match the g_gdb_register_map_arm table in RNBRemote.cpp
vfp_d1,
vfp_d2,
vfp_d3,
vfp_d4,
vfp_d5,
vfp_d6,
vfp_d7,
vfp_d8,
vfp_d9,
vfp_d10,
vfp_d11,
vfp_d12,
vfp_d13,
vfp_d14,
vfp_d15,
vfp_d16,
vfp_d17,
vfp_d18,
vfp_d19,
vfp_d20,
vfp_d21,
vfp_d22,
vfp_d23,
vfp_d24,
vfp_d25,
vfp_d26,
vfp_d27,
vfp_d28,
vfp_d29,
vfp_d30,
vfp_d31
};
enum
{
vfp_q0 = 81, // match the g_gdb_register_map_arm table in RNBRemote.cpp
vfp_q1,
vfp_q2,
vfp_q3,
vfp_q4,
vfp_q5,
vfp_q6,
vfp_q7,
vfp_q8,
vfp_q9,
vfp_q10,
vfp_q11,
vfp_q12,
vfp_q13,
vfp_q14,
vfp_q15,
vfp_fpscr
};
enum
{
exc_exception,
exc_fsr,
exc_far,
};
#define GPR_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::GPR, __r[idx]))
#define GPR_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::GPR, __##reg))
#define EXC_OFFSET(reg) (offsetof (DNBArchMachARM::EXC, __##reg) + offsetof (DNBArchMachARM::Context, exc))
// These macros will auto define the register name, alt name, register size,
// register offset, encoding, format and native register. This ensures that
// the register state structures are defined correctly and have the correct
// sizes and offsets.
#define DEFINE_GPR_IDX(idx, reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_IDX(idx), gcc_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, NULL}
#define DEFINE_GPR_NAME(reg, alt, gen, inval) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_NAME(reg), gcc_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, inval}
// In case we are debugging to a debug target that the ability to
// change into the protected modes with folded registers (ABT, IRQ,
// FIQ, SYS, USR, etc..), we should invalidate r8-r14 if the CPSR
// gets modified.
uint32_t g_invalidate_cpsr[] = {
gpr_r8,
gpr_r9,
gpr_r10,
gpr_r11,
gpr_r12,
gpr_sp,
gpr_lr,
INVALID_NUB_REGNUM };
// General purpose registers
const DNBRegisterInfo
DNBArchMachARM::g_gpr_registers[] =
{
DEFINE_GPR_IDX ( 0, r0,"arg1", GENERIC_REGNUM_ARG1 ),
DEFINE_GPR_IDX ( 1, r1,"arg2", GENERIC_REGNUM_ARG2 ),
DEFINE_GPR_IDX ( 2, r2,"arg3", GENERIC_REGNUM_ARG3 ),
DEFINE_GPR_IDX ( 3, r3,"arg4", GENERIC_REGNUM_ARG4 ),
DEFINE_GPR_IDX ( 4, r4, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX ( 5, r5, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX ( 6, r6, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX ( 7, r7, "fp", GENERIC_REGNUM_FP ),
DEFINE_GPR_IDX ( 8, r8, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX ( 9, r9, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (10, r10, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (11, r11, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_IDX (12, r12, NULL, INVALID_NUB_REGNUM ),
DEFINE_GPR_NAME (sp, "r13", GENERIC_REGNUM_SP, NULL),
DEFINE_GPR_NAME (lr, "r14", GENERIC_REGNUM_RA, NULL),
DEFINE_GPR_NAME (pc, "r15", GENERIC_REGNUM_PC, NULL),
DEFINE_GPR_NAME (cpsr, "flags", GENERIC_REGNUM_FLAGS, g_invalidate_cpsr)
};
uint32_t g_contained_q0[] {vfp_q0, INVALID_NUB_REGNUM };
uint32_t g_contained_q1[] {vfp_q1, INVALID_NUB_REGNUM };
uint32_t g_contained_q2[] {vfp_q2, INVALID_NUB_REGNUM };
uint32_t g_contained_q3[] {vfp_q3, INVALID_NUB_REGNUM };
