| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
| "http://www.w3.org/TR/html4/strict.dtd"> |
| <html> |
| <head> |
| <title>LLVM Assembly Language Reference Manual</title> |
| <link rel="stylesheet" href="llvm.css" type="text/css"> |
| </head> |
| <body> |
| |
| <div class="doc_title"> |
| LLVM Language Reference Manual |
| </div> |
| |
| <ol> |
| <li><a href="#abstract">Abstract</a></li> |
| <li><a href="#introduction">Introduction</a></li> |
| <li><a href="#identifiers">Identifiers</a></li> |
| <li><a href="#typesystem">Type System</a> |
| <ol> |
| <li><a href="#t_primitive">Primitive Types</a> |
| <ol> |
| <li><a href="#t_classifications">Type Classifications</a></li> |
| </ol></li> |
| <li><a href="#t_derived">Derived Types</a> |
| <ol> |
| <li><a href="#t_array" >Array Type</a></li> |
| <li><a href="#t_function">Function Type</a></li> |
| <li><a href="#t_pointer">Pointer Type</a></li> |
| <li><a href="#t_struct" >Structure Type</a></li> |
| <!-- <li><a href="#t_packed" >Packed Type</a> --> |
| </ol></li> |
| </ol></li> |
| <li><a href="#highlevel">High Level Structure</a> |
| <ol> |
| <li><a href="#modulestructure">Module Structure</a></li> |
| <li><a href="#globalvars">Global Variables</a></li> |
| <li><a href="#functionstructure">Function Structure</a></li> |
| </ol></li> |
| <li><a href="#instref">Instruction Reference</a> |
| <ol> |
| <li><a href="#terminators">Terminator Instructions</a> |
| <ol> |
| <li><a href="#i_ret" >'<tt>ret</tt>' Instruction</a></li> |
| <li><a href="#i_br" >'<tt>br</tt>' Instruction</a></li> |
| <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li> |
| <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li> |
| <li><a href="#i_unwind" >'<tt>unwind</tt>' Instruction</a></li> |
| </ol></li> |
| <li><a href="#binaryops">Binary Operations</a> |
| <ol> |
| <li><a href="#i_add" >'<tt>add</tt>' Instruction</a></li> |
| <li><a href="#i_sub" >'<tt>sub</tt>' Instruction</a></li> |
| <li><a href="#i_mul" >'<tt>mul</tt>' Instruction</a></li> |
| <li><a href="#i_div" >'<tt>div</tt>' Instruction</a></li> |
| <li><a href="#i_rem" >'<tt>rem</tt>' Instruction</a></li> |
| <li><a href="#i_setcc">'<tt>set<i>cc</i></tt>' Instructions</a></li> |
| </ol></li> |
| <li><a href="#bitwiseops">Bitwise Binary Operations</a> |
| <ol> |
| <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li> |
| <li><a href="#i_or" >'<tt>or</tt>' Instruction</a></li> |
| <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li> |
| <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li> |
| <li><a href="#i_shr">'<tt>shr</tt>' Instruction</a></li> |
| </ol></li> |
| <li><a href="#memoryops">Memory Access Operations</a> |
| <ol> |
| <li><a href="#i_malloc" >'<tt>malloc</tt>' Instruction</a></li> |
| <li><a href="#i_free" >'<tt>free</tt>' Instruction</a></li> |
| <li><a href="#i_alloca" >'<tt>alloca</tt>' Instruction</a></li> |
| <li><a href="#i_load" >'<tt>load</tt>' Instruction</a></li> |
| <li><a href="#i_store" >'<tt>store</tt>' Instruction</a></li> |
| <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li> |
| </ol></li> |
| <li><a href="#otherops">Other Operations</a> |
| <ol> |
| <li><a href="#i_phi" >'<tt>phi</tt>' Instruction</a></li> |
| <li><a href="#i_cast">'<tt>cast .. to</tt>' Instruction</a></li> |
| <li><a href="#i_call" >'<tt>call</tt>' Instruction</a></li> |
| <li><a href="#i_vanext">'<tt>vanext</tt>' Instruction</a></li> |
| <li><a href="#i_vaarg" >'<tt>vaarg</tt>' Instruction</a></li> |
| </ol> |
| </ol> |
| <li><a href="#intrinsics">Intrinsic Functions</a> |
| <ol> |
| <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a> |
| <ol> |
| <li><a href="#i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li> |
| <li><a href="#i_va_end" >'<tt>llvm.va_end</tt>' Intrinsic</a></li> |
| <li><a href="#i_va_copy" >'<tt>llvm.va_copy</tt>' Intrinsic</a></li> |
| </ol></li> |
| </ol></li> |
| |
| </ol> |
| |
| <div class="doc_text"> |
| <p><b>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and <A href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></b><p> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> |
| <a name="abstract">Abstract |
| </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>This document is a reference manual for the LLVM assembly language. LLVM is |
| an SSA based representation that provides type safety, low-level operations, |
| flexibility, and the capability of representing 'all' high-level languages |
| cleanly. It is the common code representation used throughout all phases of the |
| LLVM compilation strategy.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> |
| <a name="introduction">Introduction</a> |
| </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>The LLVM code representation is designed to be used in three different forms: |
| as an in-memory compiler IR, as an on-disk bytecode representation (suitable for |
| fast loading by a Just-In-Time compiler), and as a human readable assembly |
| language representation. This allows LLVM to provide a powerful intermediate |
| representation for efficient compiler transformations and analysis, while |
| providing a natural means to debug and visualize the transformations. The three |
| different forms of LLVM are all equivalent. This document describes the human |
| readable representation and notation.</p> |
| |
| <p>The LLVM representation aims to be a light-weight and low-level while being |
| expressive, typed, and extensible at the same time. It aims to be a "universal |
| IR" of sorts, by being at a low enough level that high-level ideas may be |
| cleanly mapped to it (similar to how microprocessors are "universal IR's", |
| allowing many source languages to be mapped to them). By providing type |
| information, LLVM can be used as the target of optimizations: for example, |
| through pointer analysis, it can be proven that a C automatic variable is never |
| accessed outside of the current function... allowing it to be promoted to a |
| simple SSA value instead of a memory location.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="wellformed">Well-Formedness</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>It is important to note that this document describes 'well formed' LLVM |
| assembly language. There is a difference between what the parser accepts and |
| what is considered 'well formed'. For example, the following instruction is |
| syntactically okay, but not well formed:</p> |
| |
| <pre> |
| %x = <a href="#i_add">add</a> int 1, %x |
| </pre> |
| |
| <p>...because the definition of <tt>%x</tt> does not dominate all of its uses. |
| The LLVM infrastructure provides a verification pass that may be used to verify |
| that an LLVM module is well formed. This pass is automatically run by the |
| parser after parsing input assembly, and by the optimizer before it outputs |
| bytecode. The violations pointed out by the verifier pass indicate bugs in |
| transformation passes or input to the parser.</p> |
| |
| <!-- Describe the typesetting conventions here. --> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> |
| <a name="identifiers">Identifiers</a> |
| </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM uses three different forms of identifiers, for different purposes:</p> |
| |
| <ol> |
| |
| <li>Numeric constants are represented as you would expect: 12, -3 123.421, |
| etc. Floating point constants have an optional hexidecimal notation.</li> |
| |
| <li>Named values are represented as a string of characters with a '%' prefix. |
| For example, %foo, %DivisionByZero, %a.really.long.identifier. The actual |
| regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. |
| Identifiers which require other characters in their names can be surrounded |
| with quotes. In this way, anything except a <tt>"</tt> character can be used |
| in a name.</li> |
| |
| <li>Unnamed values are represented as an unsigned numeric value with a '%' |
| prefix. For example, %12, %2, %44.</li> |
| |
| </ol> |
| |
| <p>LLVM requires the values start with a '%' sign for two reasons: Compilers |
| don't need to worry about name clashes with reserved words, and the set of |
| reserved words may be expanded in the future without penalty. Additionally, |
| unnamed identifiers allow a compiler to quickly come up with a temporary |
| variable without having to avoid symbol table conflicts.</p> |
| |
| <p>Reserved words in LLVM are very similar to reserved words in other languages. |
| There are keywords for different opcodes ('<tt><a href="#i_add">add</a></tt>', |
| '<tt><a href="#i_cast">cast</a></tt>', '<tt><a href="#i_ret">ret</a></tt>', |
| etc...), for primitive type names ('<tt><a href="#t_void">void</a></tt>', |
| '<tt><a href="#t_uint">uint</a></tt>', etc...), and others. These reserved |
| words cannot conflict with variable names, because none of them start with a '%' |
| character.</p> |
| |
| <p>Here is an example of LLVM code to multiply the integer variable |
| '<tt>%X</tt>' by 8:</p> |
| |
| <p>The easy way:</p> |
| |
| <pre> |
