blob: 839cf2ef592bc5888ba0e2cae265763d2791434f [file] [log] [blame]
Chris Lattner24943d22010-06-08 16:52:24 +00001//===-- DWARFExpression.cpp -------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "lldb/Expression/DWARFExpression.h"
11
12#include <vector>
13
14#include "lldb/Core/dwarf.h"
15#include "lldb/Core/Log.h"
16#include "lldb/Core/StreamString.h"
17#include "lldb/Core/Scalar.h"
18#include "lldb/Core/Value.h"
19
20#include "lldb/Expression/ClangExpressionDeclMap.h"
21#include "lldb/Expression/ClangExpressionVariable.h"
22
23#include "lldb/Host/Host.h"
24
25#include "lldb/lldb-private-log.h"
26
27#include "lldb/Symbol/ClangASTContext.h"
28#include "lldb/Symbol/Type.h"
29
30#include "lldb/Target/ExecutionContext.h"
31#include "lldb/Target/Process.h"
32#include "lldb/Target/RegisterContext.h"
33#include "lldb/Target/StackFrame.h"
34
35using namespace lldb;
36using namespace lldb_private;
37
38const char *
39DW_OP_value_to_name (uint32_t val)
40{
41 static char invalid[100];
42 switch (val) {
43 case 0x03: return "DW_OP_addr";
44 case 0x06: return "DW_OP_deref";
45 case 0x08: return "DW_OP_const1u";
46 case 0x09: return "DW_OP_const1s";
47 case 0x0a: return "DW_OP_const2u";
48 case 0x0b: return "DW_OP_const2s";
49 case 0x0c: return "DW_OP_const4u";
50 case 0x0d: return "DW_OP_const4s";
51 case 0x0e: return "DW_OP_const8u";
52 case 0x0f: return "DW_OP_const8s";
53 case 0x10: return "DW_OP_constu";
54 case 0x11: return "DW_OP_consts";
55 case 0x12: return "DW_OP_dup";
56 case 0x13: return "DW_OP_drop";
57 case 0x14: return "DW_OP_over";
58 case 0x15: return "DW_OP_pick";
59 case 0x16: return "DW_OP_swap";
60 case 0x17: return "DW_OP_rot";
61 case 0x18: return "DW_OP_xderef";
62 case 0x19: return "DW_OP_abs";
63 case 0x1a: return "DW_OP_and";
64 case 0x1b: return "DW_OP_div";
65 case 0x1c: return "DW_OP_minus";
66 case 0x1d: return "DW_OP_mod";
67 case 0x1e: return "DW_OP_mul";
68 case 0x1f: return "DW_OP_neg";
69 case 0x20: return "DW_OP_not";
70 case 0x21: return "DW_OP_or";
71 case 0x22: return "DW_OP_plus";
72 case 0x23: return "DW_OP_plus_uconst";
73 case 0x24: return "DW_OP_shl";
74 case 0x25: return "DW_OP_shr";
75 case 0x26: return "DW_OP_shra";
76 case 0x27: return "DW_OP_xor";
77 case 0x2f: return "DW_OP_skip";
78 case 0x28: return "DW_OP_bra";
79 case 0x29: return "DW_OP_eq";
80 case 0x2a: return "DW_OP_ge";
81 case 0x2b: return "DW_OP_gt";
82 case 0x2c: return "DW_OP_le";
83 case 0x2d: return "DW_OP_lt";
84 case 0x2e: return "DW_OP_ne";
85 case 0x30: return "DW_OP_lit0";
86 case 0x31: return "DW_OP_lit1";
87 case 0x32: return "DW_OP_lit2";
88 case 0x33: return "DW_OP_lit3";
89 case 0x34: return "DW_OP_lit4";
90 case 0x35: return "DW_OP_lit5";
91 case 0x36: return "DW_OP_lit6";
92 case 0x37: return "DW_OP_lit7";
93 case 0x38: return "DW_OP_lit8";
94 case 0x39: return "DW_OP_lit9";
95 case 0x3a: return "DW_OP_lit10";
96 case 0x3b: return "DW_OP_lit11";
97 case 0x3c: return "DW_OP_lit12";
98 case 0x3d: return "DW_OP_lit13";
99 case 0x3e: return "DW_OP_lit14";
100 case 0x3f: return "DW_OP_lit15";
101 case 0x40: return "DW_OP_lit16";
102 case 0x41: return "DW_OP_lit17";
103 case 0x42: return "DW_OP_lit18";
104 case 0x43: return "DW_OP_lit19";
105 case 0x44: return "DW_OP_lit20";
106 case 0x45: return "DW_OP_lit21";
107 case 0x46: return "DW_OP_lit22";
108 case 0x47: return "DW_OP_lit23";
109 case 0x48: return "DW_OP_lit24";
110 case 0x49: return "DW_OP_lit25";
111 case 0x4a: return "DW_OP_lit26";
112 case 0x4b: return "DW_OP_lit27";
113 case 0x4c: return "DW_OP_lit28";
114 case 0x4d: return "DW_OP_lit29";
115 case 0x4e: return "DW_OP_lit30";
116 case 0x4f: return "DW_OP_lit31";
117 case 0x50: return "DW_OP_reg0";
118 case 0x51: return "DW_OP_reg1";
119 case 0x52: return "DW_OP_reg2";
120 case 0x53: return "DW_OP_reg3";
121 case 0x54: return "DW_OP_reg4";
122 case 0x55: return "DW_OP_reg5";
123 case 0x56: return "DW_OP_reg6";
124 case 0x57: return "DW_OP_reg7";
125 case 0x58: return "DW_OP_reg8";
126 case 0x59: return "DW_OP_reg9";
127 case 0x5a: return "DW_OP_reg10";
128 case 0x5b: return "DW_OP_reg11";
129 case 0x5c: return "DW_OP_reg12";
130 case 0x5d: return "DW_OP_reg13";
131 case 0x5e: return "DW_OP_reg14";
132 case 0x5f: return "DW_OP_reg15";
133 case 0x60: return "DW_OP_reg16";
134 case 0x61: return "DW_OP_reg17";
135 case 0x62: return "DW_OP_reg18";
136 case 0x63: return "DW_OP_reg19";
137 case 0x64: return "DW_OP_reg20";
138 case 0x65: return "DW_OP_reg21";
139 case 0x66: return "DW_OP_reg22";
140 case 0x67: return "DW_OP_reg23";
141 case 0x68: return "DW_OP_reg24";
142 case 0x69: return "DW_OP_reg25";
143 case 0x6a: return "DW_OP_reg26";
144 case 0x6b: return "DW_OP_reg27";
145 case 0x6c: return "DW_OP_reg28";
146 case 0x6d: return "DW_OP_reg29";
147 case 0x6e: return "DW_OP_reg30";
148 case 0x6f: return "DW_OP_reg31";
149 case 0x70: return "DW_OP_breg0";
150 case 0x71: return "DW_OP_breg1";
151 case 0x72: return "DW_OP_breg2";
152 case 0x73: return "DW_OP_breg3";
153 case 0x74: return "DW_OP_breg4";
154 case 0x75: return "DW_OP_breg5";
155 case 0x76: return "DW_OP_breg6";
156 case 0x77: return "DW_OP_breg7";
157 case 0x78: return "DW_OP_breg8";
158 case 0x79: return "DW_OP_breg9";
159 case 0x7a: return "DW_OP_breg10";
160 case 0x7b: return "DW_OP_breg11";
161 case 0x7c: return "DW_OP_breg12";
162 case 0x7d: return "DW_OP_breg13";
163 case 0x7e: return "DW_OP_breg14";
164 case 0x7f: return "DW_OP_breg15";
165 case 0x80: return "DW_OP_breg16";
166 case 0x81: return "DW_OP_breg17";
167 case 0x82: return "DW_OP_breg18";
168 case 0x83: return "DW_OP_breg19";
169 case 0x84: return "DW_OP_breg20";
170 case 0x85: return "DW_OP_breg21";
171 case 0x86: return "DW_OP_breg22";
172 case 0x87: return "DW_OP_breg23";
173 case 0x88: return "DW_OP_breg24";
174 case 0x89: return "DW_OP_breg25";
175 case 0x8a: return "DW_OP_breg26";
176 case 0x8b: return "DW_OP_breg27";
177 case 0x8c: return "DW_OP_breg28";
178 case 0x8d: return "DW_OP_breg29";
179 case 0x8e: return "DW_OP_breg30";
180 case 0x8f: return "DW_OP_breg31";
181 case 0x90: return "DW_OP_regx";
182 case 0x91: return "DW_OP_fbreg";
183 case 0x92: return "DW_OP_bregx";
184 case 0x93: return "DW_OP_piece";
185 case 0x94: return "DW_OP_deref_size";
186 case 0x95: return "DW_OP_xderef_size";
187 case 0x96: return "DW_OP_nop";
188 case 0x97: return "DW_OP_push_object_address";
189 case 0x98: return "DW_OP_call2";
190 case 0x99: return "DW_OP_call4";
191 case 0x9a: return "DW_OP_call_ref";
192 case DW_OP_APPLE_array_ref: return "DW_OP_APPLE_array_ref";
193 case DW_OP_APPLE_extern: return "DW_OP_APPLE_extern";
194 case DW_OP_APPLE_uninit: return "DW_OP_APPLE_uninit";
195 case DW_OP_APPLE_assign: return "DW_OP_APPLE_assign";
196 case DW_OP_APPLE_address_of: return "DW_OP_APPLE_address_of";
197 case DW_OP_APPLE_value_of: return "DW_OP_APPLE_value_of";
198 case DW_OP_APPLE_deref_type: return "DW_OP_APPLE_deref_type";
199 case DW_OP_APPLE_expr_local: return "DW_OP_APPLE_expr_local";
200 case DW_OP_APPLE_constf: return "DW_OP_APPLE_constf";
201 case DW_OP_APPLE_scalar_cast: return "DW_OP_APPLE_scalar_cast";
202 case DW_OP_APPLE_clang_cast: return "DW_OP_APPLE_clang_cast";
203 case DW_OP_APPLE_clear: return "DW_OP_APPLE_clear";
204 case DW_OP_APPLE_error: return "DW_OP_APPLE_error";
205 default:
206 snprintf (invalid, sizeof(invalid), "Unknown DW_OP constant: 0x%x", val);
207 return invalid;
208 }
209}
210
211
212//----------------------------------------------------------------------
213// DWARFExpression constructor
214//----------------------------------------------------------------------
215DWARFExpression::DWARFExpression() :
216 m_data(),
217 m_reg_kind (eRegisterKindDWARF),
218 m_loclist_base_addr(),
219 m_expr_locals (NULL),
220 m_decl_map (NULL)
221{
222}
223
224DWARFExpression::DWARFExpression(const DWARFExpression& rhs) :
225 m_data(rhs.m_data),
226 m_reg_kind (rhs.m_reg_kind),
227 m_loclist_base_addr(rhs.m_loclist_base_addr),
228 m_expr_locals (rhs.m_expr_locals),
229 m_decl_map (rhs.m_decl_map)
230{
231}
232
233
234DWARFExpression::DWARFExpression(const DataExtractor& data, uint32_t data_offset, uint32_t data_length, const Address* loclist_base_addr_ptr) :
235 m_data(data, data_offset, data_length),
236 m_reg_kind (eRegisterKindDWARF),
237 m_loclist_base_addr(),
238 m_expr_locals (NULL),
239 m_decl_map (NULL)
240{
241 if (loclist_base_addr_ptr)
242 m_loclist_base_addr = *loclist_base_addr_ptr;
243}
244
245//----------------------------------------------------------------------
246// Destructor
247//----------------------------------------------------------------------
248DWARFExpression::~DWARFExpression()
249{
250}
251
252
253bool
254DWARFExpression::IsValid() const
255{
256 return m_data.GetByteSize() > 0;
257}
258
259
260void
261DWARFExpression::SetExpressionLocalVariableList (ClangExpressionVariableList *locals)
262{
263 m_expr_locals = locals;
264}
265
266void
267DWARFExpression::SetExpressionDeclMap (ClangExpressionDeclMap *decl_map)
268{
269 m_decl_map = decl_map;
270}
271
272void
273DWARFExpression::SetOpcodeData (const DataExtractor& data, const Address* loclist_base_addr_ptr)
274{
275 m_data = data;
276 if (loclist_base_addr_ptr != NULL)
277 m_loclist_base_addr = *loclist_base_addr_ptr;
278 else
279 m_loclist_base_addr.Clear();
280}
281
282void
283DWARFExpression::SetOpcodeData (const DataExtractor& data, uint32_t data_offset, uint32_t data_length, const Address* loclist_base_addr_ptr)
284{
285 m_data.SetData(data, data_offset, data_length);
286 if (loclist_base_addr_ptr != NULL)
287 m_loclist_base_addr = *loclist_base_addr_ptr;
288 else
289 m_loclist_base_addr.Clear();
290}
291
292void
293DWARFExpression::DumpLocation (Stream *s, uint32_t offset, uint32_t length, lldb::DescriptionLevel level) const
294{
295 if (!m_data.ValidOffsetForDataOfSize(offset, length))
296 return;
297 const uint32_t start_offset = offset;
298 const uint32_t end_offset = offset + length;
299 while (m_data.ValidOffset(offset) && offset < end_offset)
300 {
301 const uint32_t op_offset = offset;
302 const uint8_t op = m_data.GetU8(&offset);
303
304 switch (level)
305 {
Greg Clayton54e7afa2010-07-09 20:39:50 +0000306 default:
307 break;
308
Chris Lattner24943d22010-06-08 16:52:24 +0000309 case lldb::eDescriptionLevelBrief:
310 if (offset > start_offset)
311 s->PutChar(' ');
312 break;
313
314 case lldb::eDescriptionLevelFull:
315 case lldb::eDescriptionLevelVerbose:
316 if (offset > start_offset)
317 s->EOL();
318 s->Indent();
319 if (level == lldb::eDescriptionLevelFull)
320 break;
321 // Fall through for verbose and print offset and DW_OP prefix..
