| //===-- PPC32/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a printer that converts from our internal |
| // representation of machine-dependent LLVM code to Intel-format |
| // assembly language. This printer is the output mechanism used |
| // by `llc' and `lli -print-machineinstrs' on X86. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "asmprinter" |
| #include "PowerPC.h" |
| #include "PowerPCInstrInfo.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Module.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/Mangler.h" |
| #include "Support/CommandLine.h" |
| #include "Support/Debug.h" |
| #include "Support/Statistic.h" |
| #include "Support/StringExtras.h" |
| #include <set> |
| |
| namespace llvm { |
| |
| namespace { |
| Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed"); |
| |
| struct Printer : public MachineFunctionPass { |
| /// Output stream on which we're printing assembly code. |
| /// |
| std::ostream &O; |
| |
| /// Target machine description which we query for reg. names, data |
| /// layout, etc. |
| /// |
| TargetMachine &TM; |
| |
| /// Name-mangler for global names. |
| /// |
| Mangler *Mang; |
| std::set< std::string > Stubs; |
| std::set<std::string> Strings; |
| |
| Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { } |
| |
| /// We name each basic block in a Function with a unique number, so |
| /// that we can consistently refer to them later. This is cleared |
| /// at the beginning of each call to runOnMachineFunction(). |
| /// |
| typedef std::map<const Value *, unsigned> ValueMapTy; |
| ValueMapTy NumberForBB; |
| |
| /// Cache of mangled name for current function. This is |
| /// recalculated at the beginning of each call to |
| /// runOnMachineFunction(). |
| /// |
| std::string CurrentFnName; |
| |
| virtual const char *getPassName() const { |
| return "PowerPC Assembly Printer"; |
| } |
| |
| void printMachineInstruction(const MachineInstr *MI); |
| void printOp(const MachineOperand &MO, |
| bool elideOffsetKeyword = false); |
| void printConstantPool(MachineConstantPool *MCP); |
| bool runOnMachineFunction(MachineFunction &F); |
| bool doInitialization(Module &M); |
| bool doFinalization(Module &M); |
| void emitGlobalConstant(const Constant* CV); |
| void emitConstantValueOnly(const Constant *CV); |
| }; |
| } // end of anonymous namespace |
| |
| /// createPPCCodePrinterPass - Returns a pass that prints the X86 |
| /// assembly code for a MachineFunction to the given output stream, |
| /// using the given target machine description. This should work |
| /// regardless of whether the function is in SSA form. |
| /// |
| FunctionPass *createPPCCodePrinterPass(std::ostream &o,TargetMachine &tm){ |
| return new Printer(o, tm); |
| } |
| |
| /// isStringCompatible - Can we treat the specified array as a string? |
| /// Only if it is an array of ubytes or non-negative sbytes. |
| /// |
| static bool isStringCompatible(const ConstantArray *CVA) { |
| const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType(); |
| if (ETy == Type::UByteTy) return true; |
| if (ETy != Type::SByteTy) return false; |
| |
| for (unsigned i = 0; i < CVA->getNumOperands(); ++i) |
| if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0) |
| return false; |
| |
| return true; |
| } |
| |
| /// toOctal - Convert the low order bits of X into an octal digit. |
| /// |
| static inline char toOctal(int X) { |
| return (X&7)+'0'; |
| } |
| |
| /// getAsCString - Return the specified array as a C compatible |
| /// string, only if the predicate isStringCompatible is true. |
| /// |
| static void printAsCString(std::ostream &O, const ConstantArray *CVA) { |