| %result = <a href="#i_mul">mul</a> uint %X, 8 |
| </pre> |
| |
| <p>After strength reduction:</p> |
| |
| <pre> |
| %result = <a href="#i_shl">shl</a> uint %X, ubyte 3 |
| </pre> |
| |
| <p>And the hard way:</p> |
| |
| <pre> |
| <a href="#i_add">add</a> uint %X, %X <i>; yields {uint}:%0</i> |
| <a href="#i_add">add</a> uint %0, %0 <i>; yields {uint}:%1</i> |
| %result = <a href="#i_add">add</a> uint %1, %1 |
| </pre> |
| |
| <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important |
| lexical features of LLVM:</p> |
| |
| <ol> |
| <li>Comments are delimited with a '<tt>;</tt>' and go until the end of |
| line.</li> |
| |
| <li>Unnamed temporaries are created when the result of a computation is not |
| assigned to a named value.</li> |
| |
| <li>Unnamed temporaries are numbered sequentially</li> |
| </ol> |
| |
| <p>...and it also show a convention that we follow in this document. When |
| demonstrating instructions, we will follow an instruction with a comment that |
| defines the type and name of value produced. Comments are shown in italic |
| text.</p> |
| |
| <p>The one non-intuitive notation for constants is the optional hexidecimal form |
| of floating point constants. For example, the form '<tt>double |
| 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double |
| 4.5e+15</tt>' which is also supported by the parser. The only time hexadecimal |
| floating point constants are useful (and the only time that they are generated |
| by the disassembler) is when an FP constant has to be emitted that is not |
| representable as a decimal floating point number exactly. For example, NaN's, |
| infinities, and other special cases are represented in their IEEE hexadecimal |
| format so that assembly and disassembly do not cause any bits to change in the |
| constants.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> |
| <a name="typesystem">Type System</a> |
| </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>The LLVM type system is one of the most important features of the |
| intermediate representation. Being typed enables a number of optimizations to |
| be performed on the IR directly, without having to do extra analyses on the side |
| before the transformation. A strong type system makes it easier to read the |
| generated code and enables novel analyses and transformations that are not |
| feasible to perform on normal three address code representations.</p> |
| |
| <!-- The written form for the type system was heavily influenced by the |
| syntactic problems with types in the C language<sup><a |
| href="#rw_stroustrup">1</a></sup>.<p> --> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="t_primitive">Primitive Types</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>The primitive types are the fundemental building blocks of the LLVM system. |
| The current set of primitive types are as follows:</p> |
| |
| <p> |
| <table border="0" align="center"> |
| <tr> |
| <td> |
| |
| <table border="1" cellspacing="0" cellpadding="4" align="center"> |
| <tr><td><tt>void</tt></td> <td>No value</td></tr> |
| <tr><td><tt>ubyte</tt></td> <td>Unsigned 8 bit value</td></tr> |
| <tr><td><tt>ushort</tt></td><td>Unsigned 16 bit value</td></tr> |
| <tr><td><tt>uint</tt></td> <td>Unsigned 32 bit value</td></tr> |
| <tr><td><tt>ulong</tt></td> <td>Unsigned 64 bit value</td></tr> |
| <tr><td><tt>float</tt></td> <td>32 bit floating point value</td></tr> |
| <tr><td><tt>label</tt></td> <td>Branch destination</td></tr> |
| </table> |
| |
| </td><td valign=top> |
| |
| <table border="1" cellspacing="0" cellpadding="4" align=center"> |
| <tr><td><tt>bool</tt></td> <td>True or False value</td></tr> |
| <tr><td><tt>sbyte</tt></td> <td>Signed 8 bit value</td></tr> |
| <tr><td><tt>short</tt></td> <td>Signed 16 bit value</td></tr> |
| <tr><td><tt>int</tt></td> <td>Signed 32 bit value</td></tr> |
| <tr><td><tt>long</tt></td> <td>Signed 64 bit value</td></tr> |
| <tr><td><tt>double</tt></td><td>64 bit floating point value</td></tr> |
| </table> |
| |
| </td> |
| </tr> |
| </table> |
| </p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="t_classifications">Type Classifications</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>These different primitive types fall into a few useful classifications:</p> |
| |
| <p> |
| <table border="1" cellspacing="0" cellpadding="4" align="center"> |
| <tr> |
| <td><a name="t_signed">signed</td> |
| <td><tt>sbyte, short, int, long, float, double</tt></td> |
| </tr> |
| <tr> |
| <td><a name="t_unsigned">unsigned</td> |
| <td><tt>ubyte, ushort, uint, ulong</tt></td> |
| </tr> |
| <tr> |
| <td><a name="t_integer">integer</td> |
| <td><tt>ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td> |
| </tr> |
| <tr> |
| <td><a name="t_integral">integral</td> |
| <td><tt>bool, ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td> |
| </tr> |
| <tr> |
| <td><a name="t_floating">floating point</td> |
| <td><tt>float, double</tt></td> |
| </tr> |
| <tr> |
| <td><a name="t_firstclass">first class</td> |
| <td><tt>bool, ubyte, sbyte, ushort, short,<br> |
| uint, int, ulong, long, float, double, |
| <a href="#t_pointer">pointer</a></tt></td> |
| </tr> |
| </table> |
| </p> |
| |
| <p>The <a href="#t_firstclass">first class</a> types are perhaps the most |
| important. Values of these types are the only ones which can be produced by |
| instructions, passed as arguments, or used as operands to instructions. This |
| means that all structures and arrays must be manipulated either by pointer or by |
| component.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="t_derived">Derived Types</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>The real power in LLVM comes from the derived types in the system. This is |
| what allows a programmer to represent arrays, functions, pointers, and other |
| useful types. Note that these derived types may be recursive: For example, it |
| is possible to have a two dimensional array.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="t_array">Array Type</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| |
| <p>The array type is a very simple derived type that arranges elements |
| sequentially in memory. The array type requires a size (number of elements) and |
| an underlying data type.</p> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| [<# elements> x <elementtype>] |
| </pre> |
| |
| <p>The number of elements is a constant integer value, elementtype may be any |
| type with a size.</p> |
| |
| <h5>Examples:</h5> |
| |
| <p> |
| <tt>[40 x int ]</tt>: Array of 40 integer values.<br> |
| <tt>[41 x int ]</tt>: Array of 41 integer values.<br> |
| <tt>[40 x uint]</tt>: Array of 40 unsigned integer values.<p> |
| </p> |
| |
| <p>Here are some examples of multidimensional arrays:</p> |
| |
| <p> |
| <table border="0" cellpadding="0" cellspacing="0"> |
| <tr> |
| <td><tt>[3 x [4 x int]]</tt></td> |
| <td>: 3x4 array integer values.</td> |
| </tr> |
| <tr> |
| <td><tt>[12 x [10 x float]]</tt></td> |
| <td>: 12x10 array of single precision floating point values.</td> |
| </tr> |
| <tr> |
| <td><tt>[2 x [3 x [4 x uint]]]</tt></td> |
| <td>: 2x3x4 array of unsigned integer values.</td> |
| </tr> |
| </table> |
| </p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="t_function">Function Type</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| |
| <p>The function type can be thought of as a function signature. It consists of |
| a return type and a list of formal parameter types. Function types are usually |
| used when to build virtual function tables (which are structures of pointers to |
| functions), for indirect function calls, and when defining a function.</p> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <returntype> (<parameter list>) |
| </pre> |
| |
| <p>Where '<tt><parameter list></tt>' is a comma-separated list of type |
| specifiers. Optionally, the parameter list may include a type <tt>...</tt>, |
| which indicates that the function takes a variable number of arguments. |
| Variable argument functions can access their arguments with the <a |
| href="#int_varargs">variable argument handling intrinsic</a> functions.</p> |
| |
| <h5>Examples:</h5> |
| |
| <p> |
| <table border="0" cellpadding="0" cellspacing="0"> |
| |
| <tr> |
| <td><tt>int (int)</tt></td> |
| <td>: function taking an <tt>int</tt>, returning an <tt>int</tt></td> |
| </tr> |
| <tr> |
| <td><tt>float (int, int *) *</tt></td> |
| <td>: <a href="#t_pointer">Pointer</a> to a function that takes an |
| <tt>int</tt> and a <a href="#t_pointer">pointer</a> to <tt>int</tt>, |
| returning <tt>float</tt>.</td> |
| </tr> |
| <tr> |
| <td><tt>int (sbyte *, ...)</tt></td> |
| <td>: A vararg function that takes at least one <a |
| href="#t_pointer">pointer</a> to <tt>sbyte</tt> (signed char in C), which |
| returns an integer. This is the signature for <tt>printf</tt> in |
| LLVM.</td> |
| </tr> |
| </table> |
| </p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="t_struct">Structure Type</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| |
