| //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file implements a TargetTransformInfo analysis pass specific to the |
| /// X86 target machine. It uses the target's detailed information to provide |
| /// more precise answers to certain TTI queries, while letting the target |
| /// independent and default TTI implementations handle the rest. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "x86tti" |
| #include "X86.h" |
| #include "X86TargetMachine.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Target/TargetLowering.h" |
| using namespace llvm; |
| |
| // Declare the pass initialization routine locally as target-specific passes |
| // don't havve a target-wide initialization entry point, and so we rely on the |
| // pass constructor initialization. |
| namespace llvm { |
| void initializeX86TTIPass(PassRegistry &); |
| } |
| |
| namespace { |
| |
| class X86TTI : public ImmutablePass, public TargetTransformInfo { |
| const X86TargetMachine *TM; |
| const X86Subtarget *ST; |
| const X86TargetLowering *TLI; |
| |
| /// Estimate the overhead of scalarizing an instruction. Insert and Extract |
| /// are set if the result needs to be inserted and/or extracted from vectors. |
| unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; |
| |
| public: |
| X86TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) { |
| llvm_unreachable("This pass cannot be directly constructed"); |
| } |
| |
| X86TTI(const X86TargetMachine *TM) |
| : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()), |
| TLI(TM->getTargetLowering()) { |
| initializeX86TTIPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| virtual void initializePass() { |
| pushTTIStack(this); |
| } |
| |
| virtual void finalizePass() { |
| popTTIStack(); |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| TargetTransformInfo::getAnalysisUsage(AU); |
| } |
| |
| /// Pass identification. |
| static char ID; |
| |
| /// Provide necessary pointer adjustments for the two base classes. |
| virtual void *getAdjustedAnalysisPointer(const void *ID) { |
| if (ID == &TargetTransformInfo::ID) |
| return (TargetTransformInfo*)this; |
| return this; |
| } |
| |
| /// \name Scalar TTI Implementations |
| /// @{ |
| virtual PopcntSupportKind getPopcntSupport(unsigned TyWidth) const; |
| |
| /// @} |
| |
| /// \name Vector TTI Implementations |
| /// @{ |
| |
| virtual unsigned getNumberOfRegisters(bool Vector) const; |
| virtual unsigned getRegisterBitWidth(bool Vector) const; |
| virtual unsigned getMaximumUnrollFactor() const; |
| virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const; |
| virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, |
| int Index, Type *SubTp) const; |
| virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, |
| Type *Src) const; |
| virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, |
| Type *CondTy) const; |
| virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, |
| unsigned Index) const; |
| virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src, |
| unsigned Alignment, |
| unsigned AddressSpace) const; |
| |
| /// @} |
| }; |
| |
| } // end anonymous namespace |
| |
| INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti", |
| "X86 Target Transform Info", true, true, false) |
| char X86TTI::ID = 0; |
| |
| ImmutablePass * |
| llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) { |
| return new X86TTI(TM); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // X86 cost model. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| struct X86CostTblEntry { |
| int ISD; |
| MVT Type; |
| unsigned Cost; |
| }; |
| } |
| |
| static int |
| FindInTable(const X86CostTblEntry *Tbl, unsigned len, int ISD, MVT Ty) { |
| for (unsigned int i = 0; i < len; ++i) |
| if (Tbl[i].ISD == ISD && Tbl[i].Type == Ty) |
| return i; |
| |
| // Could not find an entry. |
| return -1; |
| } |
| |
| namespace { |