322 s->Printf("0x%8.8x: %s", op_offset, op >= DW_OP_APPLE_uninit ? "DW_OP_APPLE_" : "DW_OP_");
323 break;
324 }
325
326 switch (op)
327 {
328 case DW_OP_addr: *s << "addr(" << m_data.GetAddress(&offset) << ") "; break; // 0x03 1 address
329 case DW_OP_deref: *s << "deref"; break; // 0x06
330 case DW_OP_const1u: s->Printf("const1u(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x08 1 1-byte constant
331 case DW_OP_const1s: s->Printf("const1s(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x09 1 1-byte constant
332 case DW_OP_const2u: s->Printf("const2u(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0a 1 2-byte constant
333 case DW_OP_const2s: s->Printf("const2s(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0b 1 2-byte constant
334 case DW_OP_const4u: s->Printf("const4u(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0c 1 4-byte constant
335 case DW_OP_const4s: s->Printf("const4s(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0d 1 4-byte constant
336 case DW_OP_const8u: s->Printf("const8u(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0e 1 8-byte constant
337 case DW_OP_const8s: s->Printf("const8s(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0f 1 8-byte constant
338 case DW_OP_constu: s->Printf("constu(0x%x) ", m_data.GetULEB128(&offset)); break; // 0x10 1 ULEB128 constant
339 case DW_OP_consts: s->Printf("consts(0x%x) ", m_data.GetSLEB128(&offset)); break; // 0x11 1 SLEB128 constant
340 case DW_OP_dup: s->PutCString("dup"); break; // 0x12
341 case DW_OP_drop: s->PutCString("drop"); break; // 0x13
342 case DW_OP_over: s->PutCString("over"); break; // 0x14
343 case DW_OP_pick: s->Printf("pick(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x15 1 1-byte stack index
344 case DW_OP_swap: s->PutCString("swap"); break; // 0x16
345 case DW_OP_rot: s->PutCString("rot"); break; // 0x17
346 case DW_OP_xderef: s->PutCString("xderef"); break; // 0x18
347 case DW_OP_abs: s->PutCString("abs"); break; // 0x19
348 case DW_OP_and: s->PutCString("and"); break; // 0x1a
349 case DW_OP_div: s->PutCString("div"); break; // 0x1b
350 case DW_OP_minus: s->PutCString("minus"); break; // 0x1c
351 case DW_OP_mod: s->PutCString("mod"); break; // 0x1d
352 case DW_OP_mul: s->PutCString("mul"); break; // 0x1e
353 case DW_OP_neg: s->PutCString("neg"); break; // 0x1f
354 case DW_OP_not: s->PutCString("not"); break; // 0x20
355 case DW_OP_or: s->PutCString("or"); break; // 0x21
356 case DW_OP_plus: s->PutCString("plus"); break; // 0x22
357 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend
358 s->Printf("plus_uconst(0x%x) ", m_data.GetULEB128(&offset));
359 break;
360
361 case DW_OP_shl: s->PutCString("shl"); break; // 0x24
362 case DW_OP_shr: s->PutCString("shr"); break; // 0x25
363 case DW_OP_shra: s->PutCString("shra"); break; // 0x26
364 case DW_OP_xor: s->PutCString("xor"); break; // 0x27
365 case DW_OP_skip: s->Printf("skip(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x2f 1 signed 2-byte constant
366 case DW_OP_bra: s->Printf("bra(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x28 1 signed 2-byte constant
367 case DW_OP_eq: s->PutCString("eq"); break; // 0x29
368 case DW_OP_ge: s->PutCString("ge"); break; // 0x2a
369 case DW_OP_gt: s->PutCString("gt"); break; // 0x2b
370 case DW_OP_le: s->PutCString("le"); break; // 0x2c
371 case DW_OP_lt: s->PutCString("lt"); break; // 0x2d
372 case DW_OP_ne: s->PutCString("ne"); break; // 0x2e
373
374 case DW_OP_lit0: // 0x30
375 case DW_OP_lit1: // 0x31
376 case DW_OP_lit2: // 0x32
377 case DW_OP_lit3: // 0x33
378 case DW_OP_lit4: // 0x34
379 case DW_OP_lit5: // 0x35
380 case DW_OP_lit6: // 0x36
381 case DW_OP_lit7: // 0x37
382 case DW_OP_lit8: // 0x38
383 case DW_OP_lit9: // 0x39
384 case DW_OP_lit10: // 0x3A
385 case DW_OP_lit11: // 0x3B
386 case DW_OP_lit12: // 0x3C
387 case DW_OP_lit13: // 0x3D
388 case DW_OP_lit14: // 0x3E
389 case DW_OP_lit15: // 0x3F
390 case DW_OP_lit16: // 0x40
391 case DW_OP_lit17: // 0x41
392 case DW_OP_lit18: // 0x42
393 case DW_OP_lit19: // 0x43
394 case DW_OP_lit20: // 0x44
395 case DW_OP_lit21: // 0x45
396 case DW_OP_lit22: // 0x46
397 case DW_OP_lit23: // 0x47
398 case DW_OP_lit24: // 0x48
399 case DW_OP_lit25: // 0x49
400 case DW_OP_lit26: // 0x4A
401 case DW_OP_lit27: // 0x4B
402 case DW_OP_lit28: // 0x4C
403 case DW_OP_lit29: // 0x4D
404 case DW_OP_lit30: // 0x4E
405 case DW_OP_lit31: s->Printf("lit%i", op - DW_OP_lit0); break; // 0x4f
406
407 case DW_OP_reg0: // 0x50
408 case DW_OP_reg1: // 0x51
409 case DW_OP_reg2: // 0x52
410 case DW_OP_reg3: // 0x53
411 case DW_OP_reg4: // 0x54
412 case DW_OP_reg5: // 0x55
413 case DW_OP_reg6: // 0x56
414 case DW_OP_reg7: // 0x57
415 case DW_OP_reg8: // 0x58
416 case DW_OP_reg9: // 0x59
417 case DW_OP_reg10: // 0x5A
418 case DW_OP_reg11: // 0x5B
419 case DW_OP_reg12: // 0x5C
420 case DW_OP_reg13: // 0x5D
421 case DW_OP_reg14: // 0x5E
422 case DW_OP_reg15: // 0x5F
423 case DW_OP_reg16: // 0x60
424 case DW_OP_reg17: // 0x61
425 case DW_OP_reg18: // 0x62
426 case DW_OP_reg19: // 0x63
427 case DW_OP_reg20: // 0x64
428 case DW_OP_reg21: // 0x65
429 case DW_OP_reg22: // 0x66
430 case DW_OP_reg23: // 0x67
431 case DW_OP_reg24: // 0x68
432 case DW_OP_reg25: // 0x69
433 case DW_OP_reg26: // 0x6A
434 case DW_OP_reg27: // 0x6B
435 case DW_OP_reg28: // 0x6C
436 case DW_OP_reg29: // 0x6D
437 case DW_OP_reg30: // 0x6E
438 case DW_OP_reg31: s->Printf("reg%i", op - DW_OP_reg0); break; // 0x6f
439
440 case DW_OP_breg0:
441 case DW_OP_breg1:
442 case DW_OP_breg2:
443 case DW_OP_breg3:
444 case DW_OP_breg4:
445 case DW_OP_breg5:
446 case DW_OP_breg6:
447 case DW_OP_breg7:
448 case DW_OP_breg8:
449 case DW_OP_breg9:
450 case DW_OP_breg10:
451 case DW_OP_breg11:
452 case DW_OP_breg12:
453 case DW_OP_breg13:
454 case DW_OP_breg14:
455 case DW_OP_breg15:
456 case DW_OP_breg16:
457 case DW_OP_breg17:
458 case DW_OP_breg18:
459 case DW_OP_breg19:
460 case DW_OP_breg20:
461 case DW_OP_breg21:
462 case DW_OP_breg22:
463 case DW_OP_breg23:
464 case DW_OP_breg24:
465 case DW_OP_breg25:
466 case DW_OP_breg26:
467 case DW_OP_breg27:
468 case DW_OP_breg28:
469 case DW_OP_breg29:
470 case DW_OP_breg30:
471 case DW_OP_breg31: s->Printf("breg%i(0x%x)", op - DW_OP_breg0, m_data.GetULEB128(&offset)); break;
472
473 case DW_OP_regx: // 0x90 1 ULEB128 register
474 s->Printf("regx(0x%x)", m_data.GetULEB128(&offset));
475 break;
476 case DW_OP_fbreg: // 0x91 1 SLEB128 offset
477 s->Printf("fbreg(0x%x)",m_data.GetSLEB128(&offset));
478 break;
479 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset
480 s->Printf("bregx(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetSLEB128(&offset));
481 break;
482 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed
483 s->Printf("piece(0x%x)", m_data.GetULEB128(&offset));
484 break;
485 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved
486 s->Printf("deref_size(0x%2.2x)", m_data.GetU8(&offset));
487 break;
488 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
489 s->Printf("xderef_size(0x%2.2x)", m_data.GetU8(&offset));
490 break;
491 case DW_OP_nop: s->PutCString("nop"); break; // 0x96
492 case DW_OP_push_object_address: s->PutCString("push_object_address"); break; // 0x97 DWARF3
493 case DW_OP_call2: // 0x98 DWARF3 1 2-byte offset of DIE
494 s->Printf("call2(0x%4.4x)", m_data.GetU16(&offset));
495 break;
496 case DW_OP_call4: // 0x99 DWARF3 1 4-byte offset of DIE
497 s->Printf("call4(0x%8.8x)", m_data.GetU32(&offset));
498 break;
499 case DW_OP_call_ref: // 0x9a DWARF3 1 4- or 8-byte offset of DIE
500 s->Printf("call_ref(0x%8.8llx)", m_data.GetAddress(&offset));
501 break;
502// case DW_OP_form_tls_address: s << "form_tls_address"; break; // 0x9b DWARF3
503// case DW_OP_call_frame_cfa: s << "call_frame_cfa"; break; // 0x9c DWARF3
504// case DW_OP_bit_piece: // 0x9d DWARF3 2
505// s->Printf("bit_piece(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetULEB128(&offset));
506// break;
507// case DW_OP_lo_user: s->PutCString("lo_user"); break; // 0xe0
508// case DW_OP_hi_user: s->PutCString("hi_user"); break; // 0xff
509 case DW_OP_APPLE_extern:
510 s->Printf("extern(%u)", m_data.GetULEB128(&offset));
511 break;
512 case DW_OP_APPLE_array_ref:
513 s->PutCString("array_ref");
514 break;
515 case DW_OP_APPLE_uninit:
516 s->PutCString("uninit"); // 0xF0
517 break;
518 case DW_OP_APPLE_assign: // 0xF1 - pops value off and assigns it to second item on stack (2nd item must have assignable context)
519 s->PutCString("assign");
520 break;
521 case DW_OP_APPLE_address_of: // 0xF2 - gets the address of the top stack item (top item must be a variable, or have value_type that is an address already)
522 s->PutCString("address_of");
523 break;
524 case DW_OP_APPLE_value_of: // 0xF3 - pops the value off the stack and pushes the value of that object (top item must be a variable, or expression local)
525 s->PutCString("value_of");
526 break;
527 case DW_OP_APPLE_deref_type: // 0xF4 - gets the address of the top stack item (top item must be a variable, or a clang type)
528 s->PutCString("deref_type");
529 break;
530 case DW_OP_APPLE_expr_local: // 0xF5 - ULEB128 expression local index
531 s->Printf("expr_local(%u)", m_data.GetULEB128(&offset));
532 break;
533 case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data
