| // $Id$ |
| //*************************************************************************** |
| // File: |
| // SparcInstrSelection.cpp |
| // |
| // Purpose: |
| // |
| // History: |
| // 7/02/01 - Vikram Adve - Created |
| //*************************************************************************** |
| |
| //*************************** User Include Files ***************************/ |
| |
| #include "llvm/Type.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/SymbolTable.h" |
| #include "llvm/Value.h" |
| #include "llvm/Instruction.h" |
| #include "llvm/InstrTypes.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/iOther.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/Method.h" |
| #include "llvm/ConstPoolVals.h" |
| #include "llvm/LLC/CompileContext.h" |
| #include "llvm/CodeGen/Sparc.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/InstrForest.h" |
| #include "llvm/CodeGen/InstrSelection.h" |
| |
| |
| //******************** Internal Data Declarations ************************/ |
| |
| // to be used later |
| struct BranchPattern { |
| bool flipCondition; // should the sense of the test be reversed |
| BasicBlock* targetBB; // which basic block to branch to |
| MachineInstr* extraBranch; // if neither branch is fall-through, then this |
| // BA must be inserted after the cond'l one |
| }; |
| |
| //************************* Forward Declarations ***************************/ |
| |
| |
| static MachineOpCode ChooseBprInstruction (const InstructionNode* instrNod); |
| |
| static MachineOpCode ChooseBccInstruction (const InstructionNode* instrNode, |
| bool& isFPBranch); |
| |
| static MachineOpCode ChooseBpccInstruction (const InstructionNode* instrNode, |
| const BinaryOperator* setCCInst); |
| |
| static MachineOpCode ChooseBfpccInstruction (const InstructionNode* instrNode, |
| const BinaryOperator* setCCInst); |
| |
| static MachineOpCode ChooseConvertToFloatInstr(const InstructionNode* instrNode, |
| const Type* opType); |
| |
| static MachineOpCode ChooseConvertToIntInstr (const InstructionNode* instrNode, |
| const Type* opType); |
| |
| static MachineOpCode ChooseAddInstruction (const InstructionNode* instrNod); |
| |
| static MachineOpCode ChooseSubInstruction (const InstructionNode* instrNod); |
| |
| static MachineOpCode ChooseFcmpInstruction (const InstructionNode* instrNod); |
| |
| static MachineOpCode ChooseMulInstruction (const InstructionNode* instrNode, |
| bool checkCasts); |
| |
| static MachineOpCode ChooseDivInstruction (const InstructionNode* instrNod); |
| |
| static MachineOpCode ChooseLoadInstruction (const Type* resultType); |
| |
| static MachineOpCode ChooseStoreInstruction (const Type* valueType); |
| |
| static void SetOperandsForMemInstr (MachineInstr* minstr, |
| const InstructionNode* vmInstrNode, |
| const TargetMachine& targetMachine); |
| |
| static void SetMemOperands_Internal (MachineInstr* minstr, |
| const InstructionNode* vmInstrNode, |
| Value* ptrVal, |
| Value* arrayOffsetVal, |
| const vector<ConstPoolVal*>& idxVec, |
| const TargetMachine& targetMachine); |
| |
| static unsigned FixConstantOperands(const InstructionNode* vmInstrNode, |
| MachineInstr** mvec, |
| unsigned numInstr, |
| TargetMachine& targetMachine); |
| |
| static unsigned InsertLoadConstInstructions(unsigned loadConstFlags, |
| const InstructionNode* vmInstrNode, |
| MachineInstr** mvec, |
| unsigned numInstr); |
| |
| static MachineInstr* MakeOneLoadConstInstr(Instruction* vmInstr, |
| Value* val); |
| |
| |
| //******************* Externally Visible Functions *************************/ |
| |
| |
| //------------------------------------------------------------------------ |
| // External Function: ThisIsAChainRule |
| // |
| // Purpose: |
| // Check if a given BURG rule is a chain rule. |
| //------------------------------------------------------------------------ |
| |
| extern bool |
| ThisIsAChainRule(int eruleno) |
| { |
| switch(eruleno) |
| { |
| case 111: // stmt: reg |
| case 112: // stmt: boolconst |
| case 113: // stmt: bool |
| case 121: |
| case 122: |
| case 123: |
| case 124: |
| case 125: |
| case 126: |
| case 127: |
| case 128: |
| case 129: |
| case 130: |
| case 131: |
| case 132: |
| case 153: return true; break; |
| |
| default: return false; break; |
| } |
| } |
| |
| //------------------------------------------------------------------------ |
| // External Function: GetInstructionsByRule |
| // |
| // Purpose: |
| // Choose machine instructions for the SPARC according to the |
| // patterns chosen by the BURG-generated parser. |
| //------------------------------------------------------------------------ |
| |
| unsigned |
| GetInstructionsByRule(InstructionNode* subtreeRoot, |
| int ruleForNode, |
| short* nts, |
| CompileContext& ccontext, |
| MachineInstr** mvec) |
| { |
| int numInstr = 1; // initialize for common case |
| bool checkCast = false; // initialize here to use fall-through |
| Value *leftVal, *rightVal; |
| const Type* opType; |
| int nextRule; |
| BranchPattern brPattern; |
| |
| mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety |
| |
| switch(ruleForNode) { |
| case 1: // stmt: Ret |
| case 2: // stmt: RetValue(reg) |
| // NOTE: Prepass of register allocation is responsible |
| // for moving return value to appropriate register. |
| // Mark the return-address register as a hidden virtual reg. |
| { |
| Instruction* returnReg = new TmpInstruction(Instruction::UserOp1, |
| subtreeRoot->getInstruction(), NULL); |
| subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg); |
| |
| mvec[0] = new MachineInstr(RETURN); |
| mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, returnReg); |
| mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, |
| (int64_t) 0); |
| |