uint32_t g_contained_q4[] {vfp_q4, INVALID_NUB_REGNUM };
uint32_t g_contained_q5[] {vfp_q5, INVALID_NUB_REGNUM };
uint32_t g_contained_q6[] {vfp_q6, INVALID_NUB_REGNUM };
uint32_t g_contained_q7[] {vfp_q7, INVALID_NUB_REGNUM };
uint32_t g_contained_q8[] {vfp_q8, INVALID_NUB_REGNUM };
uint32_t g_contained_q9[] {vfp_q9, INVALID_NUB_REGNUM };
uint32_t g_contained_q10[] {vfp_q10, INVALID_NUB_REGNUM };
uint32_t g_contained_q11[] {vfp_q11, INVALID_NUB_REGNUM };
uint32_t g_contained_q12[] {vfp_q12, INVALID_NUB_REGNUM };
uint32_t g_contained_q13[] {vfp_q13, INVALID_NUB_REGNUM };
uint32_t g_contained_q14[] {vfp_q14, INVALID_NUB_REGNUM };
uint32_t g_contained_q15[] {vfp_q15, INVALID_NUB_REGNUM };
uint32_t g_invalidate_q0[] {vfp_q0, vfp_d0, vfp_d1, vfp_s0, vfp_s1, vfp_s2, vfp_s3, INVALID_NUB_REGNUM };
uint32_t g_invalidate_q1[] {vfp_q1, vfp_d2, vfp_d3, vfp_s4, vfp_s5, vfp_s6, vfp_s7, INVALID_NUB_REGNUM };
uint32_t g_invalidate_q2[] {vfp_q2, vfp_d4, vfp_d5, vfp_s8, vfp_s9, vfp_s10, vfp_s11, INVALID_NUB_REGNUM };
uint32_t g_invalidate_q3[] {vfp_q3, vfp_d6, vfp_d7, vfp_s12, vfp_s13, vfp_s14, vfp_s15, INVALID_NUB_REGNUM };
uint32_t g_invalidate_q4[] {vfp_q4, vfp_d8, vfp_d9, vfp_s16, vfp_s17, vfp_s18, vfp_s19, INVALID_NUB_REGNUM };
uint32_t g_invalidate_q5[] {vfp_q5, vfp_d10, vfp_d11, vfp_s20, vfp_s21, vfp_s22, vfp_s23, INVALID_NUB_REGNUM };
uint32_t g_invalidate_q6[] {vfp_q6, vfp_d12, vfp_d13, vfp_s24, vfp_s25, vfp_s26, vfp_s27, INVALID_NUB_REGNUM };
uint32_t g_invalidate_q7[] {vfp_q7, vfp_d14, vfp_d15, vfp_s28, vfp_s29, vfp_s30, vfp_s31, INVALID_NUB_REGNUM };
uint32_t g_invalidate_q8[] {vfp_q8, vfp_d16, vfp_d17, INVALID_NUB_REGNUM };
uint32_t g_invalidate_q9[] {vfp_q9, vfp_d18, vfp_d19, INVALID_NUB_REGNUM };
uint32_t g_invalidate_q10[] {vfp_q10, vfp_d20, vfp_d21, INVALID_NUB_REGNUM };
uint32_t g_invalidate_q11[] {vfp_q11, vfp_d22, vfp_d23, INVALID_NUB_REGNUM };
uint32_t g_invalidate_q12[] {vfp_q12, vfp_d24, vfp_d25, INVALID_NUB_REGNUM };
uint32_t g_invalidate_q13[] {vfp_q13, vfp_d26, vfp_d27, INVALID_NUB_REGNUM };
uint32_t g_invalidate_q14[] {vfp_q14, vfp_d28, vfp_d29, INVALID_NUB_REGNUM };
uint32_t g_invalidate_q15[] {vfp_q15, vfp_d30, vfp_d31, INVALID_NUB_REGNUM };
#define VFP_S_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::FPU, __r[(idx)]) + offsetof (DNBArchMachARM::Context, vfp))
#define VFP_D_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX ((idx) * 2))
#define VFP_Q_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX ((idx) * 4))
#define VFP_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::FPU, __##reg) + offsetof (DNBArchMachARM::Context, vfp))
#define FLOAT_FORMAT Float
#define DEFINE_VFP_S_IDX(idx) e_regSetVFP, vfp_s##idx - vfp_s0, "s" #idx, NULL, IEEE754, FLOAT_FORMAT, 4, VFP_S_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_s##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
#define DEFINE_VFP_D_IDX(idx) e_regSetVFP, vfp_d##idx - vfp_s0, "d" #idx, NULL, IEEE754, FLOAT_FORMAT, 8, VFP_D_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_d##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