| struct X86TypeConversionCostTblEntry { |
| int ISD; |
| MVT Dst; |
| MVT Src; |
| unsigned Cost; |
| }; |
| } |
| |
| static int |
| FindInConvertTable(const X86TypeConversionCostTblEntry *Tbl, unsigned len, |
| int ISD, MVT Dst, MVT Src) { |
| for (unsigned int i = 0; i < len; ++i) |
| if (Tbl[i].ISD == ISD && Tbl[i].Src == Src && Tbl[i].Dst == Dst) |
| return i; |
| |
| // Could not find an entry. |
| return -1; |
| } |
| |
| X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const { |
| assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); |
| // TODO: Currently the __builtin_popcount() implementation using SSE3 |
| // instructions is inefficient. Once the problem is fixed, we should |
| // call ST->hasSSE3() instead of ST->hasSSE4(). |
| return ST->hasSSE41() ? PSK_FastHardware : PSK_Software; |
| } |
| |
| unsigned X86TTI::getNumberOfRegisters(bool Vector) const { |
| if (Vector && !ST->hasSSE1()) |
| return 0; |
| |
| if (ST->is64Bit()) |
| return 16; |
| return 8; |
| } |
| |
| unsigned X86TTI::getRegisterBitWidth(bool Vector) const { |
| if (Vector) { |
| if (ST->hasAVX()) return 256; |
| if (ST->hasSSE1()) return 128; |
| return 0; |
| } |
| |
| if (ST->is64Bit()) |
| return 64; |
| return 32; |
| |
| } |
| |
| unsigned X86TTI::getMaximumUnrollFactor() const { |
| if (ST->isAtom()) |
| return 1; |
| |
| // Sandybridge and Haswell have multiple execution ports and pipelined |
| // vector units. |
| if (ST->hasAVX()) |
| return 4; |
| |
| return 2; |
| } |
| |
| unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty) const { |
| // Legalize the type. |
| std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty); |
| |
| int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| assert(ISD && "Invalid opcode"); |
| |
| static const X86CostTblEntry AVX1CostTable[] = { |
| // We don't have to scalarize unsupported ops. We can issue two half-sized |
| // operations and we only need to extract the upper YMM half. |
| // Two ops + 1 extract + 1 insert = 4. |
| { ISD::MUL, MVT::v8i32, 4 }, |
| { ISD::SUB, MVT::v8i32, 4 }, |
| { ISD::ADD, MVT::v8i32, 4 }, |
| { ISD::MUL, MVT::v4i64, 4 }, |
| { ISD::SUB, MVT::v4i64, 4 }, |
| { ISD::ADD, MVT::v4i64, 4 }, |
| }; |
| |
| // Look for AVX1 lowering tricks. |
| if (ST->hasAVX()) { |
| int Idx = FindInTable(AVX1CostTable, array_lengthof(AVX1CostTable), ISD, |
| LT.second); |
| if (Idx != -1) |
| return LT.first * AVX1CostTable[Idx].Cost; |
| } |
| // Fallback to the default implementation. |
| return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty); |
| } |
| |
| unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, |
| Type *SubTp) const { |
| // We only estimate the cost of reverse shuffles. |
| if (Kind != SK_Reverse) |
| return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp); |
| |
| std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp); |
| unsigned Cost = 1; |
| if (LT.second.getSizeInBits() > 128) |
| Cost = 3; // Extract + insert + copy. |
| |
| // Multiple by the number of parts. |
| return Cost * LT.first; |
| } |
| |
| unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const { |
| int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| assert(ISD && "Invalid opcode"); |
| |
| EVT SrcTy = TLI->getValueType(Src); |
| EVT DstTy = TLI->getValueType(Dst); |
| |
| if (!SrcTy.isSimple() || !DstTy.isSimple()) |
| return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); |
| |
| static const X86TypeConversionCostTblEntry AVXConversionTbl[] = { |
| { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, |
| { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, |
| { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, |
| { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, |
| { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, |
| { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 1 }, |
| { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 1 }, |
| { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 1 }, |
| { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 1 }, |
| { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 1 }, |
| { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 1 }, |
| { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 }, |
| { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 6 }, |
| { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 9 }, |
| { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 3 }, |
| }; |
| |
| if (ST->hasAVX()) { |
| int Idx = FindInConvertTable(AVXConversionTbl, |
| array_lengthof(AVXConversionTbl), |
| ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()); |
| if (Idx != -1) |
| return AVXConversionTbl[Idx].Cost; |
| } |
| |
| return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); |
| } |
| |
| unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, |
| Type *CondTy) const { |
| // Legalize the type. |
| std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy); |
| |
| MVT MTy = LT.second; |
| |
| int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| assert(ISD && "Invalid opcode"); |
| |
| static const X86CostTblEntry SSE42CostTbl[] = { |
| { ISD::SETCC, MVT::v2f64, 1 }, |
| { ISD::SETCC, MVT::v4f32, 1 }, |
| { ISD::SETCC, MVT::v2i64, 1 }, |
| { ISD::SETCC, MVT::v4i32, 1 }, |
| { ISD::SETCC, MVT::v8i16, 1 }, |
| { ISD::SETCC, MVT::v16i8, 1 }, |
| }; |
| |
| static const X86CostTblEntry AVX1CostTbl[] = { |
| { ISD::SETCC, MVT::v4f64, 1 }, |
| { ISD::SETCC, MVT::v8f32, 1 }, |
| // AVX1 does not support 8-wide integer compare. |
| { ISD::SETCC, MVT::v4i64, 4 }, |
| { ISD::SETCC, MVT::v8i32, 4 }, |
| { ISD::SETCC, MVT::v16i16, 4 }, |
| { ISD::SETCC, MVT::v32i8, 4 }, |
| }; |
| |
| static const X86CostTblEntry AVX2CostTbl[] = { |
| { ISD::SETCC, MVT::v4i64, 1 }, |
| { ISD::SETCC, MVT::v8i32, 1 }, |
| { ISD::SETCC, MVT::v16i16, 1 }, |
| { ISD::SETCC, MVT::v32i8, 1 }, |
| }; |
| |
| if (ST->hasAVX2()) { |
| int Idx = FindInTable(AVX2CostTbl, array_lengthof(AVX2CostTbl), ISD, MTy); |
| if (Idx != -1) |
| return LT.first * AVX2CostTbl[Idx].Cost; |
| } |
| |
| if (ST->hasAVX()) { |
| int Idx = FindInTable(AVX1CostTbl, array_lengthof(AVX1CostTbl), ISD, MTy); |
| if (Idx != -1) |
| return LT.first * AVX1CostTbl[Idx].Cost; |
| } |
| |
| if (ST->hasSSE42()) { |
| int Idx = FindInTable(SSE42CostTbl, array_lengthof(SSE42CostTbl), ISD, MTy); |
| if (Idx != -1) |
| return LT.first * SSE42CostTbl[Idx].Cost; |
| } |
| |
| return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy); |
| } |
| |
| unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val, |
| unsigned Index) const { |
| assert(Val->isVectorTy() && "This must be a vector type"); |
| |
| if (Index != -1U) { |
| // Legalize the type. |
| std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val); |
| |
| // This type is legalized to a scalar type. |
| if (!LT.second.isVector()) |
| return 0; |
| |
| // The type may be split. Normalize the index to the new type. |
| unsigned Width = LT.second.getVectorNumElements(); |
| Index = Index % Width; |
| |
| // Floating point scalars are already located in index #0. |
| if (Val->getScalarType()->isFloatingPointTy() && Index == 0) |
| return 0; |
| } |
| |
| return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index); |
| } |
| |
| unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, |
| unsigned AddressSpace) const { |
| // Legalize the type. |
| std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src); |
| assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && |
| "Invalid Opcode"); |
| |
| // Each load/store unit costs 1. |
| unsigned Cost = LT.first * 1; |
| |
| // On Sandybridge 256bit load/stores are double pumped |
| // (but not on Haswell). |
| if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2()) |
| Cost*=2; |
| |
| return Cost; |
| } |