| mvec[numInstr++] = new MachineInstr(NOP); // delay slot |
| break; |
| } |
| |
| case 3: // stmt: Store(reg,reg) |
| case 4: // stmt: Store(reg,ptrreg) |
| mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType())); |
| SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| break; |
| |
| case 5: // stmt: BrUncond |
| mvec[0] = new MachineInstr(BA); |
| mvec[0]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, |
| ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); |
| |
| mvec[numInstr++] = new MachineInstr(NOP); // delay slot |
| break; |
| |
| case 6: // stmt: BrCond(boolconst) |
| // boolconst => boolean was computed with `%b = setCC type reg1 constant' |
| // If the constant is ZERO, we can use the branch-on-integer-register |
| // instructions and avoid the SUBcc instruction entirely. |
| // Otherwise this is just the same as case 5, so just fall through. |
| { |
| InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild(); |
| assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode); |
| ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue(); |
| |
| if (constVal->getType()->isIntegral() |
| && ((constVal->getType()->isSigned() |
| && ((ConstPoolSInt*) constVal)->getValue()==0) |
| || (constVal->getType()->isUnsigned() |
| && ((ConstPoolUInt*) constVal)->getValue()== 0))) |
| { |
| // Whew! Ok, that was zero after all... |
| // Use the left child of the setCC instruction as the first argument! |
| mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot)); |
| mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, |
| subtreeRoot->leftChild()->leftChild()->getValue()); |
| mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, |
| ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); |
| |
| mvec[numInstr++] = new MachineInstr(NOP); // delay slot |
| |
| mvec[numInstr++] = new MachineInstr(BA); // false branch |
| mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); |
| break; |
| } |
| // ELSE FALL THROUGH |
| } |
| |
| case 7: // stmt: BrCond(bool) |
| // bool => boolean was computed with `%b = setcc type reg1 reg2' |
| // Need to check whether the type was a FP, signed int or unsigned int, |
| // nad check the branching condition in order to choose the branch to use. |
| // Also, for FP branches, an extra operand specifies which FCCn reg to use. |
| // |
| { |
| bool isFPBranch; |
| mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch)); |
| |
| int opNum = 0; |
| if (isFPBranch) |
| mvec[0]->SetMachineOperand(opNum++, MachineOperand::MO_CCRegister, |
| subtreeRoot->leftChild()->getValue()); |
| |
| mvec[0]->SetMachineOperand(opNum, MachineOperand::MO_PCRelativeDisp, |
| ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); |
| |
| mvec[numInstr++] = new MachineInstr(NOP); // delay slot |
| |
| mvec[numInstr++] = new MachineInstr(BA); // false branch |
| mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); |
| break; |
| } |
| |
| case 8: // stmt: BrCond(boolreg) |
| // bool => boolean is stored in an existing register. |
| // Just use the branch-on-integer-register instruction! |
| // |
| mvec[0] = new MachineInstr(BRNZ); |
| mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, |
| subtreeRoot->leftChild()->getValue()); |
| mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, |
| ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); |
| mvec[numInstr++] = new MachineInstr(NOP); // delay slot |
| break; |
| |
| case 9: // stmt: Switch(reg) |
| assert(0 && "*** SWITCH instruction is not implemented yet."); |
| numInstr = 0; |
| break; |
| |
| case 10: // reg: VRegList(reg, reg) |
| assert(0 && "VRegList should never be the topmost non-chain rule"); |
| break; |
| |
| case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0 |
| mvec[0] = new MachineInstr(XNOR); |
| mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, |
| subtreeRoot->leftChild()->getValue()); |
| mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); |
| mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, |
| subtreeRoot->getValue()); |
| break; |
| |
| case 22: // reg: ToBoolTy(reg): |
| opType = subtreeRoot->leftChild()->getValue()->getType(); |
| assert(opType->isIntegral() || opType == Type::BoolTy); |
| numInstr = 0; |
| break; |
| |
| case 23: // reg: ToUByteTy(reg) |
| case 25: // reg: ToUShortTy(reg) |
| case 27: // reg: ToUIntTy(reg) |
| case 29: // reg: ToULongTy(reg) |
| opType = subtreeRoot->leftChild()->getValue()->getType(); |
| assert(opType->isIntegral() || opType == Type::BoolTy); |
| numInstr = 0; |
| break; |
| |
| case 24: // reg: ToSByteTy(reg) |
| case 26: // reg: ToShortTy(reg) |
| case 28: // reg: ToIntTy(reg) |
| case 30: // reg: ToLongTy(reg) |
| opType = subtreeRoot->leftChild()->getValue()->getType(); |
| if (opType->isIntegral() || opType == Type::BoolTy) |
| numInstr = 0; |
| else |
| { |
| mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType)); |
| Set2OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| } |
| break; |
| |
| case 31: // reg: ToFloatTy(reg): |
| case 32: // reg: ToDoubleTy(reg): |
| |
| // If this instruction has a parent (a user) in the tree |
| // and the user is translated as an FsMULd instruction, |
| // then the cast is unnecessary. So check that first. |
| // In the future, we'll want to do the same for the FdMULq instruction, |
| // so do the check here instead of only for ToFloatTy(reg). |
| // |
| if (subtreeRoot->parent() != NULL && |
| ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD) |
| { |
| numInstr = 0; |
| } |
| else |
| { |
| opType = subtreeRoot->leftChild()->getValue()->getType(); |
| mvec[0] = new MachineInstr(ChooseConvertToFloatInstr(subtreeRoot, opType)); |
| Set2OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| } |
| break; |
| |