| <p>The structure type is used to represent a collection of data members together |
| in memory. The packing of the field types is defined to match the ABI of the |
| underlying processor. The elements of a structure may be any type that has a |
| size.</p> |
| |
| <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and |
| '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with the |
| '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| { <type list> } |
| </pre> |
| |
| <h5>Examples:</h5> |
| |
| <p> |
| <table border="0" cellpadding="0" cellspacing="0"> |
| <tr> |
| <td><tt>{ int, int, int }</tt></td> |
| <td>: a triple of three <tt>int</tt> values</td> |
| </tr> |
| <tr> |
| <td><tt>{ float, int (int) * }</tt></td> |
| <td>: A pair, where the first element is a <tt>float</tt> and the second |
| element is a <a href="#t_pointer">pointer</a> to a <a |
| href="t_function">function</a> that takes an <tt>int</tt>, returning an |
| <tt>int</tt>.</td> |
| </tr> |
| </table> |
| </p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="t_pointer">Pointer Type</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| |
| <p>As in many languages, the pointer type represents a pointer or reference to |
| another object, which must live in memory.</p> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <type> * |
| </pre> |
| |
| <h5>Examples:</h5> |
| |
| <p> |
| <table border="0" cellpadding="0" cellspacing="0"> |
| <tr> |
| <td><tt>[4x int]*</tt></td> |
| <td>: <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of four |
| <tt>int</tt> values</td> |
| </tr> |
| <tr> |
| <td><tt>int (int *) *</tt></td> |
| <td>: A <a href="#t_pointer">pointer</a> to a <a |
| href="t_function">function</a> that takes an <tt>int</tt>, returning an |
| <tt>int</tt>.</td> |
| </tr> |
| </table> |
| </p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <!-- |
| <div class="doc_subsubsection"> |
| <a name="t_packed">Packed Type</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| Mention/decide that packed types work with saturation or not. Maybe have a packed+saturated type in addition to just a packed type.<p> |
| |
| Packed types should be 'nonsaturated' because standard data types are not saturated. Maybe have a saturated packed type?<p> |
| |
| </div> |
| |
| --> |
| |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> |
| <a name="highlevel">High Level Structure</a> |
| </div> |
| <!-- *********************************************************************** --> |
| |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="modulestructure">Module Structure</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM programs are composed of "Module"s, each of which is a translation unit |
| of the input programs. Each module consists of functions, global variables, and |
| symbol table entries. Modules may be combined together with the LLVM linker, |
| which merges function (and global variable) definitions, resolves forward |
| declarations, and merges symbol table entries. Here is an example of the "hello |
| world" module:</p> |
| |
| <pre> |
| <i>; Declare the string constant as a global constant...</i> |
| <a href="#identifiers">%.LC0</a> = <a href="#linkage_internal">internal</a> <a href="#globalvars">constant</a> <a href="#t_array">[13 x sbyte]</a> c"hello world\0A\00" <i>; [13 x sbyte]*</i> |
| |
| <i>; External declaration of the puts function</i> |
| <a href="#functionstructure">declare</a> int %puts(sbyte*) <i>; int(sbyte*)* </i> |
| |
| <i>; Definition of main function</i> |
| int %main() { <i>; int()* </i> |
| <i>; Convert [13x sbyte]* to sbyte *...</i> |
| %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x sbyte]* %.LC0, long 0, long 0 <i>; sbyte*</i> |
| |
| <i>; Call puts function to write out the string to stdout...</i> |
| <a href="#i_call">call</a> int %puts(sbyte* %cast210) <i>; int</i> |
| <a href="#i_ret">ret</a> int 0 |
| } |
| </pre> |
| |
| <p>This example is made up of a <a href="#globalvars">global variable</a> named |
| "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function, and a |
| <a href="#functionstructure">function definition</a> for "<tt>main</tt>".</p> |
| |
| <a name="linkage"> |
| In general, a module is made up of a list of global values, where both functions |
| and global variables are global values. Global values are represented by a |
| pointer to a memory location (in this case, a pointer to an array of char, and a |
| pointer to a function), and have one of the following linkage types:<p> |
| |
| <dl> |
| <a name="linkage_internal"> |
| <dt><tt><b>internal</b></tt> |
| |
| <dd>Global values with internal linkage are only directly accessible by objects |
| in the current module. In particular, linking code into a module with an |
| internal global value may cause the internal to be renamed as necessary to avoid |
| collisions. Because the symbol is internal to the module, all references can be |
| updated. This corresponds to the notion of the '<tt>static</tt>' keyword in C, |
| or the idea of "anonymous namespaces" in C++.<p> |
| |
| <a name="linkage_linkonce"> |
| <dt><tt><b>linkonce</b></tt>: |
| |
| <dd>"<tt>linkonce</tt>" linkage is similar to <tt>internal</tt> linkage, with |
| the twist that linking together two modules defining the same <tt>linkonce</tt> |
| globals will cause one of the globals to be discarded. This is typically used |
| to implement inline functions. Unreferenced <tt>linkonce</tt> globals are |
| allowed to be discarded.<p> |
| |
| <a name="linkage_weak"> |
| <dt><tt><b>weak</b></tt>: |
| |
| <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage, |
| except that unreferenced <tt>weak</tt> globals may not be discarded. This is |
| used to implement constructs in C such as "<tt>int X;</tt>" at global scope.<p> |
| |
| <a name="linkage_appending"> |
| <dt><tt><b>appending</b></tt>: |
| |
| <dd>"<tt>appending</tt>" linkage may only be applied to global variables of |
| pointer |
| to array type. When two global variables with appending linkage are linked |
| together, the two global arrays are appended together. This is the LLVM, |
| typesafe, equivalent of having the system linker append together "sections" with |
| identical names when .o files are linked.<p> |
| |
| <a name="linkage_external"> |
| <dt><tt><b>externally visible</b></tt>: |
| |
| <dd>If none of the above identifiers are used, the global is externally visible, |
| meaning that it participates in linkage and can be used to resolve external |
| symbol references.<p> |
| |
| </dl><p> |
| |
| <p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if |
| another module defined a "<tt>.LC0</tt>" variable and was linked with this one, |
| one of the two would be renamed, preventing a collision. Since "<tt>main</tt>" |
| and "<tt>puts</tt>" are external (i.e., lacking any linkage declarations), they |
| are accessible outside of the current module. It is illegal for a function |
| <i>declaration</i> to have any linkage type other than "externally visible".</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="globalvars">Global Variables</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Global variables define regions of memory allocated at compilation time |
| instead of run-time. Global variables may optionally be initialized. A |
| variable may be defined as a global "constant", which indicates that the |
| contents of the variable will never be modified (opening options for |
| optimization). Constants must always have an initial value.</p> |
| |
| <p>As SSA values, global variables define pointer values that are in scope |
| (i.e. they dominate) for all basic blocks in the program. Global variables |
| always define a pointer to their "content" type because they describe a region |
| of memory, and all memory objects in LLVM are accessed through pointers.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="functionstructure">Functions</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM function definitions are composed of a (possibly empty) argument list, |
| an opening curly brace, a list of basic blocks, and a closing curly brace. LLVM |
| function declarations are defined with the "<tt>declare</tt>" keyword, a |
| function name, and a function signature.</p> |
| |
| <p>A function definition contains a list of basic blocks, forming the CFG for |
| the function. Each basic block may optionally start with a label (giving the |
| basic block a symbol table entry), contains a list of instructions, and ends |
| with a <a href="#terminators">terminator</a> instruction (such as a branch or |
| function return).</p> |
| |
| <p>The first basic block in program is special in two ways: it is immediately |
| executed on entrance to the function, and it is not allowed to have predecessor |
| basic blocks (i.e. there can not be any branches to the entry block of a |
| function). Because the block can have no predecessors, it also cannot have any |
| <a href="#i_phi">PHI nodes</a>.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> |