534 {
535 uint8_t float_length = m_data.GetU8(&offset);
536 s->Printf("constf(<%u> ", float_length);
537 m_data.Dump(s, offset, eFormatHex, float_length, 1, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0);
538 s->PutChar(')');
539 // Consume the float data
540 m_data.GetData(&offset, float_length);
541 }
542 break;
543 case DW_OP_APPLE_scalar_cast:
544 s->Printf("scalar_cast(%s)", Scalar::GetValueTypeAsCString ((Scalar::Type)m_data.GetU8(&offset)));
545 break;
546 case DW_OP_APPLE_clang_cast:
547 {
548 clang::Type *clang_type = (clang::Type *)m_data.GetMaxU64(&offset, sizeof(void*));
549 s->Printf("clang_cast(%p)", clang_type);
550 }
551 break;
552 case DW_OP_APPLE_clear:
553 s->PutCString("clear");
554 break;
555 case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args)
556 s->PutCString("error");
557 break;
558 }
559 }
560}
561
562void
563DWARFExpression::SetLocationListBaseAddress(Address& base_addr)
564{
565 m_loclist_base_addr = base_addr;
566}
567
568int
569DWARFExpression::GetRegisterKind ()
570{
571 return m_reg_kind;
572}
573
574void
575DWARFExpression::SetRegisterKind (int reg_kind)
576{
577 m_reg_kind = reg_kind;
578}
579
580bool
581DWARFExpression::IsLocationList() const
582{
583 return m_loclist_base_addr.IsSectionOffset();
584}
585
586void
587DWARFExpression::GetDescription (Stream *s, lldb::DescriptionLevel level) const
588{
589 if (IsLocationList())
590 {
591 // We have a location list
592 uint32_t offset = 0;
593 uint32_t count = 0;
594 Address base_addr(m_loclist_base_addr);
595 while (m_data.ValidOffset(offset))
596 {
597 lldb::addr_t begin_addr_offset = m_data.GetAddress(&offset);
598 lldb::addr_t end_addr_offset = m_data.GetAddress(&offset);
599 if (begin_addr_offset < end_addr_offset)
600 {
601 if (count > 0)
602 s->PutCString(", ");
603 AddressRange addr_range(base_addr, end_addr_offset - begin_addr_offset);
604 addr_range.GetBaseAddress().SetOffset(base_addr.GetOffset() + begin_addr_offset);
605 addr_range.Dump (s, NULL, Address::DumpStyleFileAddress);
606 s->PutChar('{');
607 uint32_t location_length = m_data.GetU16(&offset);
608 DumpLocation (s, offset, location_length, level);
609 s->PutChar('}');
610 offset += location_length;
611 }
612 else if (begin_addr_offset == 0 && end_addr_offset == 0)
613 {
614 // The end of the location list is marked by both the start and end offset being zero
615 break;
616 }
617 else
618 {
619 if (m_data.GetAddressByteSize() == 4 && begin_addr_offset == 0xFFFFFFFFull ||
620 m_data.GetAddressByteSize() == 8 && begin_addr_offset == 0xFFFFFFFFFFFFFFFFull)
621 {
622 // We have a new base address
623 if (count > 0)
624 s->PutCString(", ");
625 *s << "base_addr = " << end_addr_offset;
626 }
627 }
628
629 count++;
630 }
631 }
632 else
633 {
634 // We have a normal location that contains DW_OP location opcodes
635 DumpLocation (s, 0, m_data.GetByteSize(), level);
636 }
637}
638
639static bool
640ReadRegisterValueAsScalar
641(
642 ExecutionContext *exe_ctx,
643 uint32_t reg_kind,
644 uint32_t reg_num,
645 Error *error_ptr,
646 Value &value
647)
648{
649 if (exe_ctx && exe_ctx->frame)
650 {
651 RegisterContext *reg_context = exe_ctx->frame->GetRegisterContext();
652
653 if (reg_context == NULL)
654 {
655 if (error_ptr)
656 error_ptr->SetErrorStringWithFormat("No register context in frame.\n");
657 }
658 else
659 {
660 uint32_t native_reg = reg_context->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
661 if (native_reg == LLDB_INVALID_REGNUM)
662 {
663 if (error_ptr)
664 error_ptr->SetErrorStringWithFormat("Unable to convert register kind=%u reg_num=%u to a native register number.\n", reg_kind, reg_num);
665 }
666 else
667 {
668 value.SetValueType (Value::eValueTypeScalar);
669 value.SetContext (Value::eContextTypeDCRegisterInfo, const_cast<RegisterInfo *>(reg_context->GetRegisterInfoAtIndex(native_reg)));
670
671 if (reg_context->ReadRegisterValue (native_reg, value.GetScalar()))
672 return true;
673
674 if (error_ptr)
675 error_ptr->SetErrorStringWithFormat("Failed to read register %u.\n", native_reg);
676 }
677 }
678 }
679 else
680 {
681 if (error_ptr)
682 error_ptr->SetErrorStringWithFormat("Invalid frame in execution context.\n");
683 }
684 return false;
685}
686
687bool
688DWARFExpression::LocationListContainsLoadAddress (Process* process, const Address &addr) const
689{
690 if (IsLocationList())
691 {
692 uint32_t offset = 0;
693 const addr_t load_addr = addr.GetLoadAddress(process);
694
695 if (load_addr == LLDB_INVALID_ADDRESS)
696 return false;
697
698 addr_t loc_list_base_addr = m_loclist_base_addr.GetLoadAddress(process);
699
700 if (loc_list_base_addr == LLDB_INVALID_ADDRESS)
701 return false;
702
703 while (m_data.ValidOffset(offset))
704 {
705 // We need to figure out what the value is for the location.
706 addr_t lo_pc = m_data.GetAddress(&offset);
707 addr_t hi_pc = m_data.GetAddress(&offset);
708 if (lo_pc == 0 && hi_pc == 0)
709 break;
710 else
711 {
712 lo_pc += loc_list_base_addr;
713 hi_pc += loc_list_base_addr;
714
715 if (lo_pc <= load_addr && load_addr < hi_pc)
716 return true;
717
718 offset += m_data.GetU16(&offset);
719 }
720 }
721 }
722 return false;
723}
724bool
725DWARFExpression::Evaluate
726(
727 ExecutionContextScope *exe_scope,
728 clang::ASTContext *ast_context,
729 const Value* initial_value_ptr,
730 Value& result,
731 Error *error_ptr
732) const
733{
734 ExecutionContext exe_ctx (exe_scope);
735 return Evaluate(&exe_ctx, ast_context, initial_value_ptr, result, error_ptr);
736}
737
738bool
739DWARFExpression::Evaluate
740(
741 ExecutionContext *exe_ctx,
742 clang::ASTContext *ast_context,
743 const Value* initial_value_ptr,
744 Value& result,
745 Error *error_ptr
746) const
747{
748 if (IsLocationList())
749 {
750 uint32_t offset = 0;
751 addr_t pc = exe_ctx->frame->GetPC().GetLoadAddress(exe_ctx->process);
752
753 if (pc == LLDB_INVALID_ADDRESS)
754 {
755 if (error_ptr)
756 error_ptr->SetErrorString("Invalid PC in frame.");
757 return false;
758 }
759
760 addr_t loc_list_base_addr = m_loclist_base_addr.GetLoadAddress(exe_ctx->process);
761
762 if (loc_list_base_addr == LLDB_INVALID_ADDRESS)
763 {
764 if (error_ptr)
765 error_ptr->SetErrorString("Out of scope.");
766 return false;
767 }
768
769 while (m_data.ValidOffset(offset))
770 {
771 // We need to figure out what the value is for the location.
772 addr_t lo_pc = m_data.GetAddress(&offset);
773 addr_t hi_pc = m_data.GetAddress(&offset);
774 if (lo_pc == 0 && hi_pc == 0)
775 {
776 break;
777 }
778 else
779 {
780 lo_pc += loc_list_base_addr;
781 hi_pc += loc_list_base_addr;
782
783 uint16_t length = m_data.GetU16(&offset);
784
785 if (length > 0 && lo_pc <= pc && pc < hi_pc)
786 {
787 return DWARFExpression::Evaluate (exe_ctx, ast_context, m_data, m_expr_locals, m_decl_map, offset, length, m_reg_kind, initial_value_ptr, result, error_ptr);
788 }
789 offset += length;
790 }
791 }
792 if (error_ptr)
793 error_ptr->SetErrorStringWithFormat("Out of scope.\n", pc);
794 return false;
795 }
796
797 // Not a location list, just a single expression.
798 return DWARFExpression::Evaluate (exe_ctx, ast_context, m_data, m_expr_locals, m_decl_map, 0, m_data.GetByteSize(), m_reg_kind, initial_value_ptr, result, error_ptr);
799}
800
801
802
803bool
804DWARFExpression::Evaluate
805(
806 ExecutionContext *exe_ctx,
807 clang::ASTContext *ast_context,
808 const DataExtractor& opcodes,
809 ClangExpressionVariableList *expr_locals,
810 ClangExpressionDeclMap *decl_map,
811 const uint32_t opcodes_offset,
812 const uint32_t opcodes_length,
813 const uint32_t reg_kind,
814 const Value* initial_value_ptr,
815 Value& result,
816 Error *error_ptr
817)
818{
819 std::vector<Value> stack;
820
821 if (initial_value_ptr)
822 stack.push_back(*initial_value_ptr);
823
824 uint32_t offset = opcodes_offset;
825 const uint32_t end_offset = opcodes_offset + opcodes_length;
826 Value tmp;
827 uint32_t reg_num;
828
829 // Make sure all of the data is available in opcodes.
830 if (!opcodes.ValidOffsetForDataOfSize(opcodes_offset, opcodes_length))
831 {
832 if (error_ptr)
833 error_ptr->SetErrorString ("Invalid offset and/or length for opcodes buffer.");
834 return false;
835 }
836 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS);
837
838
839 while (opcodes.ValidOffset(offset) && offset < end_offset)
840 {
841 const uint32_t op_offset = offset;
842 const uint8_t op = opcodes.GetU8(&offset);
843
844 if (log)
845 {
Chris Lattner24943d22010-06-08 16:52:24 +0000846 size_t count = stack.size();
Sean Callanan6184dfe2010-06-23 00:47:48 +0000847 log->Printf("Stack before operation has %d values:", count);
Chris Lattner24943d22010-06-08 16:52:24 +0000848 for (size_t i=0; i<count; ++i)
849 {
850 StreamString new_value;
851 new_value.Printf("[%zu]", i);
852 stack[i].Dump(&new_value);
Sean Callanan6184dfe2010-06-23 00:47:48 +0000853 log->Printf(" %s", new_value.GetData());
Chris Lattner24943d22010-06-08 16:52:24 +0000854 }
855 log->Printf("0x%8.8x: %s", op_offset, DW_OP_value_to_name(op));
856 }
857 switch (op)
858 {
859 //----------------------------------------------------------------------
860 // The DW_OP_addr operation has a single operand that encodes a machine
861 // address and whose size is the size of an address on the target machine.