#define DEFINE_VFP_Q_IDX(idx) e_regSetVFP, vfp_q##idx - vfp_s0, "q" #idx, NULL, Vector, VectorOfUInt8, 16, VFP_Q_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_q##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
// Floating point registers
const DNBRegisterInfo
DNBArchMachARM::g_vfp_registers[] =
{
{ DEFINE_VFP_S_IDX ( 0), g_contained_q0, g_invalidate_q0 },
{ DEFINE_VFP_S_IDX ( 1), g_contained_q0, g_invalidate_q0 },
{ DEFINE_VFP_S_IDX ( 2), g_contained_q0, g_invalidate_q0 },
{ DEFINE_VFP_S_IDX ( 3), g_contained_q0, g_invalidate_q0 },
{ DEFINE_VFP_S_IDX ( 4), g_contained_q1, g_invalidate_q1 },
{ DEFINE_VFP_S_IDX ( 5), g_contained_q1, g_invalidate_q1 },
{ DEFINE_VFP_S_IDX ( 6), g_contained_q1, g_invalidate_q1 },
{ DEFINE_VFP_S_IDX ( 7), g_contained_q1, g_invalidate_q1 },
{ DEFINE_VFP_S_IDX ( 8), g_contained_q2, g_invalidate_q2 },
{ DEFINE_VFP_S_IDX ( 9), g_contained_q2, g_invalidate_q2 },
{ DEFINE_VFP_S_IDX (10), g_contained_q2, g_invalidate_q2 },
{ DEFINE_VFP_S_IDX (11), g_contained_q2, g_invalidate_q2 },
{ DEFINE_VFP_S_IDX (12), g_contained_q3, g_invalidate_q3 },
{ DEFINE_VFP_S_IDX (13), g_contained_q3, g_invalidate_q3 },
{ DEFINE_VFP_S_IDX (14), g_contained_q3, g_invalidate_q3 },
{ DEFINE_VFP_S_IDX (15), g_contained_q3, g_invalidate_q3 },
{ DEFINE_VFP_S_IDX (16), g_contained_q4, g_invalidate_q4 },
{ DEFINE_VFP_S_IDX (17), g_contained_q4, g_invalidate_q4 },
{ DEFINE_VFP_S_IDX (18), g_contained_q4, g_invalidate_q4 },
{ DEFINE_VFP_S_IDX (19), g_contained_q4, g_invalidate_q4 },
{ DEFINE_VFP_S_IDX (20), g_contained_q5, g_invalidate_q5 },
{ DEFINE_VFP_S_IDX (21), g_contained_q5, g_invalidate_q5 },
{ DEFINE_VFP_S_IDX (22), g_contained_q5, g_invalidate_q5 },
{ DEFINE_VFP_S_IDX (23), g_contained_q5, g_invalidate_q5 },
{ DEFINE_VFP_S_IDX (24), g_contained_q6, g_invalidate_q6 },
{ DEFINE_VFP_S_IDX (25), g_contained_q6, g_invalidate_q6 },
{ DEFINE_VFP_S_IDX (26), g_contained_q6, g_invalidate_q6 },
{ DEFINE_VFP_S_IDX (27), g_contained_q6, g_invalidate_q6 },
{ DEFINE_VFP_S_IDX (28), g_contained_q7, g_invalidate_q7 },
{ DEFINE_VFP_S_IDX (29), g_contained_q7, g_invalidate_q7 },
{ DEFINE_VFP_S_IDX (30), g_contained_q7, g_invalidate_q7 },
{ DEFINE_VFP_S_IDX (31), g_contained_q7, g_invalidate_q7 },
{ DEFINE_VFP_D_IDX (0), g_contained_q0, g_invalidate_q0 },
{ DEFINE_VFP_D_IDX (1), g_contained_q0, g_invalidate_q0 },
{ DEFINE_VFP_D_IDX (2), g_contained_q1, g_invalidate_q1 },
{ DEFINE_VFP_D_IDX (3), g_contained_q1, g_invalidate_q1 },
{ DEFINE_VFP_D_IDX (4), g_contained_q2, g_invalidate_q2 },
{ DEFINE_VFP_D_IDX (5), g_contained_q2, g_invalidate_q2 },
{ DEFINE_VFP_D_IDX (6), g_contained_q3, g_invalidate_q3 },
{ DEFINE_VFP_D_IDX (7), g_contained_q3, g_invalidate_q3 },
{ DEFINE_VFP_D_IDX (8), g_contained_q4, g_invalidate_q4 },
{ DEFINE_VFP_D_IDX (9), g_contained_q4, g_invalidate_q4 },
{ DEFINE_VFP_D_IDX (10), g_contained_q5, g_invalidate_q5 },
{ DEFINE_VFP_D_IDX (11), g_contained_q5, g_invalidate_q5 },
{ DEFINE_VFP_D_IDX (12), g_contained_q6, g_invalidate_q6 },
{ DEFINE_VFP_D_IDX (13), g_contained_q6, g_invalidate_q6 },