| case 19: // reg: ToArrayTy(reg): |
| case 20: // reg: ToPointerTy(reg): |
| numInstr = 0; |
| break; |
| |
| case 33: // reg: Add(reg, reg) |
| mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot)); |
| Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| break; |
| |
| case 34: // reg: Sub(reg, reg) |
| mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot)); |
| Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| break; |
| |
| case 135: // reg: Mul(todouble, todouble) |
| checkCast = true; |
| // FALL THROUGH |
| |
| case 35: // reg: Mul(reg, reg) |
| mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast)); |
| Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| break; |
| |
| case 36: // reg: Div(reg, reg) |
| mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot)); |
| Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| break; |
| |
| case 37: // reg: Rem(reg, reg) |
| assert(0 && "REM instruction unimplemented for the SPARC."); |
| break; |
| |
| case 38: // reg: And(reg, reg) |
| mvec[0] = new MachineInstr(AND); |
| Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| break; |
| |
| case 138: // reg: And(reg, not) |
| mvec[0] = new MachineInstr(ANDN); |
| Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| break; |
| |
| case 39: // reg: Or(reg, reg) |
| mvec[0] = new MachineInstr(ORN); |
| Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| break; |
| |
| case 139: // reg: Or(reg, not) |
| mvec[0] = new MachineInstr(ORN); |
| Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| break; |
| |
| case 40: // reg: Xor(reg, reg) |
| mvec[0] = new MachineInstr(XOR); |
| Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| break; |
| |
| case 140: // reg: Xor(reg, not) |
| mvec[0] = new MachineInstr(XNOR); |
| Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| break; |
| |
| case 41: // boolconst: SetCC(reg, Constant) |
| // Check if this is an integer comparison, and |
| // there is a parent, and the parent decided to use |
| // a branch-on-integer-register instead of branch-on-condition-code. |
| // If so, the SUBcc instruction is not required. |
| // (However, we must still check for constants to be loaded from |
| // the constant pool so that such a load can be associated with |
| // this instruction.) |
| // |
| // Otherwise this is just the same as case 7, so just fall through. |
| // |
| if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() && |
| subtreeRoot->parent() != NULL) |
| { |
| InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent(); |
| assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode); |
| const vector<MachineInstr*>& |
| minstrVec = parentNode->getInstruction()->getMachineInstrVec(); |
| MachineOpCode parentOpCode; |
| if (minstrVec.size() == 1 && |
| (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ && |
| parentOpCode <= BRGEZ) |
| { |
| numInstr = 0; |
| break; |
| } |
| } |
| // ELSE FALL THROUGH |
| |
| case 42: // bool: SetCC(reg, reg): |
| if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral()) |
| { |
| // integer condition: destination should be %g0 |
| mvec[0] = new MachineInstr(SUBcc); |
| Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget(), |
| /*canDiscardResult*/ true); |
| } |
| else |
| { |
| // FP condition: dest should be a FCCn register chosen by reg-alloc |
| mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot)); |
| |
| leftVal = subtreeRoot->leftChild()->getValue(); |
| rightVal = subtreeRoot->rightChild()->getValue(); |
| mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, |
| subtreeRoot->getValue()); |
| mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, leftVal); |
| mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, rightVal); |
| } |
| break; |
| |
| case 43: // boolreg: VReg |
| numInstr = 0; |
| break; |
| |
| case 51: // reg: Load(reg) |
| case 52: // reg: Load(ptrreg) |
| case 53: // reg: LoadIdx(reg,reg) |
| case 54: // reg: LoadIdx(ptrreg,reg) |
| mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType())); |
| SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| break; |
| |
| case 55: // reg: GetElemPtr(reg) |
| case 56: // reg: GetElemPtrIdx(reg,reg) |
| if (subtreeRoot->parent() != NULL) |
| { |
| // Check if the parent was an array access. |
| // If so, we still need to generate this instruction. |
| MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction(); |
| const PointerType* ptrType = |
| (const PointerType*) memInst->getPtrOperand()->getType(); |
| if (! ptrType->getValueType()->isArrayType()) |
| {// we don't need a separate instr |
| numInstr = 0; |
| break; |
| } |
| } |
| // else in all other cases we need to a separate ADD instruction |
| mvec[0] = new MachineInstr(ADD); |
| SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| break; |
| |
| case 57: // reg: Alloca: Implement as 2 instructions: |
| // sub %sp, tmp -> %sp |
| { // add %sp, 0 -> result |
| Instruction* instr = subtreeRoot->getInstruction(); |
| const PointerType* instrType = (const PointerType*) instr->getType(); |
| assert(instrType->isPointerType()); |
| int tsize = (int) ccontext.getTarget().findOptimalStorageSize( |
| instrType->getValueType()); |
| if (tsize == 0) |
| { |
| numInstr = 0; |
| break; |
| } |
| //else go on to create the instructions needed... |
| |
| // Create a temporary Value to hold the constant type-size |
| ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize); |
| ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool(); |
| if (cpool.find(valueForTSize) == 0) |
| cpool.insert(valueForTSize); |
| |
| // Instruction 1: sub %sp, tsize -> %sp |
| // tsize is always constant, but it may have to be put into a |
| // register if it doesn't fit in the immediate field. |
| // |
| mvec[0] = new MachineInstr(SUB); |
| mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, valueForTSize); |
| mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| |
| // Instruction 2: add %sp, 0 -> result |
| numInstr++; |
| mvec[1] = new MachineInstr(ADD); |
| mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); |
| mvec[1]->SetMachineOperand(2, MachineOperand::MO_Register, instr); |
| break; |
| } |
| |
| case 58: // reg: Alloca(reg): Implement as 3 instructions: |
| // mul num, typeSz -> tmp |
| // sub %sp, tmp -> %sp |
| { // add %sp, 0 -> result |
| Instruction* instr = subtreeRoot->getInstruction(); |
| const PointerType* instrType = (const PointerType*) instr->getType(); |
| assert(instrType->isPointerType() && |
| instrType->getValueType()->isArrayType()); |
| const Type* eltType = |
| ((ArrayType*) instrType->getValueType())->getElementType(); |
| int tsize = (int) ccontext.getTarget().findOptimalStorageSize(eltType); |
| |
| if (tsize == 0) |
| { |
| numInstr = 0; |
| break; |
| } |
| //else go on to create the instructions needed... |
| |
| // Create a temporary Value to hold the constant type-size |
| ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize); |
| ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool(); |
| if (cpool.find(valueForTSize) == 0) |
| cpool.insert(valueForTSize); |
| |
| // Create a temporary value to hold `tmp' |
| Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1, |
| subtreeRoot->leftChild()->getValue(), |
| NULL /*could insert tsize here*/); |
| subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr); |
| |
| // Instruction 1: mul numElements, typeSize -> tmp |
| mvec[0] = new MachineInstr(MULX); |
| mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, |
| subtreeRoot->leftChild()->getValue()); |
| mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, valueForTSize); |
| mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, tmpInstr); |
| |
| // Instruction 2: sub %sp, tmp -> %sp |
| numInstr++; |
| mvec[1] = new MachineInstr(SUB); |
| mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| mvec[1]->SetMachineOperand(1, MachineOperand::MO_Register, tmpInstr); |
| mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| |
| // Instruction 3: add %sp, 0 -> result |
| numInstr++; |
| mvec[2] = new MachineInstr(ADD); |
| mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); |
| mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); |
| mvec[2]->SetMachineOperand(2, MachineOperand::MO_Register, instr); |
| break; |
| } |
| |
| case 61: // reg: Call |
| // Generate a call-indirect (i.e., JMPL) for now to expose |
| // the potential need for registers. If an absolute address |
| // is available, replace this with a CALL instruction. |
| // Mark both the indirection register and the return-address |
| { // register as hidden virtual registers. |
| |
| Instruction* targetReg = new TmpInstruction(Instruction::UserOp1, |
| ((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL); |
| Instruction* returnReg = new TmpInstruction(Instruction::UserOp1, |
| subtreeRoot->getValue(), NULL); |
| subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(targetReg); |
| subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg); |
| |
| mvec[0] = new MachineInstr(JMPL); |
| mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, targetReg); |
| mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, |
| (int64_t) 0); |
| mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, returnReg); |
| |
| mvec[numInstr++] = new MachineInstr(NOP); // delay slot |
| break; |
| } |
| |
| case 62: // reg: Shl(reg, reg) |
| opType = subtreeRoot->leftChild()->getValue()->getType(); |
| assert(opType->isIntegral() || opType == Type::BoolTy); |
| mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL); |
| Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| break; |
| |
| case 63: // reg: Shr(reg, reg) |
| opType = subtreeRoot->leftChild()->getValue()->getType(); |
| assert(opType->isIntegral() || opType == Type::BoolTy); |
| mvec[0] = new MachineInstr((opType->isSigned() |
| ? ((opType == Type::LongTy)? SRAX : SRA) |
| : ((opType == Type::LongTy)? SRLX : SRL))); |
| Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget()); |
| break; |
| |
| case 71: // reg: VReg |
| case 72: // reg: Constant |
| numInstr = 0; |
| break; |
| |
| case 111: // stmt: reg |
| case 112: // stmt: boolconst |
| case 113: // stmt: bool |
| case 121: |
| case 122: |
| case 123: |
| case 124: |
| case 125: |
| case 126: |
| case 127: |
| case 128: |
| case 129: |
| case 130: |
| case 131: |
| case 132: |
| case 153: |
| // |
| // These are all chain rules, which have a single nonterminal on the RHS. |
| // Get the rule that matches the RHS non-terminal and use that instead. |
| // |
| assert(ThisIsAChainRule(ruleForNode)); |
| assert(nts[0] && ! nts[1] |
| && "A chain rule should have only one RHS non-terminal!"); |
| nextRule = burm_rule(subtreeRoot->getBasicNode()->state, nts[0]); |
| nts = burm_nts[nextRule]; |
| numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,ccontext,mvec); |
| break; |
| |
| default: |
| numInstr = 0; |
| break; |
| } |
| |
| numInstr = |
| FixConstantOperands(subtreeRoot, mvec, numInstr, ccontext.getTarget()); |
| |
| return numInstr; |
| } |
| |
| |
| //--------------------------------------------------------------------------- |
| // Private helper routines for SPARC instruction selection. |
| //--------------------------------------------------------------------------- |
| |
| |
| static MachineOpCode |
| ChooseBprInstruction(const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode; |
| |
| Instruction* setCCInstr = |
| ((InstructionNode*) instrNode->leftChild())->getInstruction(); |
| |
| switch(setCCInstr->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = BRZ; break; |
