| //===- Reassociate.cpp - Reassociate binary expressions -------------------===// |
| // |
| // This pass reassociates commutative expressions in an order that is designed |
| // to promote better constant propogation, GCSE, LICM, PRE... |
| // |
| // For example: 4 + (x + 5) -> x + (4 + 5) |
| // |
| // Note that this pass works best if left shifts have been promoted to explicit |
| // multiplies before this pass executes. |
| // |
| // In the implementation of this algorithm, constants are assigned rank = 0, |
| // function arguments are rank = 1, and other values are assigned ranks |
| // corresponding to the reverse post order traversal of current function |
| // (starting at 2), which effectively gives values in deep loops higher rank |
| // than values not in loops. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Function.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/iOperators.h" |
| #include "llvm/Type.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Constant.h" |
| #include "llvm/Support/CFG.h" |
| #include "Support/PostOrderIterator.h" |
| |
| namespace { |
| class Reassociate : public FunctionPass { |
| map<BasicBlock*, unsigned> RankMap; |
| public: |
| const char *getPassName() const { |
| return "Expression Reassociation"; |
| } |
| |
| bool runOnFunction(Function *F); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.preservesCFG(); |
| } |
| private: |
| void BuildRankMap(Function *F); |
| unsigned getRank(Value *V); |
| bool ReassociateExpr(BinaryOperator *I); |
| bool ReassociateBB(BasicBlock *BB); |
| }; |
| } |
| |
| Pass *createReassociatePass() { return new Reassociate(); } |
| |
| void Reassociate::BuildRankMap(Function *F) { |
| unsigned i = 1; |
| ReversePostOrderTraversal<Function*> RPOT(F); |
| for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), |
| E = RPOT.end(); I != E; ++I) |
| RankMap[*I] = ++i; |
| } |
| |
| unsigned Reassociate::getRank(Value *V) { |
| if (isa<Argument>(V)) return 1; // Function argument... |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| // If this is an expression, return the MAX(rank(LHS), rank(RHS)) so that we |
| // can reassociate expressions for code motion! Since we do not recurse for |
| // PHI nodes, we cannot have infinite recursion here, because there cannot |
| // be loops in the value graph (except for PHI nodes). |
| // |
| if (I->getOpcode() == Instruction::PHINode || |
| I->getOpcode() == Instruction::Alloca || |
| I->getOpcode() == Instruction::Malloc || isa<TerminatorInst>(I) || |
| I->hasSideEffects()) |
| return RankMap[I->getParent()]; |
| |
| unsigned Rank = 0; |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) |
| Rank = std::max(Rank, getRank(I->getOperand(i))); |
| |
| return Rank; |
| } |
| |
| // Otherwise it's a global or constant, rank 0. |
| return 0; |
| } |
| |
| |
| // isCommutativeOperator - Return true if the specified instruction is |
| // commutative and associative. If the instruction is not commutative and |
| // associative, we can not reorder its operands! |
| // |
| static inline BinaryOperator *isCommutativeOperator(Instruction *I) { |
| // Floating point operations do not commute! |
| if (I->getType()->isFloatingPoint()) return 0; |
| |
| if (I->getOpcode() == Instruction::Add || |
| I->getOpcode() == Instruction::Mul || |
| I->getOpcode() == Instruction::And || |
| I->getOpcode() == Instruction::Or || |
| I->getOpcode() == Instruction::Xor) |
| return cast<BinaryOperator>(I); |
| return 0; |
| } |
| |
| |
| bool Reassociate::ReassociateExpr(BinaryOperator *I) { |
| Value *LHS = I->getOperand(0); |
| Value *RHS = I->getOperand(1); |
| unsigned LHSRank = getRank(LHS); |
| unsigned RHSRank = getRank(RHS); |
| |
| bool Changed = false; |
| |
| // Make sure the LHS of the operand always has the greater rank... |
| if (LHSRank < RHSRank) { |
| I->swapOperands(); |
| std::swap(LHS, RHS); |
| std::swap(LHSRank, RHSRank); |
| Changed = true; |
| //cerr << "Transposed: " << I << " Result BB: " << I->getParent(); |
| } |
| |
| // If the LHS is the same operator as the current one is, and if we are the |
| // only expression using it... |
| // |
| if (BinaryOperator *LHSI = dyn_cast<BinaryOperator>(LHS)) |
| if (LHSI->getOpcode() == I->getOpcode() && LHSI->use_size() == 1) { |
| // If the rank of our current RHS is less than the rank of the LHS's LHS, |
| // then we reassociate the two instructions... |
| if (RHSRank < getRank(LHSI->getOperand(0))) { |
| unsigned TakeOp = 0; |
| if (BinaryOperator *IOp = dyn_cast<BinaryOperator>(LHSI->getOperand(0))) |
| if (IOp->getOpcode() == LHSI->getOpcode()) |
| TakeOp = 1; // Hoist out non-tree portion |
| |
| // Convert ((a + 12) + 10) into (a + (12 + 10)) |
| I->setOperand(0, LHSI->getOperand(TakeOp)); |
| LHSI->setOperand(TakeOp, RHS); |
| I->setOperand(1, LHSI); |
| |
| //cerr << "Reassociated: " << I << " Result BB: " << I->getParent(); |
| |
| // Since we modified the RHS instruction, make sure that we recheck it. |
| ReassociateExpr(LHSI); |
| return true; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| |
| bool Reassociate::ReassociateBB(BasicBlock *BB) { |
| bool Changed = false; |
| for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) { |
| Instruction *Inst = *BI; |
| |
| // If this instruction is a commutative binary operator, and the ranks of |
| // the two operands are sorted incorrectly, fix it now. |
| // |
| if (BinaryOperator *I = isCommutativeOperator(Inst)) { |
| // Make sure that this expression is correctly reassociated with respect |
| // to it's used values... |
| // |
| Changed |= ReassociateExpr(I); |
| |
| } else if (Inst->getOpcode() == Instruction::Sub && |
| Inst->getOperand(0) != Constant::getNullValue(Inst->getType())) { |
| // Convert a subtract into an add and a neg instruction... so that sub |
| // instructions can be commuted with other add instructions... |
| // |
| Instruction *New = BinaryOperator::create(Instruction::Add, |
| Inst->getOperand(0), Inst, |
| Inst->getName()); |
| // Everyone now refers to the add instruction... |
| Inst->replaceAllUsesWith(New); |
| Inst->setName(Inst->getOperand(1)->getName()+".neg"); |
| New->setOperand(1, Inst); // Except for the add inst itself! |
| |
| BI = BB->getInstList().insert(BI+1, New)-1; // Add to the basic block... |
| Inst->setOperand(0, Constant::getNullValue(Inst->getType())); |
| Changed = true; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| |
| bool Reassociate::runOnFunction(Function *F) { |
| // Recalculate the rank map for F |
| BuildRankMap(F); |
| |
| bool Changed = false; |
| for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) |
| Changed |= ReassociateBB(*FI); |
| |
| // We are done with the rank map... |
| RankMap.clear(); |
| return Changed; |
| } |