| <a name="instref">Instruction Reference</a> |
| </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>The LLVM instruction set consists of several different classifications of |
| instructions: <a href="#terminators">terminator instructions</a>, <a |
| href="#binaryops">binary instructions</a>, <a href="#memoryops">memory |
| instructions</a>, and <a href="#otherops">other instructions</a>.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="terminators">Terminator Instructions</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>As mentioned <a href="#functionstructure">previously</a>, every basic block |
| in a program ends with a "Terminator" instruction, which indicates which block |
| should be executed after the current block is finished. These terminator |
| instructions typically yield a '<tt>void</tt>' value: they produce control flow, |
| not values (the one exception being the '<a |
| href="#i_invoke"><tt>invoke</tt></a>' instruction).</p> |
| |
| <p>There are five different terminator instructions: the '<a |
| href="#i_ret"><tt>ret</tt></a>' instruction, the '<a |
| href="#i_br"><tt>br</tt></a>' instruction, the '<a |
| href="#i_switch"><tt>switch</tt></a>' instruction, the '<a |
| href="#i_invoke"><tt>invoke</tt></a>' instruction, and the '<a |
| href="#i_unwind"><tt>unwind</tt></a>' instruction.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_ret">'<tt>ret</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| ret <type> <value> <i>; Return a value from a non-void function</i> |
| ret void <i>; Return from void function</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>ret</tt>' instruction is used to return control flow (and a value) |
| from a function, back to the caller.</p> |
| |
| <p>There are two forms of the '<tt>ret</tt>' instructruction: one that returns a |
| value and then causes control flow, and one that just causes control flow to |
| occur.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The '<tt>ret</tt>' instruction may return any '<a href="#t_firstclass">first |
| class</a>' type. Notice that a function is not <a href="#wellformed">well |
| formed</a> if there exists a '<tt>ret</tt>' instruction inside of the function |
| that returns a value that does not match the return type of the function.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to |
| the calling function's context. If the caller is a "<a |
| href="#i_call"><tt>call</tt></a> instruction, execution continues at the |
| instruction after the call. If the caller was an "<a |
| href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at the |
| beginning "normal" of the destination block. If the instruction returns a |
| value, that value shall set the call or invoke instruction's return value.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| ret int 5 <i>; Return an integer value of 5</i> |
| ret void <i>; Return from a void function</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_br">'<tt>br</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| br bool <cond>, label <iftrue>, label <iffalse> |
| br label <dest> <i>; Unconditional branch</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a |
| different basic block in the current function. There are two forms of this |
| instruction, corresponding to a conditional branch and an unconditional |
| branch.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The conditional branch form of the '<tt>br</tt>' instruction takes a single |
| '<tt>bool</tt>' value and two '<tt>label</tt>' values. The unconditional form |
| of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a |
| target.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>Upon execution of a conditional '<tt>br</tt>' instruction, the |
| '<tt>bool</tt>' argument is evaluated. If the value is <tt>true</tt>, control |
| flows to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is |
| <tt>false</tt>, control flows to the '<tt>iffalse</tt>' <tt>label</tt> |
| argument.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| Test: |
| %cond = <a href="#i_setcc">seteq</a> int %a, %b |
| br bool %cond, label %IfEqual, label %IfUnequal |
| IfEqual: |
| <a href="#i_ret">ret</a> int 1 |
| IfUnequal: |
| <a href="#i_ret">ret</a> int 0 |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_switch">'<tt>switch</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| switch uint <value>, label <defaultdest> [ int <val>, label &dest>, ... ] |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of |
| several different places. It is a generalization of the '<tt>br</tt>' |
| instruction, allowing a branch to occur to one of many possible |
| destinations.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The '<tt>switch</tt>' instruction uses three parameters: a '<tt>uint</tt>' |
| comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and |
| an array of pairs of comparison value constants and '<tt>label</tt>'s.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The <tt>switch</tt> instruction specifies a table of values and destinations. |
| When the '<tt>switch</tt>' instruction is executed, this table is searched for |
| the given value. If the value is found, the corresponding destination is |
| branched to, otherwise the default value it transfered to.</p> |
| |
| <h5>Implementation:</h5> |
| |
| <p>Depending on properties of the target machine and the particular |
| <tt>switch</tt> instruction, this instruction may be code generated as a series |
| of chained conditional branches, or with a lookup table.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <i>; Emulate a conditional br instruction</i> |
| %Val = <a href="#i_cast">cast</a> bool %value to uint |
| switch uint %Val, label %truedest [int 0, label %falsedest ] |
| |
| <i>; Emulate an unconditional br instruction</i> |
| switch uint 0, label %dest [ ] |
| |
| <i>; Implement a jump table:</i> |
| switch uint %val, label %otherwise [ int 0, label %onzero, |
| int 1, label %onone, |
| int 2, label %ontwo ] |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_invoke">'<tt>invoke</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = invoke <ptr to function ty> %<function ptr val>(<function args>) |
| to label <normal label> except label <exception label> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified |
| function, with the possibility of control flow transfer to either the |
| '<tt>normal</tt>' <tt>label</tt> label or the '<tt>exception</tt>' |
| <tt>label</tt>. If the callee function returns with the "<tt><a |
| href="#i_ret">ret</a></tt>" instruction, control flow will return to the |
| "normal" label. If the callee (or any indirect callees) returns with the "<a |
| href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted, and |
| continued at the dynamically nearest "except" label.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>This instruction requires several arguments:</p> |
| |
| <ol> |
| |
| <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to |
| function value being invoked. In most cases, this is a direct function |
| invocation, but indirect <tt>invoke</tt>s are just as possible, branching off |
| an arbitrary pointer to function value. |
| |
| <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a |
| function to be invoked. |
| |
| <li>'<tt>function args</tt>': argument list whose types match the function |
| signature argument types. If the function signature indicates the function |
| accepts a variable number of arguments, the extra arguments can be specified. |
| |
| <li>'<tt>normal label</tt>': the label reached when the called function executes |
| a '<tt><a href="#i_ret">ret</a></tt>' instruction. |
| |
| <li>'<tt>exception label</tt>': the label reached when a callee returns with the |
| <a href="#i_unwind"><tt>unwind</tt></a> instruction. |
| </ol> |
| |
| <h5>Semantics:</h5> |
| |
| <p>This instruction is designed to operate as a standard '<tt><a |
| href="#i_call">call</a></tt>' instruction in most regards. The primary |
| difference is that it establishes an association with a label, which is used by the runtime library to unwind the stack.</p> |
| |
| <p>This instruction is used in languages with destructors to ensure that proper |
| cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown |
| exception. Additionally, this is important for implementation of |
| '<tt>catch</tt>' clauses in high-level languages that support them.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| %retval = invoke int %Test(int 15) |
| to label %Continue |
| except label %TestCleanup <i>; {int}:retval set</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_unwind">'<tt>unwind</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| unwind |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow |
| at the first callee in the dynamic call stack which used an <a |
| href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is |
| primarily used to implement exception handling.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to |