| case Instruction::SetNE: opCode = BRNZ; break; |
| case Instruction::SetLE: opCode = BRLEZ; break; |
| case Instruction::SetGE: opCode = BRGEZ; break; |
| case Instruction::SetLT: opCode = BRLZ; break; |
| case Instruction::SetGT: opCode = BRGZ; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| opCode = INVALID_OPCODE; |
| break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| static MachineOpCode |
| ChooseBccInstruction(const InstructionNode* instrNode, |
| bool& isFPBranch) |
| { |
| InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild(); |
| BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction(); |
| const Type* setCCType = setCCInstr->getOperand(0)->getType(); |
| |
| isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy); |
| |
| if (isFPBranch) |
| return ChooseBfpccInstruction(instrNode, setCCInstr); |
| else |
| return ChooseBpccInstruction(instrNode, setCCInstr); |
| } |
| |
| |
| static MachineOpCode |
| ChooseBpccInstruction(const InstructionNode* instrNode, |
| const BinaryOperator* setCCInstr) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned(); |
| |
| if (isSigned) |
| { |
| switch(setCCInstr->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = BE; break; |
| case Instruction::SetNE: opCode = BNE; break; |
| case Instruction::SetLE: opCode = BLE; break; |
| case Instruction::SetGE: opCode = BGE; break; |
| case Instruction::SetLT: opCode = BL; break; |
| case Instruction::SetGT: opCode = BG; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| } |
| else |
| { |
| switch(setCCInstr->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = BE; break; |
| case Instruction::SetNE: opCode = BNE; break; |
| case Instruction::SetLE: opCode = BLEU; break; |
| case Instruction::SetGE: opCode = BCC; break; |
| case Instruction::SetLT: opCode = BCS; break; |
| case Instruction::SetGT: opCode = BGU; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| } |
| |
| return opCode; |
| } |
| |
| static MachineOpCode |
| ChooseBfpccInstruction(const InstructionNode* instrNode, |
| const BinaryOperator* setCCInstr) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| switch(setCCInstr->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = FBE; break; |
| case Instruction::SetNE: opCode = FBNE; break; |
| case Instruction::SetLE: opCode = FBLE; break; |
| case Instruction::SetGE: opCode = FBGE; break; |
| case Instruction::SetLT: opCode = FBL; break; |
| case Instruction::SetGT: opCode = FBG; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| |
| return opCode; |
| } |
| |
| static MachineOpCode |
| ChooseConvertToFloatInstr(const InstructionNode* instrNode, |
| const Type* opType) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| switch(instrNode->getOpLabel()) |
| { |
| case ToFloatTy: |
| if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy) |
| opCode = FITOS; |
| else if (opType == Type::LongTy) |
| opCode = FXTOS; |
| else if (opType == Type::DoubleTy) |
| opCode = FDTOS; |
| else |
| assert(0 && "Cannot convert this type to FLOAT on SPARC"); |
| break; |
| |
| case ToDoubleTy: |
| if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy) |
| opCode = FITOD; |
| else if (opType == Type::LongTy) |
| opCode = FXTOD; |
| else if (opType == Type::FloatTy) |
| opCode = FSTOD; |
| else |
| assert(0 && "Cannot convert this type to DOUBLE on SPARC"); |
| break; |
| |
| default: |
| break; |
| } |
| |
| return opCode; |
| } |
| |
| static MachineOpCode |
| ChooseConvertToIntInstr(const InstructionNode* instrNode, |
| const Type* opType) |
| { |
| MachineOpCode opCode = INVALID_OPCODE;; |
| |
| int instrType = (int) instrNode->getOpLabel(); |
| |
| if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy) |
| { |
| switch (opType->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = FSTOI; break; |
| case Type::DoubleTyID: opCode = FDTOI; break; |
| default: |
| assert(0 && "Non-numeric non-bool type cannot be converted to Int"); |
| break; |
| } |
| } |
| else if (instrType == ToLongTy) |
| { |
| switch (opType->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = FSTOX; break; |
| case Type::DoubleTyID: opCode = FDTOX; break; |
| default: |
| assert(0 && "Non-numeric non-bool type cannot be converted to Long"); |
| break; |
| } |
| } |
| else |
| assert(0 && "Should not get here, Mo!"); |
| |
| return opCode; |
| } |
| |
| |
| static MachineOpCode |
| ChooseAddInstruction(const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| const Type* resultType = instrNode->getInstruction()->getType(); |
| |
| if (resultType->isIntegral() || |
| resultType->isPointerType() || |
| resultType->isMethodType() || |
| resultType->isLabelType()) |
| { |
| opCode = ADD; |
| } |
| else |
| { |
| Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); |
| switch(operand->getType()->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = FADDS; break; |
| case Type::DoubleTyID: opCode = FADDD; break; |
| default: assert(0 && "Invalid type for ADD instruction"); break; |
| } |
| } |
| |
| return opCode; |
| } |
| |
| static MachineOpCode |
| ChooseSubInstruction(const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| const Type* resultType = instrNode->getInstruction()->getType(); |
| |
| if (resultType->isIntegral() || |
| resultType->isPointerType()) |
| { |
| opCode = SUB; |
| } |
| else |
| { |
| Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); |
| switch(operand->getType()->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = FSUBS; break; |
| case Type::DoubleTyID: opCode = FSUBD; break; |
| default: assert(0 && "Invalid type for SUB instruction"); break; |
| } |
| } |
| |
| return opCode; |
| } |
| |
| |
| static MachineOpCode |
| ChooseFcmpInstruction(const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); |