| assert(isStringCompatible(CVA) && "Array is not string compatible!"); |
| |
| O << "\""; |
| for (unsigned i = 0; i < CVA->getNumOperands(); ++i) { |
| unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue(); |
| |
| if (C == '"') { |
| O << "\\\""; |
| } else if (C == '\\') { |
| O << "\\\\"; |
| } else if (isprint(C)) { |
| O << C; |
| } else { |
| switch(C) { |
| case '\b': O << "\\b"; break; |
| case '\f': O << "\\f"; break; |
| case '\n': O << "\\n"; break; |
| case '\r': O << "\\r"; break; |
| case '\t': O << "\\t"; break; |
| default: |
| O << '\\'; |
| O << toOctal(C >> 6); |
| O << toOctal(C >> 3); |
| O << toOctal(C >> 0); |
| break; |
| } |
| } |
| } |
| O << "\""; |
| } |
| |
| // Print out the specified constant, without a storage class. Only the |
| // constants valid in constant expressions can occur here. |
| void Printer::emitConstantValueOnly(const Constant *CV) { |
| if (CV->isNullValue()) |
| O << "0"; |
| else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) { |
| assert(CB == ConstantBool::True); |
| O << "1"; |
| } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) |
| O << CI->getValue(); |
| else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) |
| O << CI->getValue(); |
| else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV)) |
| // This is a constant address for a global variable or function. Use the |
| // name of the variable or function as the address value. |
| O << Mang->getValueName(CPR->getValue()); |
| else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { |
| const TargetData &TD = TM.getTargetData(); |
| switch(CE->getOpcode()) { |
| case Instruction::GetElementPtr: { |
| // generate a symbolic expression for the byte address |
| const Constant *ptrVal = CE->getOperand(0); |
| std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end()); |
| if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) { |
| O << "("; |
| emitConstantValueOnly(ptrVal); |
| O << ") + " << Offset; |
| } else { |
| emitConstantValueOnly(ptrVal); |
| } |
| break; |
| } |
| case Instruction::Cast: { |
| // Support only non-converting or widening casts for now, that is, ones |
| // that do not involve a change in value. This assertion is really gross, |
| // and may not even be a complete check. |
| Constant *Op = CE->getOperand(0); |
| const Type *OpTy = Op->getType(), *Ty = CE->getType(); |
| |
| // Remember, kids, pointers on x86 can be losslessly converted back and |
| // forth into 32-bit or wider integers, regardless of signedness. :-P |
| assert(((isa<PointerType>(OpTy) |
| && (Ty == Type::LongTy || Ty == Type::ULongTy |
| || Ty == Type::IntTy || Ty == Type::UIntTy)) |
| || (isa<PointerType>(Ty) |
| && (OpTy == Type::LongTy || OpTy == Type::ULongTy |
| || OpTy == Type::IntTy || OpTy == Type::UIntTy)) |
| || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy)) |
| && OpTy->isLosslesslyConvertibleTo(Ty)))) |
| && "FIXME: Don't yet support this kind of constant cast expr"); |
| O << "("; |
| emitConstantValueOnly(Op); |
| O << ")"; |
| break; |
| } |
| case Instruction::Add: |
| O << "("; |
| emitConstantValueOnly(CE->getOperand(0)); |
| O << ") + ("; |
| emitConstantValueOnly(CE->getOperand(1)); |
| O << ")"; |
| break; |
| default: |
| assert(0 && "Unsupported operator!"); |
| } |
| } else { |
| assert(0 && "Unknown constant value!"); |
| } |
| } |
| |
| // Print a constant value or values, with the appropriate storage class as a |
| // prefix. |
| void Printer::emitGlobalConstant(const Constant *CV) { |
| const TargetData &TD = TM.getTargetData(); |
| |
| if (CV->isNullValue()) { |
| O << "\t.space\t " << TD.getTypeSize(CV->getType()) << "\n"; |
| return; |
| } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { |
| if (isStringCompatible(CVA)) { |
| O << ".ascii"; |
| printAsCString(O, CVA); |
| O << "\n"; |
| } else { // Not a string. Print the values in successive locations |
| const std::vector<Use> &constValues = CVA->getValues(); |
| for (unsigned i=0; i < constValues.size(); i++) |
| emitGlobalConstant(cast<Constant>(constValues[i].get())); |
| } |
| return; |
| } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { |
| // Print the fields in successive locations. Pad to align if needed! |
| const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType()); |
| const std::vector<Use>& constValues = CVS->getValues(); |
| unsigned sizeSoFar = 0; |
| for (unsigned i=0, N = constValues.size(); i < N; i++) { |
| const Constant* field = cast<Constant>(constValues[i].get()); |
| |
| // Check if padding is needed and insert one or more 0s. |
| unsigned fieldSize = TD.getTypeSize(field->getType()); |
| unsigned padSize = ((i == N-1? cvsLayout->StructSize |
| : cvsLayout->MemberOffsets[i+1]) |
| - cvsLayout->MemberOffsets[i]) - fieldSize; |
| sizeSoFar += fieldSize + padSize; |
| |
| // Now print the actual field value |
| emitGlobalConstant(field); |
| |
| // Insert the field padding unless it's zero bytes... |
| if (padSize) |
| O << "\t.space\t " << padSize << "\n"; |
| } |
| assert(sizeSoFar == cvsLayout->StructSize && |
| "Layout of constant struct may be incorrect!"); |
| return; |
| } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { |
| // FP Constants are printed as integer constants to avoid losing |
| // precision... |
| double Val = CFP->getValue(); |
| switch (CFP->getType()->getTypeID()) { |
| default: assert(0 && "Unknown floating point type!"); |
| case Type::FloatTyID: { |
| union FU { // Abide by C TBAA rules |
| float FVal; |
| unsigned UVal; |
| } U; |
| U.FVal = Val; |
| O << ".long\t" << U.UVal << "\t# float " << Val << "\n"; |
| return; |
| } |
| case Type::DoubleTyID: { |
| union DU { // Abide by C TBAA rules |
| double FVal; |
| uint64_t UVal; |
| struct { |
| uint32_t MSWord; |
| uint32_t LSWord; |
| } T; |
| } U; |
| U.FVal = Val; |
| |
| O << ".long\t" << U.T.MSWord << "\t# double most significant word " << Val << "\n"; |
| O << ".long\t" << U.T.LSWord << "\t# double least significant word" << Val << "\n"; |
| return; |
| } |
| } |
| } else if (CV->getType()->getPrimitiveSize() == 64) { |
| const ConstantInt *CI = dyn_cast<ConstantInt>(CV); |
| if(CI) { |
| union DU { // Abide by C TBAA rules |
| int64_t UVal; |
| struct { |
| uint32_t MSWord; |
| uint32_t LSWord; |
| } T; |
| } U; |
| U.UVal = CI->getRawValue(); |
| |
| O << ".long\t" << U.T.MSWord << "\t# Double-word most significant word " << U.UVal << "\n"; |
| O << ".long\t" << U.T.LSWord << "\t# Double-word least significant word" << U.UVal << "\n"; |
| return; |
| } |
| } |
| |
| const Type *type = CV->getType(); |
| O << "\t"; |
| switch (type->getTypeID()) { |
| case Type::UByteTyID: case Type::SByteTyID: |
| O << ".byte"; |
| break; |
| case Type::UShortTyID: case Type::ShortTyID: |
| O << ".short"; |
| break; |
| case Type::BoolTyID: |
| case Type::PointerTyID: |
| case Type::UIntTyID: case Type::IntTyID: |
| O << ".long"; |
| break; |
| case Type::ULongTyID: case Type::LongTyID: |
| assert (0 && "Should have already output double-word constant."); |
| case Type::FloatTyID: case Type::DoubleTyID: |
| assert (0 && "Should have already output floating point constant."); |
| default: |
| assert (0 && "Can't handle printing this type of thing"); |
| break; |
| } |
| O << "\t"; |
| emitConstantValueOnly(CV); |
| O << "\n"; |
| } |
| |
| /// printConstantPool - Print to the current output stream assembly |