862 //----------------------------------------------------------------------
863 case DW_OP_addr:
864 stack.push_back(opcodes.GetAddress(&offset));
865 stack.back().SetValueType (Value::eValueTypeFileAddress);
866 break;
867
868 //----------------------------------------------------------------------
869 // The DW_OP_addr_sect_offset4 is used for any location expressions in
870 // shared libraries that have a location like:
871 // DW_OP_addr(0x1000)
872 // If this address resides in a shared library, then this virtual
873 // address won't make sense when it is evaluated in the context of a
874 // running process where shared libraries have been slid. To account for
875 // this, this new address type where we can store the section pointer
876 // and a 4 byte offset.
877 //----------------------------------------------------------------------
878// case DW_OP_addr_sect_offset4:
879// {
880// result_type = eResultTypeFileAddress;
881// lldb::Section *sect = (lldb::Section *)opcodes.GetMaxU64(&offset, sizeof(void *));
882// lldb::addr_t sect_offset = opcodes.GetU32(&offset);
883//
884// Address so_addr (sect, sect_offset);
885// lldb::addr_t load_addr = so_addr.GetLoadAddress();
886// if (load_addr != LLDB_INVALID_ADDRESS)
887// {
888// // We successfully resolve a file address to a load
889// // address.
890// stack.push_back(load_addr);
891// break;
892// }
893// else
894// {
895// // We were able
896// if (error_ptr)
897// error_ptr->SetErrorStringWithFormat ("Section %s in %s is not currently loaded.\n", sect->GetName().AsCString(), sect->GetModule()->GetFileSpec().GetFilename().AsCString());
898// return false;
899// }
900// }
901// break;
902
903 //----------------------------------------------------------------------
904 // OPCODE: DW_OP_deref
905 // OPERANDS: none
906 // DESCRIPTION: Pops the top stack entry and treats it as an address.
907 // The value retrieved from that address is pushed. The size of the
908 // data retrieved from the dereferenced address is the size of an
909 // address on the target machine.
910 //----------------------------------------------------------------------
911 case DW_OP_deref:
912 {
913 Value::ValueType value_type = stack.back().GetValueType();
914 switch (value_type)
915 {
916 case Value::eValueTypeHostAddress:
917 {
918 void *src = (void *)stack.back().GetScalar().ULongLong();
919 intptr_t ptr;
920 ::memcpy (&ptr, src, sizeof(void *));
921 stack.back().GetScalar() = ptr;
922 stack.back().ClearContext();
923 }
924 break;
925 case Value::eValueTypeLoadAddress:
926 if (exe_ctx)
927 {
928 if (exe_ctx->process)
929 {
930 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
931 uint8_t addr_bytes[sizeof(lldb::addr_t)];
932 uint32_t addr_size = exe_ctx->process->GetAddressByteSize();
933 Error error;
934 if (exe_ctx->process->ReadMemory(pointer_addr, &addr_bytes, addr_size, error) == addr_size)
935 {
936 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), exe_ctx->process->GetByteOrder(), addr_size);
937 uint32_t addr_data_offset = 0;
938 stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset);
939 stack.back().ClearContext();
940 }
941 else
942 {
943 if (error_ptr)
944 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%llx for DW_OP_deref: %s\n",
945 pointer_addr,
946 error.AsCString());
947 return false;
948 }
949 }
950 else
951 {
952 if (error_ptr)
953 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n");
954 return false;
955 }
956 }
957 else
958 {
959 if (error_ptr)
960 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n");
961 return false;
962 }
963 break;
964
965 default:
966 break;
967 }
968
969 }
970 break;
971
972 //----------------------------------------------------------------------
973 // OPCODE: DW_OP_deref_size
974 // OPERANDS: 1
975 // 1 - uint8_t that specifies the size of the data to dereference.
976 // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
977 // stack entry and treats it as an address. The value retrieved from that
978 // address is pushed. In the DW_OP_deref_size operation, however, the
979 // size in bytes of the data retrieved from the dereferenced address is
980 // specified by the single operand. This operand is a 1-byte unsigned
981 // integral constant whose value may not be larger than the size of an
982 // address on the target machine. The data retrieved is zero extended
983 // to the size of an address on the target machine before being pushed
984 // on the expression stack.
985 //----------------------------------------------------------------------
986 case DW_OP_deref_size:
987 if (error_ptr)
988 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_deref_size.");
989 return false;
990
991 //----------------------------------------------------------------------
992 // OPCODE: DW_OP_xderef_size
993 // OPERANDS: 1
994 // 1 - uint8_t that specifies the size of the data to dereference.
995 // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
996 // the top of the stack is treated as an address. The second stack
997 // entry is treated as an “address space identifier” for those
998 // architectures that support multiple address spaces. The top two
999 // stack elements are popped, a data item is retrieved through an
1000 // implementation-defined address calculation and pushed as the new
1001 // stack top. In the DW_OP_xderef_size operation, however, the size in
1002 // bytes of the data retrieved from the dereferenced address is
1003 // specified by the single operand. This operand is a 1-byte unsigned
1004 // integral constant whose value may not be larger than the size of an
1005 // address on the target machine. The data retrieved is zero extended
1006 // to the size of an address on the target machine before being pushed
1007 // on the expression stack.
1008 //----------------------------------------------------------------------
1009 case DW_OP_xderef_size:
1010 if (error_ptr)
1011 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1012 return false;
1013 //----------------------------------------------------------------------
1014 // OPCODE: DW_OP_xderef
1015 // OPERANDS: none
1016 // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1017 // the top of the stack is treated as an address. The second stack entry
1018 // is treated as an "address space identifier" for those architectures
1019 // that support multiple address spaces. The top two stack elements are
1020 // popped, a data item is retrieved through an implementation-defined
1021 // address calculation and pushed as the new stack top. The size of the
1022 // data retrieved from the dereferenced address is the size of an address
1023 // on the target machine.
1024 //----------------------------------------------------------------------
1025 case DW_OP_xderef:
1026 if (error_ptr)
1027 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1028 return false;
1029
1030 //----------------------------------------------------------------------
1031 // All DW_OP_constXXX opcodes have a single operand as noted below:
1032 //
1033 // Opcode Operand 1
1034 // --------------- ----------------------------------------------------
1035 // DW_OP_const1u 1-byte unsigned integer constant
1036 // DW_OP_const1s 1-byte signed integer constant
1037 // DW_OP_const2u 2-byte unsigned integer constant
1038 // DW_OP_const2s 2-byte signed integer constant
1039 // DW_OP_const4u 4-byte unsigned integer constant
1040 // DW_OP_const4s 4-byte signed integer constant
1041 // DW_OP_const8u 8-byte unsigned integer constant
1042 // DW_OP_const8s 8-byte signed integer constant
1043 // DW_OP_constu unsigned LEB128 integer constant
1044 // DW_OP_consts signed LEB128 integer constant
1045 //----------------------------------------------------------------------
1046 case DW_OP_const1u : stack.push_back(( uint8_t)opcodes.GetU8(&offset)); break;
1047 case DW_OP_const1s : stack.push_back(( int8_t)opcodes.GetU8(&offset)); break;
1048 case DW_OP_const2u : stack.push_back((uint16_t)opcodes.GetU16(&offset)); break;
1049 case DW_OP_const2s : stack.push_back(( int16_t)opcodes.GetU16(&offset)); break;
1050 case DW_OP_const4u : stack.push_back((uint32_t)opcodes.GetU32(&offset)); break;
1051 case DW_OP_const4s : stack.push_back(( int32_t)opcodes.GetU32(&offset)); break;
1052 case DW_OP_const8u : stack.push_back((uint64_t)opcodes.GetU64(&offset)); break;
1053 case DW_OP_const8s : stack.push_back(( int64_t)opcodes.GetU64(&offset)); break;
1054 case DW_OP_constu : stack.push_back(opcodes.GetULEB128(&offset)); break;
1055 case DW_OP_consts : stack.push_back(opcodes.GetSLEB128(&offset)); break;
1056
1057 //----------------------------------------------------------------------
1058 // OPCODE: DW_OP_dup
1059 // OPERANDS: none
1060 // DESCRIPTION: duplicates the value at the top of the stack
1061 //----------------------------------------------------------------------
1062 case DW_OP_dup:
1063 if (stack.empty())
1064 {
1065 if (error_ptr)
1066 error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1067 return false;
1068 }
1069 else
1070 stack.push_back(stack.back());
1071 break;
1072
1073 //----------------------------------------------------------------------
1074 // OPCODE: DW_OP_drop
1075 // OPERANDS: none
1076 // DESCRIPTION: pops the value at the top of the stack
1077 //----------------------------------------------------------------------
1078 case DW_OP_drop:
1079 if (stack.empty())
1080 {
1081 if (error_ptr)
1082 error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1083 return false;
1084 }
1085 else
1086 stack.pop_back();
1087 break;
1088
1089 //----------------------------------------------------------------------
1090 // OPCODE: DW_OP_over
1091 // OPERANDS: none
1092 // DESCRIPTION: Duplicates the entry currently second in the stack at
1093 // the top of the stack.
1094 //----------------------------------------------------------------------
1095 case DW_OP_over:
1096 if (stack.size() < 2)
1097 {
1098 if (error_ptr)
1099 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_over.");
1100 return false;
1101 }
1102 else
1103 stack.push_back(stack[stack.size() - 2]);
1104 break;
1105
1106
1107 //----------------------------------------------------------------------
1108 // OPCODE: DW_OP_pick
1109 // OPERANDS: uint8_t index into the current stack
1110 // DESCRIPTION: The stack entry with the specified index (0 through 255,
1111 // inclusive) is pushed on the stack
1112 //----------------------------------------------------------------------
1113 case DW_OP_pick:
1114 {
1115 uint8_t pick_idx = opcodes.GetU8(&offset);
1116 if (pick_idx < stack.size())
1117 stack.push_back(stack[pick_idx]);
1118 else
1119 {
1120 if (error_ptr)
1121 error_ptr->SetErrorStringWithFormat("Index %u out of range for DW_OP_pick.\n", pick_idx);
1122 return false;
1123 }
1124 }
1125 break;
1126
1127 //----------------------------------------------------------------------
1128 // OPCODE: DW_OP_swap
1129 // OPERANDS: none
1130 // DESCRIPTION: swaps the top two stack entries. The entry at the top
1131 // of the stack becomes the second stack entry, and the second entry
1132 // becomes the top of the stack
1133 //----------------------------------------------------------------------
1134 case DW_OP_swap:
1135 if (stack.size() < 2)
1136 {
1137 if (error_ptr)
1138 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_swap.");
1139 return false;
1140 }
1141 else
1142 {
1143 tmp = stack.back();
1144 stack.back() = stack[stack.size() - 2];
1145 stack[stack.size() - 2] = tmp;
1146 }
1147 break;
1148
1149 //----------------------------------------------------------------------
1150 // OPCODE: DW_OP_rot
1151 // OPERANDS: none
1152 // DESCRIPTION: Rotates the first three stack entries. The entry at
1153 // the top of the stack becomes the third stack entry, the second
1154 // entry becomes the top of the stack, and the third entry becomes
1155 // the second entry.
1156 //----------------------------------------------------------------------
1157 case DW_OP_rot:
1158 if (stack.size() < 3)
1159 {
1160 if (error_ptr)
1161 error_ptr->SetErrorString("Expression stack needs at least 3 items for DW_OP_rot.");
1162 return false;
1163 }
1164 else
1165 {
1166 size_t last_idx = stack.size() - 1;
1167 Value old_top = stack[last_idx];
1168 stack[last_idx] = stack[last_idx - 1];
1169 stack[last_idx - 1] = stack[last_idx - 2];
1170 stack[last_idx - 2] = old_top;
1171 }
1172 break;
1173
1174 //----------------------------------------------------------------------
1175 // OPCODE: DW_OP_abs
1176 // OPERANDS: none
1177 // DESCRIPTION: pops the top stack entry, interprets it as a signed
1178 // value and pushes its absolute value. If the absolute value can not be
1179 // represented, the result is undefined.