| switch(operand->getType()->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = FCMPS; break; |
| case Type::DoubleTyID: opCode = FCMPD; break; |
| default: assert(0 && "Invalid type for ADD instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| static MachineOpCode |
| ChooseMulInstruction(const InstructionNode* instrNode, |
| bool checkCasts) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| if (checkCasts) |
| { |
| // Assume that leftArg and rightArg are both cast instructions. |
| // |
| InstrTreeNode* leftArg = instrNode->leftChild(); |
| InstrTreeNode* rightArg = instrNode->rightChild(); |
| InstrTreeNode* leftArgArg = leftArg->leftChild(); |
| InstrTreeNode* rightArgArg = rightArg->leftChild(); |
| assert(leftArg->getValue()->getType() ==rightArg->getValue()->getType()); |
| |
| // If both arguments are floats cast to double, use FsMULd |
| if (leftArg->getValue()->getType() == Type::DoubleTy && |
| leftArgArg->getValue()->getType() == Type::FloatTy && |
| rightArgArg->getValue()->getType() == Type::FloatTy) |
| { |
| return opCode = FSMULD; |
| } |
| // else fall through and use the regular multiply instructions |
| } |
| |
| const Type* resultType = instrNode->getInstruction()->getType(); |
| |
| if (resultType->isIntegral()) |
| { |
| opCode = MULX; |
| } |
| else |
| { |
| switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = FMULS; break; |
| case Type::DoubleTyID: opCode = FMULD; break; |
| default: assert(0 && "Invalid type for MUL instruction"); break; |
| } |
| } |
| |
| return opCode; |
| } |
| |
| |
| static MachineOpCode |
| ChooseDivInstruction(const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| const Type* resultType = instrNode->getInstruction()->getType(); |
| |
| if (resultType->isIntegral()) |
| { |
| opCode = resultType->isSigned()? SDIVX : UDIVX; |
| } |
| else |
| { |
| Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); |
| switch(operand->getType()->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = FDIVS; break; |
| case Type::DoubleTyID: opCode = FDIVD; break; |
| default: assert(0 && "Invalid type for DIV instruction"); break; |
| } |
| } |
| |
| return opCode; |
| } |
| |
| |
| static MachineOpCode |
| ChooseLoadInstruction(const Type* resultType) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| switch (resultType->getPrimitiveID()) |
| { |
| case Type::BoolTyID: opCode = LDUB; break; |
| case Type::UByteTyID: opCode = LDUB; break; |
| case Type::SByteTyID: opCode = LDSB; break; |
| case Type::UShortTyID: opCode = LDUH; break; |
| case Type::ShortTyID: opCode = LDSH; break; |
| case Type::UIntTyID: opCode = LDUW; break; |
| case Type::IntTyID: opCode = LDSW; break; |
| case Type::ULongTyID: |
| case Type::LongTyID: opCode = LDX; break; |
| case Type::FloatTyID: opCode = LD; break; |
| case Type::DoubleTyID: opCode = LDD; break; |
| default: assert(0 && "Invalid type for Load instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| static MachineOpCode |
| ChooseStoreInstruction(const Type* valueType) |
| { |
| MachineOpCode opCode = INVALID_OPCODE; |
| |
| switch (valueType->getPrimitiveID()) |
| { |
| case Type::BoolTyID: |
| case Type::UByteTyID: |
| case Type::SByteTyID: opCode = STB; break; |
| case Type::UShortTyID: |
| case Type::ShortTyID: opCode = STH; break; |
| case Type::UIntTyID: |
| case Type::IntTyID: opCode = STW; break; |
| case Type::ULongTyID: |
| case Type::LongTyID: opCode = STX; break; |
| case Type::FloatTyID: opCode = ST; break; |
| case Type::DoubleTyID: opCode = STD; break; |
| default: assert(0 && "Invalid type for Store instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| //------------------------------------------------------------------------ |
| // Function SetOperandsForMemInstr |
| // |
| // Choose addressing mode for the given load or store instruction. |
| // Use [reg+reg] if it is an indexed reference, and the index offset is |
| // not a constant or if it cannot fit in the offset field. |
| // Use [reg+offset] in all other cases. |
| // |
| // This assumes that all array refs are "lowered" to one of these forms: |
| // %x = load (subarray*) ptr, constant ; single constant offset |
| // %x = load (subarray*) ptr, offsetVal ; single non-constant offset |
| // Generally, this should happen via strength reduction + LICM. |
| // Also, strength reduction should take care of using the same register for |
| // the loop index variable and an array index, when that is profitable. |
| //------------------------------------------------------------------------ |
| |
| static void |
| SetOperandsForMemInstr(MachineInstr* minstr, |
| const InstructionNode* vmInstrNode, |
| const TargetMachine& targetMachine) |
| { |
| MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction(); |
| |
| // Variables to hold the index vector, ptr value, and offset value. |
| // The major work here is to extract these for all 3 instruction types |
| // and then call the common function SetMemOperands_Internal(). |
| // |
| const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec(); |
| vector<ConstPoolVal*>* newIdxVec = NULL; |
| Value* ptrVal; |
| Value* arrayOffsetVal = NULL; |
| |
| // Test if a GetElemPtr instruction is being folded into this mem instrn. |
| // If so, it will be in the left child for Load and GetElemPtr, |
| // and in the right child for Store instructions. |
| // |
| InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store |
| ? vmInstrNode->rightChild() |
| : vmInstrNode->leftChild()); |
| |
| if (ptrChild->getOpLabel() == Instruction::GetElementPtr || |
| ptrChild->getOpLabel() == GetElemPtrIdx) |
| { |
| // There is a GetElemPtr instruction and there may be a chain of |
| // more than one. Use the pointer value of the last one in the chain. |