| /// representations of the constants in the constant pool MCP. This is |
| /// used to print out constants which have been "spilled to memory" by |
| /// the code generator. |
| /// |
| void Printer::printConstantPool(MachineConstantPool *MCP) { |
| const std::vector<Constant*> &CP = MCP->getConstants(); |
| const TargetData &TD = TM.getTargetData(); |
| |
| if (CP.empty()) return; |
| |
| for (unsigned i = 0, e = CP.size(); i != e; ++i) { |
| O << "\t.const\n"; |
| O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType()) |
| << "\n"; |
| O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#" |
| << *CP[i] << "\n"; |
| emitGlobalConstant(CP[i]); |
| } |
| } |
| |
| /// runOnMachineFunction - This uses the printMachineInstruction() |
| /// method to print assembly for each instruction. |
| /// |
| bool Printer::runOnMachineFunction(MachineFunction &MF) { |
| // BBNumber is used here so that a given Printer will never give two |
| // BBs the same name. (If you have a better way, please let me know!) |
| static unsigned BBNumber = 0; |
| |
| O << "\n\n"; |
| // What's my mangled name? |
| CurrentFnName = Mang->getValueName(MF.getFunction()); |
| |
| // Print out constants referenced by the function |
| printConstantPool(MF.getConstantPool()); |
| |
| // Print out labels for the function. |
| O << "\t.text\n"; |
| O << "\t.globl\t" << CurrentFnName << "\n"; |
| O << "\t.align 5\n"; |
| O << CurrentFnName << ":\n"; |
| |
| // Number each basic block so that we can consistently refer to them |
| // in PC-relative references. |
| NumberForBB.clear(); |
| for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); |
| I != E; ++I) { |
| NumberForBB[I->getBasicBlock()] = BBNumber++; |
| } |
| |
| // Print out code for the function. |
| for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); |
| I != E; ++I) { |
| // Print a label for the basic block. |
| O << "L" << NumberForBB[I->getBasicBlock()] << ":\t# " |
| << I->getBasicBlock()->getName() << "\n"; |
| for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); |
| II != E; ++II) { |
| // Print the assembly for the instruction. |
| O << "\t"; |
| printMachineInstruction(II); |
| } |
| } |
| |
| // We didn't modify anything. |
| return false; |
| } |
| |
| |
| |
| void Printer::printOp(const MachineOperand &MO, |
| bool elideOffsetKeyword /* = false */) { |
| const MRegisterInfo &RI = *TM.getRegisterInfo(); |
| int new_symbol; |
| |
| switch (MO.getType()) { |
| case MachineOperand::MO_VirtualRegister: |
| if (Value *V = MO.getVRegValueOrNull()) { |
| O << "<" << V->getName() << ">"; |
| return; |
| } |
| // FALLTHROUGH |
| case MachineOperand::MO_MachineRegister: |
| O << RI.get(MO.getReg()).Name; |
| return; |
| |
| case MachineOperand::MO_SignExtendedImmed: |
| case MachineOperand::MO_UnextendedImmed: |
| O << (int)MO.getImmedValue(); |
| return; |
| case MachineOperand::MO_MachineBasicBlock: { |
| MachineBasicBlock *MBBOp = MO.getMachineBasicBlock(); |
| O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction()) |
| << "_" << MBBOp->getNumber () << "\t# " |
| << MBBOp->getBasicBlock ()->getName (); |
| return; |
| } |
| case MachineOperand::MO_PCRelativeDisp: |
| std::cerr << "Shouldn't use addPCDisp() when building PPC MachineInstrs"; |
| abort (); |
| return; |
| case MachineOperand::MO_GlobalAddress: |
| if (!elideOffsetKeyword) { |
| if(isa<Function>(MO.getGlobal())) { |
| Stubs.insert(Mang->getValueName(MO.getGlobal())); |
| O << "L" << Mang->getValueName(MO.getGlobal()) << "$stub"; |
| } else { |
| O << Mang->getValueName(MO.getGlobal()); |
| } |
| } |
| return; |
| case MachineOperand::MO_ExternalSymbol: |
| O << MO.getSymbolName(); |
| return; |