{ DEFINE_VFP_D_IDX (14), g_contained_q7, g_invalidate_q7 },
{ DEFINE_VFP_D_IDX (15), g_contained_q7, g_invalidate_q7 },
{ DEFINE_VFP_D_IDX (16), g_contained_q8, g_invalidate_q8 },
{ DEFINE_VFP_D_IDX (17), g_contained_q8, g_invalidate_q8 },
{ DEFINE_VFP_D_IDX (18), g_contained_q9, g_invalidate_q9 },
{ DEFINE_VFP_D_IDX (19), g_contained_q9, g_invalidate_q9 },
{ DEFINE_VFP_D_IDX (20), g_contained_q10, g_invalidate_q10 },
{ DEFINE_VFP_D_IDX (21), g_contained_q10, g_invalidate_q10 },
{ DEFINE_VFP_D_IDX (22), g_contained_q11, g_invalidate_q11 },
{ DEFINE_VFP_D_IDX (23), g_contained_q11, g_invalidate_q11 },
{ DEFINE_VFP_D_IDX (24), g_contained_q12, g_invalidate_q12 },
{ DEFINE_VFP_D_IDX (25), g_contained_q12, g_invalidate_q12 },
{ DEFINE_VFP_D_IDX (26), g_contained_q13, g_invalidate_q13 },
{ DEFINE_VFP_D_IDX (27), g_contained_q13, g_invalidate_q13 },
{ DEFINE_VFP_D_IDX (28), g_contained_q14, g_invalidate_q14 },
{ DEFINE_VFP_D_IDX (29), g_contained_q14, g_invalidate_q14 },
{ DEFINE_VFP_D_IDX (30), g_contained_q15, g_invalidate_q15 },
{ DEFINE_VFP_D_IDX (31), g_contained_q15, g_invalidate_q15 },
{ DEFINE_VFP_Q_IDX (0), NULL, g_invalidate_q0 },
{ DEFINE_VFP_Q_IDX (1), NULL, g_invalidate_q1 },
{ DEFINE_VFP_Q_IDX (2), NULL, g_invalidate_q2 },
{ DEFINE_VFP_Q_IDX (3), NULL, g_invalidate_q3 },
{ DEFINE_VFP_Q_IDX (4), NULL, g_invalidate_q4 },
{ DEFINE_VFP_Q_IDX (5), NULL, g_invalidate_q5 },
{ DEFINE_VFP_Q_IDX (6), NULL, g_invalidate_q6 },
{ DEFINE_VFP_Q_IDX (7), NULL, g_invalidate_q7 },
{ DEFINE_VFP_Q_IDX (8), NULL, g_invalidate_q8 },
{ DEFINE_VFP_Q_IDX (9), NULL, g_invalidate_q9 },
{ DEFINE_VFP_Q_IDX (10), NULL, g_invalidate_q10 },
{ DEFINE_VFP_Q_IDX (11), NULL, g_invalidate_q11 },
{ DEFINE_VFP_Q_IDX (12), NULL, g_invalidate_q12 },
{ DEFINE_VFP_Q_IDX (13), NULL, g_invalidate_q13 },
{ DEFINE_VFP_Q_IDX (14), NULL, g_invalidate_q14 },
{ DEFINE_VFP_Q_IDX (15), NULL, g_invalidate_q15 },
{ e_regSetVFP, vfp_fpscr, "fpscr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpscr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL }
};
// Exception registers
const DNBRegisterInfo
DNBArchMachARM::g_exc_registers[] =
{
{ e_regSetVFP, exc_exception , "exception" , NULL, Uint, Hex, 4, EXC_OFFSET(exception) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
{ e_regSetVFP, exc_fsr , "fsr" , NULL, Uint, Hex, 4, EXC_OFFSET(fsr) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
{ e_regSetVFP, exc_far , "far" , NULL, Uint, Hex, 4, EXC_OFFSET(far) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM }
};
// Number of registers in each register set
const size_t DNBArchMachARM::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_vfp_registers = sizeof(g_vfp_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_all_registers = k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
//----------------------------------------------------------------------
// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
//----------------------------------------------------------------------
const DNBRegisterSetInfo
DNBArchMachARM::g_reg_sets[] =
{
{ "ARM Registers", NULL, k_num_all_registers },