| // Fold the index vectors from the entire chain and from the mem |
| // instruction into one single index vector. |
| // Finally, we never fold for an array instruction so make that NULL. |
| |
| newIdxVec = new vector<ConstPoolVal*>; |
| ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec); |
| |
| newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end()); |
| idxVec = newIdxVec; |
| |
| assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType() |
| && "GetElemPtr cannot be folded into array refs in selection"); |
| } |
| else |
| { |
| // There is no GetElemPtr instruction. |
| // Use the pointer value and the index vector from the Mem instruction. |
| // If it is an array reference, get the array offset value. |
| // |
| ptrVal = memInst->getPtrOperand(); |
| |
| const Type* opType = |
| ((const PointerType*) ptrVal->getType())->getValueType(); |
| if (opType->isArrayType()) |
| { |
| assert((memInst->getNumOperands() |
| == (unsigned) 1 + memInst->getFirstOffsetIdx()) |
| && "Array refs must be lowered before Instruction Selection"); |
| |
| arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx()); |
| } |
| } |
| |
| SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal, |
| *idxVec, targetMachine); |
| |
| if (newIdxVec != NULL) |
| delete newIdxVec; |
| } |
| |
| |
| static void |
| SetMemOperands_Internal(MachineInstr* minstr, |
| const InstructionNode* vmInstrNode, |
| Value* ptrVal, |
| Value* arrayOffsetVal, |
| const vector<ConstPoolVal*>& idxVec, |
| const TargetMachine& targetMachine) |
| { |
| MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction(); |
| |
| // Initialize so we default to storing the offset in a register. |
| int64_t smallConstOffset; |
| Value* valueForRegOffset = NULL; |
| MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_Register; |
| |
| // Check if there is an index vector and if so, if it translates to |
| // a small enough constant to fit in the immediate-offset field. |
| // |
| if (idxVec.size() > 0) |
| { |
| bool isConstantOffset = false; |
| unsigned offset; |
| |
| const PointerType* ptrType = (PointerType*) ptrVal->getType(); |
| |
| if (ptrType->getValueType()->isStructType()) |
| { |
| // the offset is always constant for structs |
| isConstantOffset = true; |
| |
| // Compute the offset value using the index vector |
| offset = MemAccessInst::getIndexedOfsetForTarget(ptrType, |
| idxVec, targetMachine); |
| } |
| else |
| { |
| // It must be an array ref. Check if the offset is a constant, |
| // and that the indexing has been lowered to a single offset. |
| // |
| assert(ptrType->getValueType()->isArrayType()); |
| assert(arrayOffsetVal != NULL |
| && "Expect to be given Value* for array offsets"); |
| |
| if (arrayOffsetVal->getValueType() == Value::ConstantVal) |
| { |
| isConstantOffset = true; // always constant for structs |
| assert(arrayOffsetVal->getType()->isIntegral()); |
| offset = (arrayOffsetVal->getType()->isSigned()) |
| ? ((ConstPoolSInt*) arrayOffsetVal)->getValue() |
| : (int64_t) ((ConstPoolUInt*) arrayOffsetVal)->getValue(); |
| } |
| else |
| { |
| valueForRegOffset = arrayOffsetVal; |
| } |
| } |
| |
| if (isConstantOffset) |
| { |
| // create a virtual register for the constant |
| valueForRegOffset = new ConstPoolSInt(Type::IntTy, offset); |
| } |
| } |
| else |
| { |
| offsetOpType = MachineOperand::MO_SignExtendedImmed; |
| smallConstOffset = 0; |
| } |
| |
| // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR |
| // It is the left child in the instruction tree in all cases. |
| Value* leftVal = vmInstrNode->leftChild()->getValue(); |
| minstr->SetMachineOperand(0, MachineOperand::MO_Register, leftVal); |
| |
| // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR |
| // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR |
| // |
| unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1; |
| if (offsetOpType == MachineOperand::MO_Register) |
| { |
| assert(valueForRegOffset != NULL); |
| minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset); |
| } |
| else |
| minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset); |
| |
| if (memInst->getOpcode() == Instruction::Store) |
| minstr->SetMachineOperand(1, MachineOperand::MO_Register, ptrVal); |
| else |
| minstr->SetMachineOperand(2, MachineOperand::MO_Register, |
| vmInstrNode->getValue()); |
| } |
| |
| |
| // Create one or two load instructions to load constants from the |
| // constant pool. The first instructions is stored in instrA; |
| // the second (if any) in instrB. |
| // |
| static unsigned |
| FixConstantOperands(const InstructionNode* vmInstrNode, |
| MachineInstr** mvec, |
| unsigned numInstr, |
| TargetMachine& targetMachine) |
| { |
| static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR]; |
| |
| unsigned numNew = 0; |
| Instruction* vmInstr = vmInstrNode->getInstruction(); |
| |
| for (unsigned i=0; i < numInstr; i++) |
| { |
| MachineInstr* minstr = mvec[i]; |
| const MachineInstrInfo& instrInfo = |
| targetMachine.machineInstrInfo[minstr->getOpCode()]; |
| |
| for (unsigned op=0; op < instrInfo.numOperands; op++) |
| { |
| const MachineOperand& mop = minstr->getOperand(op); |
| Value* opValue = mop.value; |
| |
| // skip the result position and any other positions already |
| // marked as not a virtual register |
| if (instrInfo.resultPos == (int) op || |
| opValue == NULL || |
| ! (mop.machineOperandType == MachineOperand::MO_Register && |
| mop.vregType == MachineOperand::MO_VirtualReg)) |
| { |
| break; |
| } |
| |
| if (opValue->getValueType() == Value::ConstantVal) |
| { |
| MachineOperand::VirtualRegisterType vregType; |
| unsigned int machineRegNum; |
| int64_t immedValue; |
| MachineOperand::MachineOperandType opType = |