| immediately halt. The dynamic call stack is then searched for the first <a |
| href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found, |
| execution continues at the "exceptional" destination block specified by the |
| <tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the |
| dynamic call chain, undefined behavior results.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="binaryops">Binary Operations</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Binary operators are used to do most of the computation in a program. They |
| require two operands, execute an operation on them, and produce a single value. |
| The result value of a binary operator is not necessarily the same type as its |
| operands.</p> |
| |
| <p>There are several different binary operators:</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_add">'<tt>add</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = add <ty> <var1>, <var2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>add</tt>' instruction must be either <a |
| href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> |
| values. Both arguments must have identical types.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The value produced is the integer or floating point sum of the two |
| operands.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <result> = add int 4, %var <i>; yields {int}:result = 4 + %var</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_sub">'<tt>sub</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = sub <ty> <var1>, <var2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>sub</tt>' instruction returns the difference of its two |
| operands.</p> |
| |
| <p>Note that the '<tt>sub</tt>' instruction is used to represent the |
| '<tt>neg</tt>' instruction present in most other intermediate |
| representations.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>sub</tt>' instruction must be either <a |
| href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> |
| values. Both arguments must have identical types.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The value produced is the integer or floating point difference of the two |
| operands.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <result> = sub int 4, %var <i>; yields {int}:result = 4 - %var</i> |
| <result> = sub int 0, %val <i>; yields {int}:result = -%var</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_mul">'<tt>mul</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = mul <ty> <var1>, <var2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>mul</tt>' instruction must be either <a |
| href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> |
| values. Both arguments must have identical types.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The value produced is the integer or floating point product of the two |
| operands.</p> |
| |
| <p>There is no signed vs unsigned multiplication. The appropriate action is |
| taken based on the type of the operand.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <result> = mul int 4, %var <i>; yields {int}:result = 4 * %var</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_div">'<tt>div</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = div <ty> <var1>, <var2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>div</tt>' instruction returns the quotient of its two operands.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>div</tt>' instruction must be either <a |
| href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> |
| values. Both arguments must have identical types.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The value produced is the integer or floating point quotient of the two |
| operands.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <result> = div int 4, %var <i>; yields {int}:result = 4 / %var</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_rem">'<tt>rem</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = rem <ty> <var1>, <var2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>rem</tt>' instruction returns the remainder from the division of its |
| two operands.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>rem</tt>' instruction must be either <a |
| href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> |
| values. Both arguments must have identical types.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>This returns the <i>remainder</i> of a division (where the result has the |
| same sign as the divisor), not the <i>modulus</i> (where the result has the same |
| sign as the dividend) of a value. For more information about the difference, |
| see: <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The Math |
| Forum</a>.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <result> = rem int 4, %var <i>; yields {int}:result = 4 % %var</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_setcc">'<tt>set<i>cc</i></tt>' Instructions</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = seteq <ty> <var1>, <var2> <i>; yields {bool}:result</i> |
| <result> = setne <ty> <var1>, <var2> <i>; yields {bool}:result</i> |
| <result> = setlt <ty> <var1>, <var2> <i>; yields {bool}:result</i> |
| <result> = setgt <ty> <var1>, <var2> <i>; yields {bool}:result</i> |
| <result> = setle <ty> <var1>, <var2> <i>; yields {bool}:result</i> |
| <result> = setge <ty> <var1>, <var2> <i>; yields {bool}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>set<i>cc</i></tt>' family of instructions returns a boolean value |
| based on a comparison of their two operands.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>set<i>cc</i></tt>' instructions must be of <a |
| href="#t_firstclass">first class</a> type (it is not possible to compare |
| '<tt>label</tt>'s, '<tt>array</tt>'s, '<tt>structure</tt>' or '<tt>void</tt>' |
| values, etc...). Both arguments must have identical types.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>seteq</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value |
| if both operands are equal.<br> |
| |
| The '<tt>setne</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if |
| both operands are unequal.<br> |
| |
| The '<tt>setlt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if |
| the first operand is less than the second operand.<br> |
| |
| The '<tt>setgt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if |
| the first operand is greater than the second operand.<br> |
| |
| The '<tt>setle</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if |
| the first operand is less than or equal to the second operand.<br> |
| |
| The '<tt>setge</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if |
| the first operand is greater than or equal to the second operand.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <result> = seteq int 4, 5 <i>; yields {bool}:result = false</i> |
| <result> = setne float 4, 5 <i>; yields {bool}:result = true</i> |
| <result> = setlt uint 4, 5 <i>; yields {bool}:result = true</i> |
| <result> = setgt sbyte 4, 5 <i>; yields {bool}:result = false</i> |
| <result> = setle sbyte 4, 5 <i>; yields {bool}:result = true</i> |
| <result> = setge sbyte 4, 5 <i>; yields {bool}:result = false</i> |
| </pre> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="bitwiseops">Bitwise Binary Operations</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Bitwise binary operators are used to do various forms of bit-twiddling in a |
| program. They are generally very efficient instructions, and can commonly be |
| strength reduced from other instructions. They require two operands, execute an |
| operation on them, and produce a single value. The resulting value of the |
| bitwise binary operators is always the same type as its first operand.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_and">'<tt>and</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = and <ty> <var1>, <var2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two |
| operands.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>and</tt>' instruction must be <a |
| href="#t_integral">integral</a> values. Both arguments must have identical |
| types.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The truth table used for the '<tt>and</tt>' instruction is:</p> |
| |
| <p> |
| <center> |
| <table border="1" cellspacing="0" cellpadding="4"> |
| <tr><td>In0</td> <td>In1</td> <td>Out</td></tr> |
| <tr><td>0</td> <td>0</td> <td>0</td></tr> |
| <tr><td>0</td> <td>1</td> <td>0</td></tr> |
| <tr><td>1</td> <td>0</td> <td>0</td></tr> |
| <tr><td>1</td> <td>1</td> <td>1</td></tr> |
| </table></center> |
| </p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <result> = and int 4, %var <i>; yields {int}:result = 4 & %var</i> |
| <result> = and int 15, 40 <i>; yields {int}:result = 8</i> |
| <result> = and int 4, 8 <i>; yields {int}:result = 0</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_or">'<tt>or</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = or <ty> <var1>, <var2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its |