1180 //----------------------------------------------------------------------
1181 case DW_OP_abs:
1182 if (stack.empty())
1183 {
1184 if (error_ptr)
1185 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_abs.");
1186 return false;
1187 }
1188 else if (stack.back().ResolveValue(exe_ctx, ast_context).AbsoluteValue() == false)
1189 {
1190 if (error_ptr)
1191 error_ptr->SetErrorString("Failed to take the absolute value of the first stack item.");
1192 return false;
1193 }
1194 break;
1195
1196 //----------------------------------------------------------------------
1197 // OPCODE: DW_OP_and
1198 // OPERANDS: none
1199 // DESCRIPTION: pops the top two stack values, performs a bitwise and
1200 // operation on the two, and pushes the result.
1201 //----------------------------------------------------------------------
1202 case DW_OP_and:
1203 if (stack.size() < 2)
1204 {
1205 if (error_ptr)
1206 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_and.");
1207 return false;
1208 }
1209 else
1210 {
1211 tmp = stack.back();
1212 stack.pop_back();
1213 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) & tmp.ResolveValue(exe_ctx, ast_context);
1214 }
1215 break;
1216
1217 //----------------------------------------------------------------------
1218 // OPCODE: DW_OP_div
1219 // OPERANDS: none
1220 // DESCRIPTION: pops the top two stack values, divides the former second
1221 // entry by the former top of the stack using signed division, and
1222 // pushes the result.
1223 //----------------------------------------------------------------------
1224 case DW_OP_div:
1225 if (stack.size() < 2)
1226 {
1227 if (error_ptr)
1228 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_div.");
1229 return false;
1230 }
1231 else
1232 {
1233 tmp = stack.back();
1234 if (tmp.ResolveValue(exe_ctx, ast_context).IsZero())
1235 {
1236 if (error_ptr)
1237 error_ptr->SetErrorString("Divide by zero.");
1238 return false;
1239 }
1240 else
1241 {
1242 stack.pop_back();
1243 stack.back() = stack.back().ResolveValue(exe_ctx, ast_context) / tmp.ResolveValue(exe_ctx, ast_context);
1244 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid())
1245 {
1246 if (error_ptr)
1247 error_ptr->SetErrorString("Divide failed.");
1248 return false;
1249 }
1250 }
1251 }
1252 break;
1253
1254 //----------------------------------------------------------------------
1255 // OPCODE: DW_OP_minus
1256 // OPERANDS: none
1257 // DESCRIPTION: pops the top two stack values, subtracts the former top
1258 // of the stack from the former second entry, and pushes the result.
1259 //----------------------------------------------------------------------
1260 case DW_OP_minus:
1261 if (stack.size() < 2)
1262 {
1263 if (error_ptr)
1264 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_minus.");
1265 return false;
1266 }
1267 else
1268 {
1269 tmp = stack.back();
1270 stack.pop_back();
1271 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) - tmp.ResolveValue(exe_ctx, ast_context);
1272 }
1273 break;
1274
1275 //----------------------------------------------------------------------
1276 // OPCODE: DW_OP_mod
1277 // OPERANDS: none
1278 // DESCRIPTION: pops the top two stack values and pushes the result of
1279 // the calculation: former second stack entry modulo the former top of
1280 // the stack.
1281 //----------------------------------------------------------------------
1282 case DW_OP_mod:
1283 if (stack.size() < 2)
1284 {
1285 if (error_ptr)
1286 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mod.");
1287 return false;
1288 }
1289 else
1290 {
1291 tmp = stack.back();
1292 stack.pop_back();
1293 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) % tmp.ResolveValue(exe_ctx, ast_context);
1294 }
1295 break;
1296
1297
1298 //----------------------------------------------------------------------
1299 // OPCODE: DW_OP_mul
1300 // OPERANDS: none
1301 // DESCRIPTION: pops the top two stack entries, multiplies them
1302 // together, and pushes the result.
1303 //----------------------------------------------------------------------
1304 case DW_OP_mul:
1305 if (stack.size() < 2)
1306 {
1307 if (error_ptr)
1308 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mul.");
1309 return false;
1310 }
1311 else
1312 {
1313 tmp = stack.back();
1314 stack.pop_back();
1315 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) * tmp.ResolveValue(exe_ctx, ast_context);
1316 }
1317 break;
1318
1319 //----------------------------------------------------------------------
1320 // OPCODE: DW_OP_neg
1321 // OPERANDS: none
1322 // DESCRIPTION: pops the top stack entry, and pushes its negation.
1323 //----------------------------------------------------------------------
1324 case DW_OP_neg:
1325 if (stack.empty())
1326 {
1327 if (error_ptr)
1328 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_neg.");
1329 return false;
1330 }
1331 else
1332 {
1333 if (stack.back().ResolveValue(exe_ctx, ast_context).UnaryNegate() == false)
1334 {
1335 if (error_ptr)
1336 error_ptr->SetErrorString("Unary negate failed.");
1337 return false;
1338 }
1339 }
1340 break;
1341
1342 //----------------------------------------------------------------------
1343 // OPCODE: DW_OP_not
1344 // OPERANDS: none
1345 // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1346 // complement
1347 //----------------------------------------------------------------------
1348 case DW_OP_not:
1349 if (stack.empty())
1350 {
1351 if (error_ptr)
1352 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_not.");
1353 return false;
1354 }
1355 else
1356 {
1357 if (stack.back().ResolveValue(exe_ctx, ast_context).OnesComplement() == false)
1358 {
1359 if (error_ptr)
1360 error_ptr->SetErrorString("Logical NOT failed.");
1361 return false;
1362 }
1363 }
1364 break;
1365
1366 //----------------------------------------------------------------------
1367 // OPCODE: DW_OP_or
1368 // OPERANDS: none
1369 // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1370 // operation on the two, and pushes the result.
1371 //----------------------------------------------------------------------
1372 case DW_OP_or:
1373 if (stack.size() < 2)
1374 {
1375 if (error_ptr)
1376 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_or.");
1377 return false;
1378 }
1379 else
1380 {
1381 tmp = stack.back();
1382 stack.pop_back();
1383 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) | tmp.ResolveValue(exe_ctx, ast_context);
1384 }
1385 break;
1386
1387 //----------------------------------------------------------------------
1388 // OPCODE: DW_OP_plus
1389 // OPERANDS: none
1390 // DESCRIPTION: pops the top two stack entries, adds them together, and
1391 // pushes the result.
1392 //----------------------------------------------------------------------
1393 case DW_OP_plus:
1394 if (stack.size() < 2)
1395 {
1396 if (error_ptr)
1397 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_plus.");
1398 return false;
1399 }
1400 else
1401 {
1402 tmp = stack.back();
1403 stack.pop_back();
1404 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) + tmp.ResolveValue(exe_ctx, ast_context);
1405 }
1406 break;
1407
1408 //----------------------------------------------------------------------
1409 // OPCODE: DW_OP_plus_uconst
1410 // OPERANDS: none
1411 // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1412 // constant operand and pushes the result.
1413 //----------------------------------------------------------------------
1414 case DW_OP_plus_uconst:
1415 if (stack.empty())
1416 {
1417 if (error_ptr)
1418 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_plus_uconst.");
1419 return false;
1420 }
1421 else
1422 {
1423 uint32_t uconst_value = opcodes.GetULEB128(&offset);
1424 // Implicit conversion from a UINT to a Scalar...
1425 stack.back().ResolveValue(exe_ctx, ast_context) += uconst_value;
1426 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid())
1427 {
1428 if (error_ptr)
1429 error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
1430 return false;
1431 }
1432 }
1433 break;
1434
1435 //----------------------------------------------------------------------
1436 // OPCODE: DW_OP_shl
1437 // OPERANDS: none
1438 // DESCRIPTION: pops the top two stack entries, shifts the former
1439 // second entry left by the number of bits specified by the former top
1440 // of the stack, and pushes the result.
1441 //----------------------------------------------------------------------
1442 case DW_OP_shl:
1443 if (stack.size() < 2)
1444 {
1445 if (error_ptr)
1446 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shl.");
1447 return false;
1448 }
1449 else
1450 {
1451 tmp = stack.back();
1452 stack.pop_back();
1453 stack.back().ResolveValue(exe_ctx, ast_context) <<= tmp.ResolveValue(exe_ctx, ast_context);
1454 }
1455 break;
1456
1457 //----------------------------------------------------------------------
1458 // OPCODE: DW_OP_shr
1459 // OPERANDS: none
1460 // DESCRIPTION: pops the top two stack entries, shifts the former second
1461 // entry right logically (filling with zero bits) by the number of bits
1462 // specified by the former top of the stack, and pushes the result.
1463 //----------------------------------------------------------------------
1464 case DW_OP_shr:
1465 if (stack.size() < 2)
1466 {
1467 if (error_ptr)
1468 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shr.");
1469 return false;
1470 }
1471 else
1472 {
1473 tmp = stack.back();
1474 stack.pop_back();
1475 if (stack.back().ResolveValue(exe_ctx, ast_context).ShiftRightLogical(tmp.ResolveValue(exe_ctx, ast_context)) == false)
1476 {
1477 if (error_ptr)
1478 error_ptr->SetErrorString("DW_OP_shr failed.");
1479 return false;
1480 }
1481 }
1482 break;
1483
1484 //----------------------------------------------------------------------
1485 // OPCODE: DW_OP_shra
1486 // OPERANDS: none
1487 // DESCRIPTION: pops the top two stack entries, shifts the former second
1488 // entry right arithmetically (divide the magnitude by 2, keep the same
1489 // sign for the result) by the number of bits specified by the former
1490 // top of the stack, and pushes the result.
1491 //----------------------------------------------------------------------
1492 case DW_OP_shra:
1493 if (stack.size() < 2)
1494 {
1495 if (error_ptr)
1496 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shra.");
1497 return false;
1498 }
1499 else
1500 {
1501 tmp = stack.back();
1502 stack.pop_back();
1503 stack.back().ResolveValue(exe_ctx, ast_context) >>= tmp.ResolveValue(exe_ctx, ast_context);
1504 }
1505 break;
1506
1507 //----------------------------------------------------------------------
1508 // OPCODE: DW_OP_xor
1509 // OPERANDS: none
1510 // DESCRIPTION: pops the top two stack entries, performs the bitwise
1511 // exclusive-or operation on the two, and pushes the result.
1512 //----------------------------------------------------------------------
1513 case DW_OP_xor:
1514 if (stack.size() < 2)
1515 {
1516 if (error_ptr)
1517 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_xor.");
1518 return false;
1519 }
1520 else
1521 {
1522 tmp = stack.back();
1523 stack.pop_back();
1524 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) ^ tmp.ResolveValue(exe_ctx, ast_context);
1525 }
1526 break;
1527
1528
1529 //----------------------------------------------------------------------
1530 // OPCODE: DW_OP_skip
1531 // OPERANDS: int16_t
1532 // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte
1533 // signed integer constant. The 2-byte constant is the number of bytes
1534 // of the DWARF expression to skip forward or backward from the current
1535 // operation, beginning after the 2-byte constant.
1536 //----------------------------------------------------------------------
1537 case DW_OP_skip:
1538 {
1539 int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1540 uint32_t new_offset = offset + skip_offset;
1541 if (new_offset >= opcodes_offset && new_offset < end_offset)
1542 offset = new_offset;
1543 else
1544 {
1545 if (error_ptr)
1546 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip.");
1547 return false;
1548 }
1549 }
1550 break;
1551
1552 //----------------------------------------------------------------------
1553 // OPCODE: DW_OP_bra
1554 // OPERANDS: int16_t
1555 // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1556 // signed integer constant. This operation pops the top of stack. If
1557 // the value popped is not the constant 0, the 2-byte constant operand
1558 // is the number of bytes of the DWARF expression to skip forward or
1559 // backward from the current operation, beginning after the 2-byte
1560 // constant.