| default: |
| O << "<unknown operand type>"; return; |
| } |
| } |
| |
| #if 0 |
| static inline |
| unsigned int ValidOpcodes(const MachineInstr *MI, unsigned int ArgType[5]) { |
| int i; |
| unsigned int retval = 1; |
| |
| for(i = 0; i<5; i++) { |
| switch(ArgType[i]) { |
| case none: |
| break; |
| case Gpr: |
| case Gpr0: |
| Type::UIntTy |
| case Simm16: |
| case Zimm16: |
| case PCRelimm24: |
| case Imm24: |
| case Imm5: |
| case PCRelimm14: |
| case Imm14: |
| case Imm2: |
| case Crf: |
| case Imm3: |
| case Imm1: |
| case Fpr: |
| case Imm4: |
| case Imm8: |
| case Disimm16: |
| case Spr: |
| case Sgr: |
| }; |
| |
| } |
| } |
| } |
| #endif |
| |
| /// printMachineInstruction -- Print out a single PPC32 LLVM instruction |
| /// MI in Darwin syntax to the current output stream. |
| /// |
| void Printer::printMachineInstruction(const MachineInstr *MI) { |
| unsigned Opcode = MI->getOpcode(); |
| const TargetInstrInfo &TII = *TM.getInstrInfo(); |
| const TargetInstrDescriptor &Desc = TII.get(Opcode); |
| unsigned int i; |
| |
| unsigned int ArgCount = Desc.TSFlags & PPC32II::ArgCountMask; |
| unsigned int ArgType[5]; |
| |
| |
| ArgType[0] = (Desc.TSFlags>>PPC32II::Arg0TypeShift) & PPC32II::ArgTypeMask; |
| ArgType[1] = (Desc.TSFlags>>PPC32II::Arg1TypeShift) & PPC32II::ArgTypeMask; |
| ArgType[2] = (Desc.TSFlags>>PPC32II::Arg2TypeShift) & PPC32II::ArgTypeMask; |
| ArgType[3] = (Desc.TSFlags>>PPC32II::Arg3TypeShift) & PPC32II::ArgTypeMask; |
| ArgType[4] = (Desc.TSFlags>>PPC32II::Arg4TypeShift) & PPC32II::ArgTypeMask; |
| |
| assert ( ((Desc.TSFlags & PPC32II::VMX) == 0) && "Instruction requires VMX support"); |
| assert ( ((Desc.TSFlags & PPC32II::PPC64) == 0) && "Instruction requires 64 bit support"); |
| //assert ( ValidOpcodes(MI, ArgType) && "Instruction has invalid inputs"); |
| ++EmittedInsts; |
| |
| if(Opcode == PPC32::MovePCtoLR) { |
| O << "mflr r0\n"; |
| O << "bcl 20,31,L" << CurrentFnName << "$pb\n"; |
| O << "L" << CurrentFnName << "$pb:\n"; |
| return; |
| } |
| |
| O << TII.getName(MI->getOpcode()) << " "; |
| DEBUG(std::cerr << TII.getName(MI->getOpcode()) << " expects " |
| << ArgCount << " args\n"); |
| |
| if(Opcode == PPC32::LOADLoAddr) { |
| printOp(MI->getOperand(0)); |
| O << ", "; |
| printOp(MI->getOperand(1)); |
| O << ", lo16("; |
| printOp(MI->getOperand(2)); |
| O << "-L" << CurrentFnName << "$pb)\n"; |
| return; |
| } |
| |
| if(Opcode == PPC32::LOADHiAddr) { |
| printOp(MI->getOperand(0)); |
| O << ", "; |
| printOp(MI->getOperand(1)); |
| O << ", ha16(" ; |
| printOp(MI->getOperand(2)); |
| O << "-L" << CurrentFnName << "$pb)\n"; |
| return; |
| } |
| |
| if( (ArgCount == 3) && (ArgType[1] == PPC32II::Disimm16) ) { |
| printOp(MI->getOperand(0)); |
| O << ", "; |
| printOp(MI->getOperand(1)); |
| O << "("; |
| if((ArgType[2] == PPC32II::Gpr0) && (MI->getOperand(2).getReg() == PPC32::R0)) { |
| O << "0"; |
| } else { |
| printOp(MI->getOperand(2)); |
| } |
| O << ")\n"; |
| } else { |
| for(i = 0; i< ArgCount; i++) { |
| if( (ArgType[i] == PPC32II::Gpr0) && ((MI->getOperand(i).getReg()) == PPC32::R0)) { |
| O << "0"; |
| } else { |
| //std::cout << "DEBUG " << (*(TM.getRegisterInfo())).get(MI->getOperand(i).getReg()).Name << "\n"; |
| printOp(MI->getOperand(i)); |
| } |
| if( ArgCount - 1 == i) { |
| O << "\n"; |
| } else { |
| O << ", "; |
| } |
| } |
| } |
| |
| return; |
| } |
| |
| bool Printer::doInitialization(Module &M) { |
| // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly. |
| // |
| // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an |
| // instruction as a reference to the register named sp, and if you try to |
| // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased |
| // before being looked up in the symbol table. This creates spurious |
| // `undefined symbol' errors when linking. Workaround: Do not use `noprefix' |
| // mode, and decorate all register names with percent signs. |
| // O << "\t.intel_syntax\n"; |
| Mang = new Mangler(M, true); |
| return false; // success |
| } |
| |
| // SwitchSection - Switch to the specified section of the executable if we are |
| // not already in it! |
| // |
| static void SwitchSection(std::ostream &OS, std::string &CurSection, |
| const char *NewSection) { |
| if (CurSection != NewSection) { |
| CurSection = NewSection; |
| if (!CurSection.empty()) |
| OS << "\t" << NewSection << "\n"; |
| } |
| } |
| |
| bool Printer::doFinalization(Module &M) { |
| const TargetData &TD = TM.getTargetData(); |
| std::string CurSection; |
| |
| // Print out module-level global variables here. |
| for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) |
| if (I->hasInitializer()) { // External global require no code |
| O << "\n\n"; |
| std::string name = Mang->getValueName(I); |
| Constant *C = I->getInitializer(); |
| unsigned Size = TD.getTypeSize(C->getType()); |
| unsigned Align = TD.getTypeAlignment(C->getType()); |
| |
| if (C->isNullValue() && |
| (I->hasLinkOnceLinkage() || I->hasInternalLinkage() || |
| I->hasWeakLinkage() /* FIXME: Verify correct */)) { |
| SwitchSection(O, CurSection, ".data"); |
| if (I->hasInternalLinkage()) |
| O << "\t.local " << name << "\n"; |
| |
| O << "\t.comm " << name << "," << TD.getTypeSize(C->getType()) |
| << "," << (unsigned)TD.getTypeAlignment(C->getType()); |
| O << "\t\t# "; |
| WriteAsOperand(O, I, true, true, &M); |
| O << "\n"; |
| } else { |
| switch (I->getLinkage()) { |
| case GlobalValue::LinkOnceLinkage: |
| case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak. |
| // Nonnull linkonce -> weak |
| O << "\t.weak " << name << "\n"; |
| SwitchSection(O, CurSection, ""); |
| O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n"; |
| break; |
| |
| case GlobalValue::AppendingLinkage: |
| // FIXME: appending linkage variables should go into a section of |
| // their name or something. For now, just emit them as external. |
| case GlobalValue::ExternalLinkage: |
| // If external or appending, declare as a global symbol |
| O << "\t.globl " << name << "\n"; |
| // FALL THROUGH |
| case GlobalValue::InternalLinkage: |
| if (C->isNullValue()) |
| SwitchSection(O, CurSection, ".bss"); |
| else |
| SwitchSection(O, CurSection, ".data"); |
| break; |
| } |
| |
| O << "\t.align " << Align << "\n"; |
| O << name << ":\t\t\t\t# "; |
| WriteAsOperand(O, I, true, true, &M); |
| O << " = "; |
| WriteAsOperand(O, C, false, false, &M); |
| O << "\n"; |
| emitGlobalConstant(C); |
| } |
| } |
| |
| for(std::set<std::string>::iterator i = Stubs.begin(); i != Stubs.end(); ++i) { |
| O << ".data\n"; |
| O << ".section __TEXT,__picsymbolstub1,symbol_stubs,pure_instructions,32\n"; |
| O << "\t.align 2\n"; |
| O << "L" << *i << "$stub:\n"; |
| O << "\t.indirect_symbol " << *i << "\n"; |
| O << "\tmflr r0\n"; |
| O << "\tbcl 20,31,L0$" << *i << "\n"; |
| O << "L0$" << *i << ":\n"; |
| O << "\tmflr r11\n"; |
| O << "\taddis r11,r11,ha16(L" << *i << "$lazy_ptr-L0$" << *i << ")\n"; |
| O << "\tmtlr r0\n"; |
| O << "\tlwzu r12,lo16(L" << *i << "$lazy_ptr-L0$" << *i << ")(r11)\n"; |
| O << "\tmtctr r12\n"; |
| O << "\tbctr\n"; |
| O << ".data\n"; |
| O << ".lazy_symbol_pointer\n"; |
| O << "L" << *i << "$lazy_ptr:\n"; |
| O << ".indirect_symbol " << *i << "\n"; |
| O << ".long dyld_stub_binding_helper\n"; |
| |
| } |
| |
| delete Mang; |
| return false; // success |
| } |
| |
| } // End llvm namespace |