| two operands.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>or</tt>' instruction must be <a |
| href="#t_integral">integral</a> values. Both arguments must have identical |
| types.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The truth table used for the '<tt>or</tt>' instruction is:</p> |
| |
| <p> |
| <center><table border="1" cellspacing="0" cellpadding="4"> |
| <tr><td>In0</td> <td>In1</td> <td>Out</td></tr> |
| <tr><td>0</td> <td>0</td> <td>0</td></tr> |
| <tr><td>0</td> <td>1</td> <td>1</td></tr> |
| <tr><td>1</td> <td>0</td> <td>1</td></tr> |
| <tr><td>1</td> <td>1</td> <td>1</td></tr> |
| </table></center> |
| </p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <result> = or int 4, %var <i>; yields {int}:result = 4 | %var</i> |
| <result> = or int 15, 40 <i>; yields {int}:result = 47</i> |
| <result> = or int 4, 8 <i>; yields {int}:result = 12</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_xor">'<tt>xor</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = xor <ty> <var1>, <var2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of |
| its two operands. The <tt>xor</tt> is used to implement the "one's complement" |
| operation, which is the "~" operator in C.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>xor</tt>' instruction must be <a |
| href="#t_integral">integral</a> values. Both arguments must have identical |
| types.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The truth table used for the '<tt>xor</tt>' instruction is:</p> |
| |
| <p> |
| <center><table border="1" cellspacing="0" cellpadding="4"> |
| <tr><td>In0</td> <td>In1</td> <td>Out</td></tr> |
| <tr><td>0</td> <td>0</td> <td>0</td></tr> |
| <tr><td>0</td> <td>1</td> <td>1</td></tr> |
| <tr><td>1</td> <td>0</td> <td>1</td></tr> |
| <tr><td>1</td> <td>1</td> <td>0</td></tr> |
| </table></center> |
| <p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <result> = xor int 4, %var <i>; yields {int}:result = 4 ^ %var</i> |
| <result> = xor int 15, 40 <i>; yields {int}:result = 39</i> |
| <result> = xor int 4, 8 <i>; yields {int}:result = 12</i> |
| <result> = xor int %V, -1 <i>; yields {int}:result = ~%V</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_shl">'<tt>shl</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = shl <ty> <var1>, ubyte <var2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left |
| a specified number of bits.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The first argument to the '<tt>shl</tt>' instruction must be an <a |
| href="#t_integer">integer</a> type. The second argument must be an |
| '<tt>ubyte</tt>' type.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <result> = shl int 4, ubyte %var <i>; yields {int}:result = 4 << %var</i> |
| <result> = shl int 4, ubyte 2 <i>; yields {int}:result = 16</i> |
| <result> = shl int 1, ubyte 10 <i>; yields {int}:result = 1024</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_shr">'<tt>shr</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = shr <ty> <var1>, ubyte <var2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>shr</tt>' instruction returns the first operand shifted to the right |
| a specified number of bits.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The first argument to the '<tt>shr</tt>' instruction must be an <a |
| href="#t_integer">integer</a> type. The second argument must be an |
| '<tt>ubyte</tt>' type.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>If the first argument is a <a href="#t_signed">signed</a> type, the most |
| significant bit is duplicated in the newly free'd bit positions. If the first |
| argument is unsigned, zero bits shall fill the empty positions.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <result> = shr int 4, ubyte %var <i>; yields {int}:result = 4 >> %var</i> |
| <result> = shr uint 4, ubyte 1 <i>; yields {uint}:result = 2</i> |
| <result> = shr int 4, ubyte 2 <i>; yields {int}:result = 1</i> |
| <result> = shr sbyte 4, ubyte 3 <i>; yields {sbyte}:result = 0</i> |
| <result> = shr sbyte -2, ubyte 1 <i>; yields {sbyte}:result = -1</i> |
| </pre> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="memoryops">Memory Access Operations</div> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>A key design point of an SSA-based representation is how it represents |
| memory. In LLVM, no memory locations are in SSA form, which makes things very |
| simple. This section describes how to read, write, allocate and free memory in |
| LLVM.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_malloc">'<tt>malloc</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = malloc <type>, uint <NumElements> <i>; yields {type*}:result</i> |
| <result> = malloc <type> <i>; yields {type*}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>malloc</tt>' instruction allocates memory from the system heap and |
| returns a pointer to it.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The the '<tt>malloc</tt>' instruction allocates |
| <tt>sizeof(<type>)*NumElements</tt> bytes of memory from the operating |
| system, and returns a pointer of the appropriate type to the program. The |
| second form of the instruction is a shorter version of the first instruction |
| that defaults to allocating one element.</p> |
| |
| <p>'<tt>type</tt>' must be a sized type.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>Memory is allocated using the system "<tt>malloc</tt>" function, and a |
| pointer is returned.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| %array = malloc [4 x ubyte ] <i>; yields {[%4 x ubyte]*}:array</i> |
| |
| %size = <a href="#i_add">add</a> uint 2, 2 <i>; yields {uint}:size = uint 4</i> |
| %array1 = malloc ubyte, uint 4 <i>; yields {ubyte*}:array1</i> |
| %array2 = malloc [12 x ubyte], uint %size <i>; yields {[12 x ubyte]*}:array2</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_free">'<tt>free</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| free <type> <value> <i>; yields {void}</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>free</tt>' instruction returns memory back to the unused memory |
| heap, to be reallocated in the future.<p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>'<tt>value</tt>' shall be a pointer value that points to a value that was |
| allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' instruction.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>Access to the memory pointed to by the pointer is not longer defined after |
| this instruction executes.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| %array = <a href="#i_malloc">malloc</a> [4 x ubyte] <i>; yields {[4 x ubyte]*}:array</i> |
| free [4 x ubyte]* %array |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_alloca">'<tt>alloca</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = alloca <type>, uint <NumElements> <i>; yields {type*}:result</i> |
| <result> = alloca <type> <i>; yields {type*}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>alloca</tt>' instruction allocates memory on the current stack frame |
| of the procedure that is live until the current function returns to its |
| caller.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The the '<tt>alloca</tt>' instruction allocates |
| <tt>sizeof(<type>)*NumElements</tt> bytes of memory on the runtime stack, |
| returning a pointer of the appropriate type to the program. The second form of |
| the instruction is a shorter version of the first that defaults to allocating |
| one element.</p> |
| |
| <p>'<tt>type</tt>' may be any sized type.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>Memory is allocated, a pointer is returned. '<tt>alloca</tt>'d memory is |
| automatically released when the function returns. The '<tt>alloca</tt>' |
| instruction is commonly used to represent automatic variables that must have an |
| address available. When the function returns (either with the <tt><a |
| href="#i_ret">ret</a></tt> or <tt><a href="#i_invoke">invoke</a></tt> |
| instructions), the memory is reclaimed.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| %ptr = alloca int <i>; yields {int*}:ptr</i> |
| %ptr = alloca int, uint 4 <i>; yields {int*}:ptr</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_load">'<tt>load</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = load <ty>* <pointer> |
| <result> = volatile load <ty>* <pointer> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>load</tt>' instruction is used to read from memory.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The argument to the '<tt>load</tt>' instruction specifies the memory address |
| to load from. The pointer must point to a <a href="t_firstclass">first |
| class</a> type. If the <tt>load</tt> is marked as <tt>volatile</tt> then the |
| optimizer is not allowed to modify the number or order of execution of this |
| <tt>load</tt> with other volatile <tt>load</tt> and <tt><a |
| href="#i_store">store</a></tt> instructions. </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The location of memory pointed to is loaded.</p> |