1561 //----------------------------------------------------------------------
1562 case DW_OP_bra:
1563 {
1564 tmp = stack.back();
1565 stack.pop_back();
1566 int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1567 Scalar zero(0);
1568 if (tmp.ResolveValue(exe_ctx, ast_context) != zero)
1569 {
1570 uint32_t new_offset = offset + bra_offset;
1571 if (new_offset >= opcodes_offset && new_offset < end_offset)
1572 offset = new_offset;
1573 else
1574 {
1575 if (error_ptr)
1576 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra.");
1577 return false;
1578 }
1579 }
1580 }
1581 break;
1582
1583 //----------------------------------------------------------------------
1584 // OPCODE: DW_OP_eq
1585 // OPERANDS: none
1586 // DESCRIPTION: pops the top two stack values, compares using the
1587 // equals (==) operator.
1588 // STACK RESULT: push the constant value 1 onto the stack if the result
1589 // of the operation is true or the constant value 0 if the result of the
1590 // operation is false.
1591 //----------------------------------------------------------------------
1592 case DW_OP_eq:
1593 if (stack.size() < 2)
1594 {
1595 if (error_ptr)
1596 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_eq.");
1597 return false;
1598 }
1599 else
1600 {
1601 tmp = stack.back();
1602 stack.pop_back();
1603 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) == tmp.ResolveValue(exe_ctx, ast_context);
1604 }
1605 break;
1606
1607 //----------------------------------------------------------------------
1608 // OPCODE: DW_OP_ge
1609 // OPERANDS: none
1610 // DESCRIPTION: pops the top two stack values, compares using the
1611 // greater than or equal to (>=) operator.
1612 // STACK RESULT: push the constant value 1 onto the stack if the result
1613 // of the operation is true or the constant value 0 if the result of the
1614 // operation is false.
1615 //----------------------------------------------------------------------
1616 case DW_OP_ge:
1617 if (stack.size() < 2)
1618 {
1619 if (error_ptr)
1620 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ge.");
1621 return false;
1622 }
1623 else
1624 {
1625 tmp = stack.back();
1626 stack.pop_back();
1627 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) >= tmp.ResolveValue(exe_ctx, ast_context);
1628 }
1629 break;
1630
1631 //----------------------------------------------------------------------
1632 // OPCODE: DW_OP_gt
1633 // OPERANDS: none
1634 // DESCRIPTION: pops the top two stack values, compares using the
1635 // greater than (>) operator.
1636 // STACK RESULT: push the constant value 1 onto the stack if the result
1637 // of the operation is true or the constant value 0 if the result of the
1638 // operation is false.
1639 //----------------------------------------------------------------------
1640 case DW_OP_gt:
1641 if (stack.size() < 2)
1642 {
1643 if (error_ptr)
1644 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_gt.");
1645 return false;
1646 }
1647 else
1648 {
1649 tmp = stack.back();
1650 stack.pop_back();
1651 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) > tmp.ResolveValue(exe_ctx, ast_context);
1652 }
1653 break;
1654
1655 //----------------------------------------------------------------------
1656 // OPCODE: DW_OP_le
1657 // OPERANDS: none
1658 // DESCRIPTION: pops the top two stack values, compares using the
1659 // less than or equal to (<=) operator.
1660 // STACK RESULT: push the constant value 1 onto the stack if the result
1661 // of the operation is true or the constant value 0 if the result of the
1662 // operation is false.
1663 //----------------------------------------------------------------------
1664 case DW_OP_le:
1665 if (stack.size() < 2)
1666 {
1667 if (error_ptr)
1668 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_le.");
1669 return false;
1670 }
1671 else
1672 {
1673 tmp = stack.back();
1674 stack.pop_back();
1675 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) <= tmp.ResolveValue(exe_ctx, ast_context);
1676 }
1677 break;
1678
1679 //----------------------------------------------------------------------
1680 // OPCODE: DW_OP_lt
1681 // OPERANDS: none
1682 // DESCRIPTION: pops the top two stack values, compares using the
1683 // less than (<) operator.
1684 // STACK RESULT: push the constant value 1 onto the stack if the result
1685 // of the operation is true or the constant value 0 if the result of the
1686 // operation is false.
1687 //----------------------------------------------------------------------
1688 case DW_OP_lt:
1689 if (stack.size() < 2)
1690 {
1691 if (error_ptr)
1692 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_lt.");
1693 return false;
1694 }
1695 else
1696 {
1697 tmp = stack.back();
1698 stack.pop_back();
1699 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) < tmp.ResolveValue(exe_ctx, ast_context);
1700 }
1701 break;
1702
1703 //----------------------------------------------------------------------
1704 // OPCODE: DW_OP_ne
1705 // OPERANDS: none
1706 // DESCRIPTION: pops the top two stack values, compares using the
1707 // not equal (!=) operator.
1708 // STACK RESULT: push the constant value 1 onto the stack if the result
1709 // of the operation is true or the constant value 0 if the result of the
1710 // operation is false.
1711 //----------------------------------------------------------------------
1712 case DW_OP_ne:
1713 if (stack.size() < 2)
1714 {
1715 if (error_ptr)
1716 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ne.");
1717 return false;
1718 }
1719 else
1720 {
1721 tmp = stack.back();
1722 stack.pop_back();
1723 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) != tmp.ResolveValue(exe_ctx, ast_context);
1724 }
1725 break;
1726
1727 //----------------------------------------------------------------------
1728 // OPCODE: DW_OP_litn
1729 // OPERANDS: none
1730 // DESCRIPTION: encode the unsigned literal values from 0 through 31.
1731 // STACK RESULT: push the unsigned literal constant value onto the top
1732 // of the stack.
1733 //----------------------------------------------------------------------
1734 case DW_OP_lit0:
1735 case DW_OP_lit1:
1736 case DW_OP_lit2:
1737 case DW_OP_lit3:
1738 case DW_OP_lit4:
1739 case DW_OP_lit5:
1740 case DW_OP_lit6:
1741 case DW_OP_lit7:
1742 case DW_OP_lit8:
1743 case DW_OP_lit9:
1744 case DW_OP_lit10:
1745 case DW_OP_lit11:
1746 case DW_OP_lit12:
1747 case DW_OP_lit13:
1748 case DW_OP_lit14:
1749 case DW_OP_lit15:
1750 case DW_OP_lit16:
1751 case DW_OP_lit17:
1752 case DW_OP_lit18:
1753 case DW_OP_lit19:
1754 case DW_OP_lit20:
1755 case DW_OP_lit21:
1756 case DW_OP_lit22:
1757 case DW_OP_lit23:
1758 case DW_OP_lit24:
1759 case DW_OP_lit25:
1760 case DW_OP_lit26:
1761 case DW_OP_lit27:
1762 case DW_OP_lit28:
1763 case DW_OP_lit29:
1764 case DW_OP_lit30:
1765 case DW_OP_lit31:
1766 stack.push_back(op - DW_OP_lit0);
1767 break;
1768
1769 //----------------------------------------------------------------------
1770 // OPCODE: DW_OP_regN
1771 // OPERANDS: none
1772 // DESCRIPTION: Push the value in register n on the top of the stack.
1773 //----------------------------------------------------------------------
1774 case DW_OP_reg0:
1775 case DW_OP_reg1:
1776 case DW_OP_reg2:
1777 case DW_OP_reg3:
1778 case DW_OP_reg4:
1779 case DW_OP_reg5:
1780 case DW_OP_reg6:
1781 case DW_OP_reg7:
1782 case DW_OP_reg8:
1783 case DW_OP_reg9:
1784 case DW_OP_reg10:
1785 case DW_OP_reg11:
1786 case DW_OP_reg12:
1787 case DW_OP_reg13:
1788 case DW_OP_reg14:
1789 case DW_OP_reg15:
1790 case DW_OP_reg16:
1791 case DW_OP_reg17:
1792 case DW_OP_reg18:
1793 case DW_OP_reg19:
1794 case DW_OP_reg20:
1795 case DW_OP_reg21:
1796 case DW_OP_reg22:
1797 case DW_OP_reg23:
1798 case DW_OP_reg24:
1799 case DW_OP_reg25:
1800 case DW_OP_reg26:
1801 case DW_OP_reg27:
1802 case DW_OP_reg28:
1803 case DW_OP_reg29:
1804 case DW_OP_reg30:
1805 case DW_OP_reg31:
1806 {
1807 reg_num = op - DW_OP_reg0;
1808
1809 if (ReadRegisterValueAsScalar (exe_ctx, reg_kind, reg_num, error_ptr, tmp))
1810 stack.push_back(tmp);
1811 else
1812 return false;
1813 }
1814 break;
1815 //----------------------------------------------------------------------
1816 // OPCODE: DW_OP_regx
1817 // OPERANDS:
1818 // ULEB128 literal operand that encodes the register.
1819 // DESCRIPTION: Push the value in register on the top of the stack.
1820 //----------------------------------------------------------------------
1821 case DW_OP_regx:
1822 {
1823 reg_num = opcodes.GetULEB128(&offset);
1824 if (ReadRegisterValueAsScalar (exe_ctx, reg_kind, reg_num, error_ptr, tmp))
1825 stack.push_back(tmp);
1826 else
1827 return false;
1828 }
1829 break;
1830
1831 //----------------------------------------------------------------------
1832 // OPCODE: DW_OP_bregN
1833 // OPERANDS:
1834 // SLEB128 offset from register N
1835 // DESCRIPTION: Value is in memory at the address specified by register
1836 // N plus an offset.
1837 //----------------------------------------------------------------------
1838 case DW_OP_breg0:
1839 case DW_OP_breg1:
1840 case DW_OP_breg2:
1841 case DW_OP_breg3:
1842 case DW_OP_breg4:
1843 case DW_OP_breg5:
1844 case DW_OP_breg6:
1845 case DW_OP_breg7:
1846 case DW_OP_breg8:
1847 case DW_OP_breg9:
1848 case DW_OP_breg10:
1849 case DW_OP_breg11:
1850 case DW_OP_breg12:
1851 case DW_OP_breg13:
1852 case DW_OP_breg14:
1853 case DW_OP_breg15:
1854 case DW_OP_breg16:
1855 case DW_OP_breg17:
1856 case DW_OP_breg18:
1857 case DW_OP_breg19:
1858 case DW_OP_breg20:
1859 case DW_OP_breg21:
1860 case DW_OP_breg22:
1861 case DW_OP_breg23:
1862 case DW_OP_breg24:
1863 case DW_OP_breg25:
1864 case DW_OP_breg26:
1865 case DW_OP_breg27:
1866 case DW_OP_breg28:
1867 case DW_OP_breg29:
1868 case DW_OP_breg30:
1869 case DW_OP_breg31:
1870 {
1871 reg_num = op - DW_OP_breg0;
1872
1873 if (ReadRegisterValueAsScalar (exe_ctx, reg_kind, reg_num, error_ptr, tmp))
1874 {
1875 int64_t breg_offset = opcodes.GetSLEB128(&offset);
1876 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset;
1877 stack.push_back(tmp);
1878 stack.back().SetValueType (Value::eValueTypeLoadAddress);
1879 }
1880 else
1881 return false;
1882 }
1883 break;
1884 //----------------------------------------------------------------------
1885 // OPCODE: DW_OP_bregx
1886 // OPERANDS: 2
1887 // ULEB128 literal operand that encodes the register.
1888 // SLEB128 offset from register N
1889 // DESCRIPTION: Value is in memory at the address specified by register
1890 // N plus an offset.
1891 //----------------------------------------------------------------------
1892 case DW_OP_bregx:
1893 {
1894 reg_num = opcodes.GetULEB128(&offset);
1895
1896 if (ReadRegisterValueAsScalar (exe_ctx, reg_kind, reg_num, error_ptr, tmp))
1897 {
1898 int64_t breg_offset = opcodes.GetSLEB128(&offset);
1899 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset;
1900 stack.push_back(tmp);
1901 stack.back().SetValueType (Value::eValueTypeLoadAddress);
1902 }
1903 else
1904 return false;
1905 }
1906 break;
1907
1908 case DW_OP_fbreg:
1909 if (exe_ctx && exe_ctx->frame)
1910 {
1911 Scalar value;
1912 if (exe_ctx->frame->GetFrameBaseValue(value, error_ptr))
1913 {
1914 int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
1915 value += fbreg_offset;
1916 stack.push_back(value);
1917 stack.back().SetValueType (Value::eValueTypeLoadAddress);
1918 }
1919 else
1920 return false;
1921 }
1922 else
1923 {
1924 if (error_ptr)
1925 error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_fbreg opcode.");
1926 return false;
1927 }
1928 break;
1929
1930 //----------------------------------------------------------------------
1931 // OPCODE: DW_OP_nop
1932 // OPERANDS: none
1933 // DESCRIPTION: A place holder. It has no effect on the location stack
1934 // or any of its values.