{ "General Purpose Registers", g_gpr_registers, k_num_gpr_registers },
{ "Floating Point Registers", g_vfp_registers, k_num_vfp_registers },
{ "Exception State Registers", g_exc_registers, k_num_exc_registers }
};
// Total number of register sets for this architecture
const size_t DNBArchMachARM::k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo);
const DNBRegisterSetInfo *
DNBArchMachARM::GetRegisterSetInfo(nub_size_t *num_reg_sets)
{
*num_reg_sets = k_num_register_sets;
return g_reg_sets;
}
bool
DNBArchMachARM::GetRegisterValue(int set, int reg, DNBRegisterValue *value)
{
if (set == REGISTER_SET_GENERIC)
{
switch (reg)
{
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_pc;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_sp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_r7; // is this the right reg?
break;
case GENERIC_REGNUM_RA: // Return Address
set = e_regSetGPR;
reg = gpr_lr;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_cpsr;
break;
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo)
{
value->info = *regInfo;
switch (set)
{
case e_regSetGPR:
if (reg < k_num_gpr_registers)
{
value->value.uint32 = m_state.context.gpr.__r[reg];
return true;
}
break;
case e_regSetVFP:
// "reg" is an index into the floating point register set at this point.
// We need to translate it up so entry 0 in the fp reg set is the same as vfp_s0
// in the enumerated values for case statement below.
reg += vfp_s0;
if (reg >= vfp_s0 && reg <= vfp_s31)
{
value->value.uint32 = m_state.context.vfp.__r[reg - vfp_s0];
return true;
}
else if (reg >= vfp_d0 && reg <= vfp_d31)
{
uint32_t d_reg_idx = reg - vfp_d0;
uint32_t s_reg_idx = d_reg_idx * 2;
value->value.v_sint32[0] = m_state.context.vfp.__r[s_reg_idx + 0];
value->value.v_sint32[1] = m_state.context.vfp.__r[s_reg_idx + 1];
return true;
}
else if (reg >= vfp_q0 && reg <= vfp_q15)
{
uint32_t s_reg_idx = (reg - vfp_q0) * 4;
memcpy (&value->value.v_uint8, (uint8_t *) &m_state.context.vfp.__r[s_reg_idx], 16);
return true;
}
else if (reg == vfp_fpscr)
{
value->value.uint32 = m_state.context.vfp.__fpscr;
return true;
}
break;
case e_regSetEXC:
if (reg < k_num_exc_registers)
{
value->value.uint32 = (&m_state.context.exc.__exception)[reg];
return true;
}
break;
}
}
return false;
}
bool
DNBArchMachARM::SetRegisterValue(int set, int reg, const DNBRegisterValue *value)
{
if (set == REGISTER_SET_GENERIC)
{
switch (reg)
{
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_pc;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_sp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_r7;
break;
case GENERIC_REGNUM_RA: // Return Address
set = e_regSetGPR;
reg = gpr_lr;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_cpsr;
break;
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
bool success = false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo)
{
switch (set)
{
case e_regSetGPR:
if (reg < k_num_gpr_registers)
{
m_state.context.gpr.__r[reg] = value->value.uint32;
success = true;
}
break;
case e_regSetVFP:
// "reg" is an index into the floating point register set at this point.