| |
| <h5>Examples:</h5> |
| |
| <pre> |
| %ptr = <a href="#i_alloca">alloca</a> int <i>; yields {int*}:ptr</i> |
| <a href="#i_store">store</a> int 3, int* %ptr <i>; yields {void}</i> |
| %val = load int* %ptr <i>; yields {int}:val = int 3</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_store">'<tt>store</tt>' Instruction</a> |
| </div> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| store <ty> <value>, <ty>* <pointer> <i>; yields {void}</i> |
| volatile store <ty> <value>, <ty>* <pointer> <i>; yields {void}</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>store</tt>' instruction is used to write to memory.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>There are two arguments to the '<tt>store</tt>' instruction: a value to store |
| and an address to store it into. The type of the '<tt><pointer></tt>' |
| operand must be a pointer to the type of the '<tt><value></tt>' operand. |
| If the <tt>store</tt> is marked as <tt>volatile</tt> then the optimizer is not |
| allowed to modify the number or order of execution of this <tt>store</tt> with |
| other volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt> |
| instructions.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The contents of memory are updated to contain '<tt><value></tt>' at the |
| location specified by the '<tt><pointer></tt>' operand.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| %ptr = <a href="#i_alloca">alloca</a> int <i>; yields {int*}:ptr</i> |
| <a href="#i_store">store</a> int 3, int* %ptr <i>; yields {void}</i> |
| %val = load int* %ptr <i>; yields {int}:val = int 3</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = getelementptr <ty>* <ptrval>{, long <aidx>|, ubyte <sidx>}* |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>getelementptr</tt>' instruction is used to get the address of a |
| subelement of an aggregate data structure.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>This instruction takes a list of <tt>long</tt> values and <tt>ubyte</tt> |
| constants that indicate what form of addressing to perform. The actual types of |
| the arguments provided depend on the type of the first pointer argument. The |
| '<tt>getelementptr</tt>' instruction is used to index down through the type |
| levels of a structure.</p> |
| |
| <p>For example, let's consider a C code fragment and how it gets compiled to |
| LLVM:</p> |
| |
| <pre> |
| struct RT { |
| char A; |
| int B[10][20]; |
| char C; |
| }; |
| struct ST { |
| int X; |
| double Y; |
| struct RT Z; |
| }; |
| |
| int *foo(struct ST *s) { |
| return &s[1].Z.B[5][13]; |
| } |
| </pre> |
| |
| <p>The LLVM code generated by the GCC frontend is:</p> |
| |
| <pre> |
| %RT = type { sbyte, [10 x [20 x int]], sbyte } |
| %ST = type { int, double, %RT } |
| |
| int* "foo"(%ST* %s) { |
| %reg = getelementptr %ST* %s, long 1, ubyte 2, ubyte 1, long 5, long 13 |
| ret int* %reg |
| } |
| </pre> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The index types specified for the '<tt>getelementptr</tt>' instruction depend |
| on the pointer type that is being index into. <a href="t_pointer">Pointer</a> |
| and <a href="t_array">array</a> types require '<tt>long</tt>' values, and <a |
| href="t_struct">structure</a> types require '<tt>ubyte</tt>' |
| <b>constants</b>.</p> |
| |
| <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>' |
| type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ int, double, %RT |
| }</tt>' type, a structure. The second index indexes into the third element of |
| the structure, yielding a '<tt>%RT</tt>' = '<tt>{ sbyte, [10 x [20 x int]], |
| sbyte }</tt>' type, another structure. The third index indexes into the second |
| element of the structure, yielding a '<tt>[10 x [20 x int]]</tt>' type, an |
| array. The two dimensions of the array are subscripted into, yielding an |
| '<tt>int</tt>' type. The '<tt>getelementptr</tt>' instruction return a pointer |
| to this element, thus yielding a '<tt>int*</tt>' type.</p> |
| |
| <p>Note that it is perfectly legal to index partially through a structure, |
| returning a pointer to an inner element. Because of this, the LLVM code for the |
| given testcase is equivalent to:</p> |
| |
| <pre> |
| int* "foo"(%ST* %s) { |
| %t1 = getelementptr %ST* %s , long 1 <i>; yields %ST*:%t1</i> |
| %t2 = getelementptr %ST* %t1, long 0, ubyte 2 <i>; yields %RT*:%t2</i> |
| %t3 = getelementptr %RT* %t2, long 0, ubyte 1 <i>; yields [10 x [20 x int]]*:%t3</i> |
| %t4 = getelementptr [10 x [20 x int]]* %t3, long 0, long 5 <i>; yields [20 x int]*:%t4</i> |
| %t5 = getelementptr [20 x int]* %t4, long 0, long 13 <i>; yields int*:%t5</i> |
| ret int* %t5 |
| } |
| </pre> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <i>; yields [12 x ubyte]*:aptr</i> |
| %aptr = getelementptr {int, [12 x ubyte]}* %sptr, long 0, ubyte 1 |
| </pre> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="otherops">Other Operations</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>The instructions in this catagory are the "miscellaneous" instructions, which |
| defy better classification.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_phi">'<tt>phi</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = phi <ty> [ <val0>, <label0>], ... |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>phi</tt>' instruction is used to implement the φ node in the SSA |
| graph representing the function.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The type of the incoming values are specified with the first type field. |
| After this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, |
| with one pair for each predecessor basic block of the current block. Only |
| values of <a href="#t_firstclass">first class</a> type may be used as the value |
| arguments to the PHI node. Only labels may be used as the label arguments.</p> |
| |
| <p>There must be no non-phi instructions between the start of a basic block and |
| the PHI instructions: i.e. PHI instructions must be first in a basic block.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value |
| specified by the parameter, depending on which basic block we came from in the |
| last <a href="#terminators">terminator</a> instruction.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| Loop: ; Infinite loop that counts from 0 on up... |
| %indvar = phi uint [ 0, %LoopHeader ], [ %nextindvar, %Loop ] |
| %nextindvar = add uint %indvar, 1 |
| br label %Loop |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_cast">'<tt>cast .. to</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = cast <ty> <value> to <ty2> <i>; yields ty2</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>cast</tt>' instruction is used as the primitive means to convert |
| integers to floating point, change data type sizes, and break type safety (by |
| casting pointers).</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The '<tt>cast</tt>' instruction takes a value to cast, which must be a first |
| class value, and a type to cast it to, which must also be a <a |
| href="#t_firstclass">first class</a> type.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>This instruction follows the C rules for explicit casts when determining how |
| the data being cast must change to fit in its new container.</p> |
| |
| <p>When casting to bool, any value that would be considered true in the context |
| of a C '<tt>if</tt>' condition is converted to the boolean '<tt>true</tt>' |
| values, all else are '<tt>false</tt>'.</p> |
| |
| <p>When extending an integral value from a type of one signness to another (for |
| example '<tt>sbyte</tt>' to '<tt>ulong</tt>'), the value is sign-extended if the |
| <b>source</b> value is signed, and zero-extended if the source value is |
| unsigned. <tt>bool</tt> values are always zero extended into either zero or |
| one.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| %X = cast int 257 to ubyte <i>; yields ubyte:1</i> |
| %Y = cast int 123 to bool <i>; yields bool:true</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_call">'<tt>call</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = call <ty>* <fnptrval>(<param list>) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>call</tt>' instruction represents a simple function call.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>This instruction requires several arguments:</p> |
| |
| <ol> |
| |
| <li><p>'<tt>ty</tt>': shall be the signature of the pointer to function value |
| being invoked. The argument types must match the types implied by this |
| signature.</p></li> |
| |
| <li><p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function |
| to be invoked. In most cases, this is a direct function invocation, but |
| indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer to |
| function values.</p></li> |
| |
| <li><p>'<tt>function args</tt>': argument list whose types match the function |
| signature argument types. If the function signature indicates the function |