1935 //----------------------------------------------------------------------
1936 case DW_OP_nop:
1937 break;
1938
1939 //----------------------------------------------------------------------
1940 // OPCODE: DW_OP_piece
1941 // OPERANDS: 1
1942 // ULEB128: byte size of the piece
1943 // DESCRIPTION: The operand describes the size in bytes of the piece of
1944 // the object referenced by the DWARF expression whose result is at the
1945 // top of the stack. If the piece is located in a register, but does not
1946 // occupy the entire register, the placement of the piece within that
1947 // register is defined by the ABI.
1948 //
1949 // Many compilers store a single variable in sets of registers, or store
1950 // a variable partially in memory and partially in registers.
1951 // DW_OP_piece provides a way of describing how large a part of a
1952 // variable a particular DWARF expression refers to.
1953 //----------------------------------------------------------------------
1954 case DW_OP_piece:
1955 if (error_ptr)
1956 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_piece.");
1957 return false;
1958
1959 //----------------------------------------------------------------------
1960 // OPCODE: DW_OP_push_object_address
1961 // OPERANDS: none
1962 // DESCRIPTION: Pushes the address of the object currently being
1963 // evaluated as part of evaluation of a user presented expression.
1964 // This object may correspond to an independent variable described by
1965 // its own DIE or it may be a component of an array, structure, or class
1966 // whose address has been dynamically determined by an earlier step
1967 // during user expression evaluation.
1968 //----------------------------------------------------------------------
1969 case DW_OP_push_object_address:
1970 if (error_ptr)
1971 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_push_object_address.");
1972 return false;
1973
1974 //----------------------------------------------------------------------
1975 // OPCODE: DW_OP_call2
1976 // OPERANDS:
1977 // uint16_t compile unit relative offset of a DIE
1978 // DESCRIPTION: Performs subroutine calls during evaluation
1979 // of a DWARF expression. The operand is the 2-byte unsigned offset
1980 // of a debugging information entry in the current compilation unit.
1981 //
1982 // Operand interpretation is exactly like that for DW_FORM_ref2.
1983 //
1984 // This operation transfers control of DWARF expression evaluation
1985 // to the DW_AT_location attribute of the referenced DIE. If there is
1986 // no such attribute, then there is no effect. Execution of the DWARF
1987 // expression of a DW_AT_location attribute may add to and/or remove from
1988 // values on the stack. Execution returns to the point following the call
1989 // when the end of the attribute is reached. Values on the stack at the
1990 // time of the call may be used as parameters by the called expression
1991 // and values left on the stack by the called expression may be used as
1992 // return values by prior agreement between the calling and called
1993 // expressions.
1994 //----------------------------------------------------------------------
1995 case DW_OP_call2:
1996 if (error_ptr)
1997 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call2.");
1998 return false;
1999 //----------------------------------------------------------------------
2000 // OPCODE: DW_OP_call4
2001 // OPERANDS: 1
2002 // uint32_t compile unit relative offset of a DIE
2003 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2004 // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset
2005 // of a debugging information entry in the current compilation unit.
2006 //
2007 // Operand interpretation DW_OP_call4 is exactly like that for
2008 // DW_FORM_ref4.
2009 //
2010 // This operation transfers control of DWARF expression evaluation
2011 // to the DW_AT_location attribute of the referenced DIE. If there is
2012 // no such attribute, then there is no effect. Execution of the DWARF
2013 // expression of a DW_AT_location attribute may add to and/or remove from
2014 // values on the stack. Execution returns to the point following the call
2015 // when the end of the attribute is reached. Values on the stack at the
2016 // time of the call may be used as parameters by the called expression
2017 // and values left on the stack by the called expression may be used as
2018 // return values by prior agreement between the calling and called
2019 // expressions.
2020 //----------------------------------------------------------------------
2021 case DW_OP_call4:
2022 if (error_ptr)
2023 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call4.");
2024 return false;
2025
2026
2027 //----------------------------------------------------------------------
2028 // OPCODE: DW_OP_call_ref
2029 // OPERANDS:
2030 // uint32_t absolute DIE offset for 32-bit DWARF or a uint64_t
2031 // absolute DIE offset for 64 bit DWARF.
2032 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2033 // expression. Takes a single operand. In the 32-bit DWARF format, the
2034 // operand is a 4-byte unsigned value; in the 64-bit DWARF format, it
2035 // is an 8-byte unsigned value. The operand is used as the offset of a
2036 // debugging information entry in a .debug_info section which may be
2037 // contained in a shared object for executable other than that
2038 // containing the operator. For references from one shared object or
2039 // executable to another, the relocation must be performed by the
2040 // consumer.
2041 //
2042 // Operand interpretation of DW_OP_call_ref is exactly like that for
2043 // DW_FORM_ref_addr.
2044 //
2045 // This operation transfers control of DWARF expression evaluation
2046 // to the DW_AT_location attribute of the referenced DIE. If there is
2047 // no such attribute, then there is no effect. Execution of the DWARF
2048 // expression of a DW_AT_location attribute may add to and/or remove from
2049 // values on the stack. Execution returns to the point following the call
2050 // when the end of the attribute is reached. Values on the stack at the
2051 // time of the call may be used as parameters by the called expression
2052 // and values left on the stack by the called expression may be used as
2053 // return values by prior agreement between the calling and called
2054 // expressions.
2055 //----------------------------------------------------------------------
2056 case DW_OP_call_ref:
2057 if (error_ptr)
2058 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call_ref.");
2059 return false;
2060
2061 //----------------------------------------------------------------------
2062 // OPCODE: DW_OP_APPLE_array_ref
2063 // OPERANDS: none
2064 // DESCRIPTION: Pops a value off the stack and uses it as the array
2065 // index. Pops a second value off the stack and uses it as the array
2066 // itself. Pushes a value onto the stack representing the element of
2067 // the array specified by the index.
2068 //----------------------------------------------------------------------
2069 case DW_OP_APPLE_array_ref:
2070 {
2071 if (stack.size() < 2)
2072 {
2073 if (error_ptr)
2074 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_array_ref.");
2075 return false;
2076 }
2077
2078 Value index_val = stack.back();
2079 stack.pop_back();
2080 Value array_val = stack.back();
2081 stack.pop_back();
2082
2083 Scalar &index_scalar = index_val.ResolveValue(exe_ctx, ast_context);
2084 int64_t index = index_scalar.SLongLong(LONG_LONG_MAX);
2085
2086 if (index == LONG_LONG_MAX)
2087 {
2088 if (error_ptr)
2089 error_ptr->SetErrorString("Invalid array index.");
2090 return false;
2091 }
2092
2093 if (array_val.GetContextType() != Value::eContextTypeOpaqueClangQualType)
2094 {
2095 if (error_ptr)
2096 error_ptr->SetErrorString("Arrays without Clang types are unhandled at this time.");
2097 return false;
2098 }
2099
2100 if (array_val.GetValueType() != Value::eValueTypeLoadAddress &&
2101 array_val.GetValueType() != Value::eValueTypeHostAddress)
2102 {
2103 if (error_ptr)
2104 error_ptr->SetErrorString("Array must be stored in memory.");
2105 return false;
2106 }
2107
2108 void *array_type = array_val.GetOpaqueClangQualType();
2109
2110 void *member_type;
2111 uint64_t size = 0;
2112
2113 if ((!ClangASTContext::IsPointerType(array_type, &member_type)) &&
2114 (!ClangASTContext::IsArrayType(array_type, &member_type, &size)))
2115 {
2116 if (error_ptr)
2117 error_ptr->SetErrorString("Array reference from something that is neither a pointer nor an array.");
2118 return false;
2119 }
2120
2121 if (size && (index >= size || index < 0))
2122 {
2123 if (error_ptr)
2124 error_ptr->SetErrorStringWithFormat("Out of bounds array access. %lld is not in [0, %llu]", index, size);
2125 return false;
2126 }
2127
2128 uint64_t member_bit_size = ClangASTContext::GetTypeBitSize(ast_context, member_type);
2129 uint64_t member_bit_align = ClangASTContext::GetTypeBitAlign(ast_context, member_type);
2130 uint64_t member_bit_incr = ((member_bit_size + member_bit_align - 1) / member_bit_align) * member_bit_align;
2131 if (member_bit_incr % 8)
2132 {
2133 if (error_ptr)
2134 error_ptr->SetErrorStringWithFormat("Array increment is not byte aligned", index, size);
2135 return false;
2136 }
2137 int64_t member_offset = (int64_t)(member_bit_incr / 8) * index;
2138
2139 Value member;
2140
2141 member.SetContext(Value::eContextTypeOpaqueClangQualType, member_type);
2142 member.SetValueType(array_val.GetValueType());
2143
2144 addr_t array_base = (addr_t)array_val.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2145 addr_t member_loc = array_base + member_offset;
2146 member.GetScalar() = (uint64_t)member_loc;
2147
2148 stack.push_back(member);
2149 }
2150 break;
2151
2152 //----------------------------------------------------------------------
2153 // OPCODE: DW_OP_APPLE_uninit
2154 // OPERANDS: none
2155 // DESCRIPTION: Lets us know that the value is currently not initialized
2156 //----------------------------------------------------------------------
2157 case DW_OP_APPLE_uninit:
2158 //return eResultTypeErrorUninitialized;
2159 break; // Ignore this as we have seen cases where this value is incorrectly added
2160
2161 //----------------------------------------------------------------------
2162 // OPCODE: DW_OP_APPLE_assign
2163 // OPERANDS: none
2164 // DESCRIPTION: Pops a value off of the stack and assigns it to the next
2165 // item on the stack which must be something assignable (inferior
2166 // Variable, inferior Type with address, inferior register, or
2167 // expression local variable.