| ChooseRegOrImmed(opValue, minstr->getOpCode(), targetMachine, |
| /*canUseImmed*/ (op == 1), |
| vregType, machineRegNum, immedValue); |
| |
| if (opType == MachineOperand::MO_Register) |
| { |
| if (vregType == MachineOperand::MO_MachineReg) |
| minstr->SetMachineOperand(op, machineRegNum); |
| else |
| { // value is constant and must be loaded into a register |
| loadConstVec[numNew++] = |
| MakeOneLoadConstInstr(vmInstr, opValue); |
| } |
| } |
| else |
| minstr->SetMachineOperand(op, opType, immedValue); |
| } |
| |
| #if 0 |
| // Either put the constant in the immediate field or |
| // create an instruction to "put" it in a register. |
| // Check first if it is 0 and then just use %g0. |
| // |
| |
| bool isValidConstant; |
| int64_t intValue = GetConstantValueAsSignedInt(opValue, |
| isValidConstant); |
| if (intValue == 0 && targetMachine.zeroRegNum >= 0) |
| {// put it in register %g0 |
| minstr->SetMachineOperand(op, targetMachine.zeroRegNum); |
| } |
| else if (op == 1 && |
| instrInfo.constantFitsInImmedField(intValue)) |
| {// put it in the immediate field |
| MachineOperand::MachineOperandType opType = |
| (opValue->getType()->isSigned() |
| ? MachineOperand::MO_SignExtendedImmed |
| : MachineOperand::MO_UnextendedImmed); |
| |
| minstr->SetMachineOperand(op, opType, intValue); |
| } |
| else |
| {// create an instruction to "put" the value in a register. |
| loadConstVec[numNew++] = |
| MakeOneLoadConstInstr(vmInstr, opValue); |
| } |
| #endif |
| } |
| } |
| |
| if (numNew > 0) |
| { |
| // Insert the new instructions *before* the old ones by moving |
| // the old ones over `numNew' positions (last-to-first, of course!). |
| // |
| for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--) |
| mvec[i+numNew] = mvec[i]; |
| |
| for (unsigned i=0; i < numNew; i++) |
| mvec[i] = loadConstVec[i]; |
| } |
| |
| return (numInstr + numNew); |
| } |
| |
| |
| // Create one or two load instructions to load constants from the |
| // constant pool. The first instructions is stored in instrA; |
| // the second (if any) in instrB. |
| // |
| static unsigned |
| InsertLoadConstInstructions(unsigned loadConstFlags, |
| const InstructionNode* vmInstrNode, |
| MachineInstr** mvec, |
| unsigned numInstr) |
| { |
| MachineInstr *instrA = NULL, *instrB = NULL; |
| |
| unsigned numNew = 0; |
| |
| if (loadConstFlags & 0x01) |
| { |
| instrA = MakeOneLoadConstInstr(vmInstrNode->getInstruction(), |
| vmInstrNode->leftChild()->getValue()); |
| numNew++; |
| } |
| |
| if (loadConstFlags & 0x02) |
| { |
| instrB = MakeOneLoadConstInstr(vmInstrNode->getInstruction(), |
| vmInstrNode->rightChild()->getValue()); |
| numNew++; |
| } |
| |
| // Now insert the new instructions *before* the old ones by |
| // moving the old ones over `numNew' positions (last-to-first, of course!). |
| // |
| for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--) |
| mvec[i+numNew] = mvec[i]; |
| |
| unsigned whichNew = 0; |
| if (instrA != NULL) |
| mvec[whichNew++] = instrA; |
| if (instrB != NULL) |
| mvec[whichNew++] = instrB; |
| assert(whichNew == numNew); |
| |
| return numInstr + numNew; |
| } |
| |
| |
| static MachineInstr* |
| MakeOneLoadConstInstr(Instruction* vmInstr, |
| Value* val) |
| { |
| assert(val->getValueType() == Value::ConstantVal); |
| |
| MachineInstr* minstr; |
| |
| // Use a "set" instruction for known constants that can go in an integer reg. |
| // Use a "load" instruction for all other constants, in particular, |
| // floating point constants. |
| // |
| const Type* valType = val->getType(); |
| if (valType->isIntegral() || |
| valType->isPointerType() || |
| valType == Type::BoolTy) |
| { |
| bool isValidConstant; |
| if (val->getType()->isSigned()) |
| { |
| minstr = new MachineInstr(SETSW); |
| minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, |
| GetSignedIntConstantValue(val, isValidConstant)); |
| } |
| else |
| { |
| minstr = new MachineInstr(SETUW); |
| minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed, |
| GetUnsignedIntConstantValue(val, isValidConstant)); |
| } |
| minstr->SetMachineOperand(1, MachineOperand::MO_Register, val); |
| assert(isValidConstant && "Unrecognized constant"); |
| } |
| else |
| { |
| assert(valType == Type::FloatTy || |
| valType == Type::DoubleTy); |
| |
| int64_t zeroOffset = 0; // to avoid overloading ambiguity with (Value*) 0 |
| |
| // Make a Load instruction, and make `val' both the ptr value *and* |
| // the result value, and set the offset field to 0. Final code |
| // generation will have to generate the base+offset for the constant. |
| // |
| minstr = new MachineInstr(ChooseLoadInstruction(val->getType())); |
| minstr->SetMachineOperand(0, MachineOperand::MO_Register, val); |
| minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, |
| zeroOffset); |
| minstr->SetMachineOperand(2, MachineOperand::MO_Register, val); |
| |
| } |
| |
| Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1, val, NULL); |
| vmInstr->getMachineInstrVec().addTempValue(tmpInstr); |
| |
| return minstr; |
| } |
| |
| |
| // This function is currently unused and incomplete but will be |
| // used if we have a linear layout of basic blocks in LLVM code. |
| // It decides which branch should fall-through, and whether an |
| // extra unconditional branch is needed (when neither falls through). |
| // |
| void |
| ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern) |
| { |
| BranchInst* brInstr = (BranchInst*) vmInstr; |
| |
| brPattern.flipCondition = false; |
| brPattern.targetBB = brInstr->getSuccessor(0); |
| brPattern.extraBranch = NULL; |
| |
| assert(brInstr->getNumSuccessors() > 1 && |
| "Unnecessary analysis for unconditional branch"); |
| |
| assert(0 && "Fold branches in peephole optimization"); |
| } |
| |