| accepts a variable number of arguments, the extra arguments can be |
| specified.</p></li> |
| |
| </ol> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to |
| a specified function, with its incoming arguments bound to the specified values. |
| Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called function, |
| control flow continues with the instruction after the function call, and the |
| return value of the function is bound to the result argument. This is a simpler |
| case of the <a href="#i_invoke">invoke</a> instruction.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| %retval = call int %test(int %argc) |
| call int(sbyte*, ...) *%printf(sbyte* %msg, int 12, sbyte 42); |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_vanext">'<tt>vanext</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <resultarglist> = vanext <va_list> <arglist>, <argty> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>vanext</tt>' instruction is used to access arguments passed through |
| the "variable argument" area of a function call. It is used to implement the |
| <tt>va_arg</tt> macro in C.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>This instruction takes a <tt>valist</tt> value and the type of the argument. |
| It returns another <tt>valist</tt>.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>vanext</tt>' instruction advances the specified <tt>valist</tt> past |
| an argument of the specified type. In conjunction with the <a |
| href="#i_vaarg"><tt>vaarg</tt></a> instruction, it is used to implement the |
| <tt>va_arg</tt> macro available in C. For more information, see the variable |
| argument handling <a href="#int_varargs">Intrinsic Functions</a>.</p> |
| |
| <p>It is legal for this instruction to be called in a function which does not |
| take a variable number of arguments, for example, the <tt>vfprintf</tt> |
| function.</p> |
| |
| <p><tt>vanext</tt> is an LLVM instruction instead of an <a |
| href="#intrinsics">intrinsic function</a> because it takes an type as an |
| argument.</p> |
| |
| <h5>Example:</h5> |
| |
| <p>See the <a href="#int_varargs">variable argument processing</a> section.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_vaarg">'<tt>vaarg</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <resultval> = vaarg <va_list> <arglist>, <argty> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>vaarg</tt>' instruction is used to access arguments passed through |
| the "variable argument" area of a function call. It is used to implement the |
| <tt>va_arg</tt> macro in C.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>This instruction takes a <tt>valist</tt> value and the type of the argument. |
| It returns a value of the specified argument type.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>vaarg</tt>' instruction loads an argument of the specified type from |
| the specified <tt>va_list</tt>. In conjunction with the <a |
| href="#i_vanext"><tt>vanext</tt></a> instruction, it is used to implement the |
| <tt>va_arg</tt> macro available in C. For more information, see the variable |
| argument handling <a href="#int_varargs">Intrinsic Functions</a>.</p> |
| |
| <p>It is legal for this instruction to be called in a function which does not |
| take a variable number of arguments, for example, the <tt>vfprintf</tt> |
| function.</p> |
| |
| <p><tt>vaarg</tt> is an LLVM instruction instead of an <a |
| href="#intrinsics">intrinsic function</a> because it takes an type as an |
| argument.</p> |
| |
| <h5>Example:</h5> |
| |
| <p>See the <a href="#int_varargs">variable argument processing</a> section.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> |
| <a name="intrinsics">Intrinsic Functions</a> |
| </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM supports the notion of an "intrinsic function". These functions have |
| well known names and semantics, and are required to follow certain restrictions. |
| Overall, these instructions represent an extension mechanism for the LLVM |
| language that does not require changing all of the transformations in LLVM to |
| add to the language (or the bytecode reader/writer, the parser, etc...).</p> |
| |
| <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix, this |
| prefix is reserved in LLVM for intrinsic names, thus functions may not be named |
| this. Intrinsic functions must always be external functions: you cannot define |
| the body of intrinsic functions. Intrinsic functions may only be used in call |
| or invoke instructions: it is illegal to take the address of an intrinsic |
| function. Additionally, because intrinsic functions are part of the LLVM |
| language, it is required that they all be documented here if any are added.</p> |
| |
| <p>Unless an intrinsic function is target-specific, there must be a lowering |
| pass to eliminate the intrinsic or all backends must support the intrinsic |
| function.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="int_varargs">Variable Argument Handling Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Variable argument support is defined in LLVM with the <a |
| href="#i_vanext"><tt>vanext</tt></a> instruction and these three intrinsic |
| functions. These functions are related to the similarly named macros defined in |
| the <tt><stdarg.h></tt> header file.</p> |
| |
| <p>All of these functions operate on arguments that use a target-specific value |
| type "<tt>va_list</tt>". The LLVM assembly language reference manual does not |
| define what this type is, so all transformations should be prepared to handle |
| intrinsics with any type used.</p> |
| |
| <p>This example shows how the <a href="#i_vanext"><tt>vanext</tt></a> |
| instruction and the variable argument handling intrinsic functions are used.</p> |
| |
| <pre> |
| int %test(int %X, ...) { |
| ; Initialize variable argument processing |
| %ap = call sbyte*()* %<a href="#i_va_start">llvm.va_start</a>() |
| |
| ; Read a single integer argument |
| %tmp = vaarg sbyte* %ap, int |
| |
| ; Advance to the next argument |
| %ap2 = vanext sbyte* %ap, int |
| |
| ; Demonstrate usage of llvm.va_copy and llvm.va_end |
| %aq = call sbyte* (sbyte*)* %<a href="#i_va_copy">llvm.va_copy</a>(sbyte* %ap2) |
| call void %<a href="#i_va_end">llvm.va_end</a>(sbyte* %aq) |
| |
| ; Stop processing of arguments. |
| call void %<a href="#i_va_end">llvm.va_end</a>(sbyte* %ap2) |
| ret int %tmp |
| } |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| call va_list ()* %llvm.va_start() |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>llvm.va_start</tt>' intrinsic returns a new <tt><arglist></tt> |
| for subsequent use by the variable argument intrinsics.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt> |
| macro available in C. In a target-dependent way, it initializes and returns a |
| <tt>va_list</tt> element, so that the next <tt>vaarg</tt> will produce the first |
| variable argument passed to the function. Unlike the C <tt>va_start</tt> macro, |
| this intrinsic does not need to know the last argument of the function, the |
| compiler can figure that out.</p> |
| |
| <p>Note that this intrinsic function is only legal to be called from within the |
| body of a variable argument function.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| call void (va_list)* %llvm.va_end(va_list <arglist>) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt><arglist></tt> which |
| has been initialized previously with <tt><a |
| href="#i_va_start">llvm.va_start</a></tt> or <tt><a |
| href="#i_va_copy">llvm.va_copy</a></tt>.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The argument is a <tt>va_list</tt> to destroy.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt> |
| macro available in C. In a target-dependent way, it destroys the |
| <tt>va_list</tt>. Calls to <a href="#i_va_start"><tt>llvm.va_start</tt></a> and |
| <a href="#i_va_copy"><tt>llvm.va_copy</tt></a> must be matched exactly with |
| calls to <tt>llvm.va_end</tt>.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| call va_list (va_list)* %llvm.va_copy(va_list <destarglist>) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position |
| from the source argument list to the destination argument list.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The argument is the <tt>va_list</tt> to copy.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> |
| macro available in C. In a target-dependent way, it copies the source |
| <tt>va_list</tt> element into the returned list. This intrinsic is necessary |
| because the <tt><a href="i_va_start">llvm.va_start</a></tt> intrinsic may be |
| arbitrarily complex and require memory allocation, for example.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| |
| <hr> |
| <div class="doc_footer"> |
| <address><a href="mailto:sabre@nondot.org">Chris Lattner</a></address> |
| <a href="http://llvm.cs.uiuc.edu">The LLVM Compiler Infrastructure</a> |
| <br> |
| Last modified: $Date$ |
| </div> |
| |
| </body> |
| </html> |