2168 //----------------------------------------------------------------------
2169 case DW_OP_APPLE_assign:
2170 if (stack.size() < 2)
2171 {
2172 if (error_ptr)
2173 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_assign.");
2174 return false;
2175 }
2176 else
2177 {
2178 tmp = stack.back();
2179 stack.pop_back();
2180 Value::ContextType context_type = stack.back().GetContextType();
2181 StreamString new_value(Stream::eBinary, 4, eByteOrderHost);
2182 switch (context_type)
2183 {
2184 case Value::eContextTypeOpaqueClangQualType:
2185 {
2186 void *clang_type = stack.back().GetOpaqueClangQualType();
2187
2188 if (ClangASTContext::IsAggregateType (clang_type))
2189 {
2190 Value::ValueType source_value_type = tmp.GetValueType();
2191 Value::ValueType target_value_type = stack.back().GetValueType();
2192
2193 addr_t source_addr = (addr_t)tmp.GetScalar().ULongLong();
2194 addr_t target_addr = (addr_t)stack.back().GetScalar().ULongLong();
2195
2196 size_t byte_size = (ClangASTContext::GetTypeBitSize(ast_context, clang_type) + 7) / 8;
2197
2198 switch (source_value_type)
2199 {
2200 case Value::eValueTypeLoadAddress:
2201 switch (target_value_type)
2202 {
2203 case Value::eValueTypeLoadAddress:
2204 {
2205 DataBufferHeap data;
2206 data.SetByteSize(byte_size);
2207
2208 Error error;
2209 if (exe_ctx->process->ReadMemory (source_addr, data.GetBytes(), byte_size, error) != byte_size)
2210 {
2211 if (error_ptr)
2212 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString());
2213 return false;
2214 }
2215
2216 if (exe_ctx->process->WriteMemory (target_addr, data.GetBytes(), byte_size, error) != byte_size)
2217 {
2218 if (error_ptr)
2219 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString());
2220 return false;
2221 }
2222 }
2223 break;
2224 case Value::eValueTypeHostAddress:
2225 if (exe_ctx->process->GetByteOrder() != Host::GetByteOrder())
2226 {
2227 if (error_ptr)
2228 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented");
2229 return false;
2230 }
2231 else
2232 {
2233 Error error;
2234 if (exe_ctx->process->ReadMemory (source_addr, (uint8_t*)target_addr, byte_size, error) != byte_size)
2235 {
2236 if (error_ptr)
2237 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString());
2238 return false;
2239 }
2240 }
2241 break;
2242 default:
2243 return false;
2244 }
2245 break;
2246 case Value::eValueTypeHostAddress:
2247 switch (target_value_type)
2248 {
2249 case Value::eValueTypeLoadAddress:
2250 if (exe_ctx->process->GetByteOrder() != Host::GetByteOrder())
2251 {
2252 if (error_ptr)
2253 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented");
2254 return false;
2255 }
2256 else
2257 {
2258 Error error;
2259 if (exe_ctx->process->WriteMemory (target_addr, (uint8_t*)source_addr, byte_size, error) != byte_size)
2260 {
2261 if (error_ptr)
2262 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString());
2263 return false;
2264 }
2265 }
2266 case Value::eValueTypeHostAddress:
2267 memcpy ((uint8_t*)target_addr, (uint8_t*)source_addr, byte_size);
2268 break;
2269 default:
2270 return false;
2271 }
2272 }
2273 }
2274 else
2275 {
2276 if (!Type::SetValueFromScalar(ast_context,
2277 clang_type,
2278 tmp.ResolveValue(exe_ctx, ast_context),
2279 new_value))
2280 {
2281 if (error_ptr)
2282 error_ptr->SetErrorStringWithFormat ("Couldn't extract a value from an integral type.\n");
2283 return false;
2284 }
2285
2286 Value::ValueType value_type = stack.back().GetValueType();
2287
2288 switch (value_type)
2289 {
2290 case Value::eValueTypeLoadAddress:
2291 case Value::eValueTypeHostAddress:
2292 {
2293 lldb::AddressType address_type = (value_type == Value::eValueTypeLoadAddress ? eAddressTypeLoad : eAddressTypeHost);
2294 lldb::addr_t addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2295 if (!Type::WriteToMemory (exe_ctx,
2296 ast_context,
2297 clang_type,
2298 addr,
2299 address_type,
2300 new_value))
2301 {
2302 if (error_ptr)
2303 error_ptr->SetErrorStringWithFormat ("Failed to write value to memory at 0x%llx.\n", addr);
2304 return false;
2305 }
2306 }
2307 break;
2308
2309 default:
2310 break;
2311 }
2312 }
2313 }
2314 break;
2315
2316 default:
2317 if (error_ptr)
2318 error_ptr->SetErrorString ("Assign failed.");
2319 return false;
2320 }
2321 }
2322 break;
2323
2324 //----------------------------------------------------------------------
2325 // OPCODE: DW_OP_APPLE_address_of
2326 // OPERANDS: none
2327 // DESCRIPTION: Pops a value off of the stack and pushed its address.
2328 // The top item on the stack must be a variable, or already be a memory
2329 // location.
2330 //----------------------------------------------------------------------
2331 case DW_OP_APPLE_address_of:
2332 if (stack.empty())
2333 {
2334 if (error_ptr)
2335 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_address_of.");
2336 return false;
2337 }
2338 else
2339 {
2340 Value::ValueType value_type = stack.back().GetValueType();
2341 switch (value_type)
2342 {
2343 default:
2344 case Value::eValueTypeScalar: // raw scalar value
2345 if (error_ptr)
2346 error_ptr->SetErrorString("Top stack item isn't a memory based object.");
2347 return false;
2348
2349 case Value::eValueTypeLoadAddress: // load address value
2350 case Value::eValueTypeFileAddress: // file address value
2351 case Value::eValueTypeHostAddress: // host address value (for memory in the process that is using liblldb)
2352 // Taking the address of an object reduces it to the address
2353 // of the value and removes any extra context it had.
2354 //stack.back().SetValueType(Value::eValueTypeScalar);
2355 stack.back().ClearContext();
2356 break;
2357 }
2358 }
2359 break;
2360
2361 //----------------------------------------------------------------------
2362 // OPCODE: DW_OP_APPLE_value_of
2363 // OPERANDS: none
2364 // DESCRIPTION: Pops a value off of the stack and pushed its value.
2365 // The top item on the stack must be a variable, expression variable.
2366 //----------------------------------------------------------------------
2367 case DW_OP_APPLE_value_of:
2368 if (stack.empty())
2369 {
2370 if (error_ptr)
2371 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_value_of.");
2372 return false;
2373 }
2374 else if (!stack.back().ValueOf(exe_ctx, ast_context))
2375 {
2376 if (error_ptr)
2377 error_ptr->SetErrorString ("Top stack item isn't a valid candidate for DW_OP_APPLE_value_of.");
2378 return false;
2379 }
2380 break;
2381
2382 //----------------------------------------------------------------------
2383 // OPCODE: DW_OP_APPLE_deref_type
2384 // OPERANDS: none
2385 // DESCRIPTION: gets the value pointed to by the top stack item
2386 //----------------------------------------------------------------------
2387 case DW_OP_APPLE_deref_type:
2388 {
2389 if (stack.empty())
2390 {
2391 if (error_ptr)
2392 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_deref_type.");
2393 return false;
2394 }
2395
2396 tmp = stack.back();
2397 stack.pop_back();
2398
2399 if (tmp.GetContextType() != Value::eContextTypeOpaqueClangQualType)
2400 {
2401 if (error_ptr)
2402 error_ptr->SetErrorString("Item at top of expression stack must have a Clang type");
2403 return false;
2404 }
2405
2406 void *ptr_type = tmp.GetOpaqueClangQualType();
2407 void *target_type;
2408
2409 if (!ClangASTContext::IsPointerType(ptr_type, &target_type))
2410 {
2411 if (error_ptr)
2412 error_ptr->SetErrorString("Dereferencing a non-pointer type");
2413 return false;
2414 }
2415
2416 // TODO do we want all pointers to be dereferenced as load addresses?
2417 Value::ValueType value_type = tmp.GetValueType();
2418
2419 tmp.ResolveValue(exe_ctx, ast_context);
2420
2421 tmp.SetValueType(value_type);
2422 tmp.SetContext(Value::eContextTypeOpaqueClangQualType, target_type);
2423
2424 stack.push_back(tmp);
2425 }
2426 break;
2427
2428 //----------------------------------------------------------------------
2429 // OPCODE: DW_OP_APPLE_expr_local
2430 // OPERANDS: ULEB128
2431 // DESCRIPTION: pushes the expression local variable index onto the
2432 // stack and set the appropriate context so we know the stack item is
2433 // an expression local variable index.
2434 //----------------------------------------------------------------------
2435 case DW_OP_APPLE_expr_local:
2436 {
2437 uint32_t idx = opcodes.GetULEB128(&offset);
2438 if (expr_locals == NULL)
2439 {
2440 if (error_ptr)
2441 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) opcode encountered with no local variable list.\n", idx);
2442 return false;
2443 }
2444 Value *expr_local_variable = expr_locals->GetVariableAtIndex(idx);
2445 if (expr_local_variable == NULL)
2446 {
2447 if (error_ptr)
2448 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) with invalid index %u.\n", idx, idx);
2449 return false;
2450 }
2451 Value *proxy = expr_local_variable->CreateProxy();
2452 stack.push_back(*proxy);
2453 delete proxy;
2454 //stack.back().SetContext (Value::eContextTypeOpaqueClangQualType, expr_local_variable->GetOpaqueClangQualType());
2455 }
2456 break;
2457
2458 //----------------------------------------------------------------------
2459 // OPCODE: DW_OP_APPLE_extern
2460 // OPERANDS: ULEB128
2461 // DESCRIPTION: pushes a proxy for the extern object index onto the
2462 // stack.
2463 //----------------------------------------------------------------------
2464 case DW_OP_APPLE_extern:
2465 {
2466 uint32_t idx = opcodes.GetULEB128(&offset);
2467 if (!decl_map)
2468 {
2469 if (error_ptr)
2470 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) opcode encountered with no decl map.\n", idx);
2471 return false;
2472 }
2473 Value *extern_var = decl_map->GetValueForIndex(idx);
2474 if (!extern_var)
2475 {
2476 if (error_ptr)
2477 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) with invalid index %u.\n", idx, idx);
2478 return false;
2479 }
2480 Value *proxy = extern_var->CreateProxy();
2481 stack.push_back(*proxy);
2482 delete proxy;
2483 }
2484 break;
2485
2486 case DW_OP_APPLE_scalar_cast:
2487 if (stack.empty())
2488 {
2489 if (error_ptr)
2490 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_scalar_cast.");
2491 return false;
2492 }
2493 else
2494 {
2495 // Simple scalar cast
2496 if (!stack.back().ResolveValue(exe_ctx, ast_context).Cast((Scalar::Type)opcodes.GetU8(&offset)))
2497 {
2498 if (error_ptr)
2499 error_ptr->SetErrorString("Cast failed.");
2500 return false;
2501 }
2502 }
2503 break;
2504
2505
2506 case DW_OP_APPLE_clang_cast:
2507 if (stack.empty())
2508 {
2509 if (error_ptr)
2510 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_clang_cast.");
2511 return false;
2512 }
2513 else
2514 {
2515 void *clang_type = (void *)opcodes.GetMaxU64(&offset, sizeof(void*));
2516 stack.back().SetContext (Value::eContextTypeOpaqueClangQualType, clang_type);
2517 }
2518 break;
2519 //----------------------------------------------------------------------
2520 // OPCODE: DW_OP_APPLE_constf
2521 // OPERANDS: 1 byte float length, followed by that many bytes containing
2522 // the constant float data.
2523 // DESCRIPTION: Push a float value onto the expression stack.
2524 //----------------------------------------------------------------------
2525 case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data
2526 {
2527 uint8_t float_length = opcodes.GetU8(&offset);
2528 if (sizeof(float) == float_length)
2529 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetFloat (&offset);
2530 else if (sizeof(double) == float_length)
2531 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetDouble (&offset);
2532 else if (sizeof(long double) == float_length)
2533 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetLongDouble (&offset);
2534 else
2535 {
2536 StreamString new_value;
2537 opcodes.Dump(&new_value, offset, eFormatBytes, 1, float_length, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0);
2538
2539 if (error_ptr)
2540 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_constf(<%u> %s) unsupported float size.\n", float_length, new_value.GetData());
2541 return false;
2542 }
2543 tmp.SetValueType(Value::eValueTypeScalar);
2544 tmp.ClearContext();
2545 stack.push_back(tmp);
2546 }
2547 break;
2548 //----------------------------------------------------------------------
2549 // OPCODE: DW_OP_APPLE_clear
2550 // OPERANDS: none
2551 // DESCRIPTION: Clears the expression stack.
2552 //----------------------------------------------------------------------
2553 case DW_OP_APPLE_clear:
2554 stack.clear();
2555 break;
2556
2557 //----------------------------------------------------------------------
2558 // OPCODE: DW_OP_APPLE_error
2559 // OPERANDS: none
2560 // DESCRIPTION: Pops a value off of the stack and pushed its value.
2561 // The top item on the stack must be a variable, expression variable.
2562 //----------------------------------------------------------------------
2563 case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args)
2564 if (error_ptr)
2565 error_ptr->SetErrorString ("Generic error.");
2566 return false;
2567 }
2568 }
2569
2570 if (stack.empty())
2571 {
2572 if (error_ptr)
2573 error_ptr->SetErrorString ("Stack empty after evaluation.");
2574 return false;
2575 }
2576 else if (log)
2577 {
Chris Lattner24943d22010-06-08 16:52:24 +00002578 size_t count = stack.size();
Sean Callanan6184dfe2010-06-23 00:47:48 +00002579 log->Printf("Stack after operation has %d values:", count);
Chris Lattner24943d22010-06-08 16:52:24 +00002580 for (size_t i=0; i<count; ++i)
2581 {
2582 StreamString new_value;
2583 new_value.Printf("[%zu]", i);
2584 stack[i].Dump(&new_value);
Sean Callanan6184dfe2010-06-23 00:47:48 +00002585 log->Printf(" %s", new_value.GetData());
Chris Lattner24943d22010-06-08 16:52:24 +00002586 }
2587 }
2588
2589 result = stack.back();
2590 return true; // Return true on success
2591}
2592