// We need to translate it up so entry 0 in the fp reg set is the same as vfp_s0
// in the enumerated values for case statement below.
reg += vfp_s0;
if (reg >= vfp_s0 && reg <= vfp_s31)
{
m_state.context.vfp.__r[reg - vfp_s0] = value->value.uint32;
success = true;
}
else if (reg >= vfp_d0 && reg <= vfp_d31)
{
uint32_t d_reg_idx = reg - vfp_d0;
uint32_t s_reg_idx = d_reg_idx * 2;
m_state.context.vfp.__r[s_reg_idx + 0] = value->value.v_sint32[0];
m_state.context.vfp.__r[s_reg_idx + 1] = value->value.v_sint32[1];
success = true;
}
else if (reg >= vfp_q0 && reg <= vfp_q15)
{
uint32_t s_reg_idx = (reg - vfp_q0) * 4;
memcpy ((uint8_t *) &m_state.context.vfp.__r[s_reg_idx], &value->value.v_uint8, 16);
return true;
}
else if (reg == vfp_fpscr)
{
m_state.context.vfp.__fpscr = value->value.uint32;
success = true;
}
break;
case e_regSetEXC:
if (reg < k_num_exc_registers)
{
(&m_state.context.exc.__exception)[reg] = value->value.uint32;
success = true;
}
break;
}
}
if (success)
return SetRegisterState(set) == KERN_SUCCESS;
return false;
}
kern_return_t
DNBArchMachARM::GetRegisterState(int set, bool force)
{
switch (set)
{
case e_regSetALL: return GetGPRState(force) |
GetVFPState(force) |
GetEXCState(force) |
GetDBGState(force);
case e_regSetGPR: return GetGPRState(force);
case e_regSetVFP: return GetVFPState(force);
case e_regSetEXC: return GetEXCState(force);
case e_regSetDBG: return GetDBGState(force);
default: break;
}
return KERN_INVALID_ARGUMENT;
}
kern_return_t
DNBArchMachARM::SetRegisterState(int set)
{
// Make sure we have a valid context to set.
kern_return_t err = GetRegisterState(set, false);
if (err != KERN_SUCCESS)
return err;
switch (set)
{
case e_regSetALL: return SetGPRState() |
SetVFPState() |
SetEXCState() |
SetDBGState(false);
case e_regSetGPR: return SetGPRState();
case e_regSetVFP: return SetVFPState();
case e_regSetEXC: return SetEXCState();
case e_regSetDBG: return SetDBGState(false);
default: break;
}
return KERN_INVALID_ARGUMENT;
}
bool
DNBArchMachARM::RegisterSetStateIsValid (int set) const
{
return m_state.RegsAreValid(set);
}
nub_size_t
DNBArchMachARM::GetRegisterContext (void *buf, nub_size_t buf_len)
{
nub_size_t size = sizeof (m_state.context);
if (buf && buf_len)
{
if (size > buf_len)
size = buf_len;
bool force = false;
if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
return 0;
::memcpy (buf, &m_state.context, size);
}
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::GetRegisterContext (buf = %p, len = %llu) => %llu", buf, (uint64_t)buf_len, (uint64_t)size);
// Return the size of the register context even if NULL was passed in
return size;
}
nub_size_t
DNBArchMachARM::SetRegisterContext (const void *buf, nub_size_t buf_len)
{
nub_size_t size = sizeof (m_state.context);
if (buf == NULL || buf_len == 0)
size = 0;
if (size)
{
if (size > buf_len)
size = buf_len;
::memcpy (&m_state.context, buf, size);
SetGPRState();
SetVFPState();
SetEXCState();
}
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::SetRegisterContext (buf = %p, len = %llu) => %llu", buf, (uint64_t)buf_len, (uint64_t)size);
return size;
}
#endif // #if defined (__arm__)