| //===-- GCSE.cpp - SSA based Global Common Subexpr Elimination ------------===// |
| // |
| // This pass is designed to be a very quick global transformation that |
| // eliminates global common subexpressions from a function. It does this by |
| // examining the SSA value graph of the function, instead of doing slow, dense, |
| // bit-vector computations. |
| // |
| // This pass works best if it is proceeded with a simple constant propogation |
| // pass and an instruction combination pass because this pass does not do any |
| // value numbering (in order to be speedy). |
| // |
| // This pass does not attempt to CSE load instructions, because it does not use |
| // pointer analysis to determine when it is safe. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/InstrTypes.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "llvm/Support/InstIterator.h" |
| #include "llvm/Support/CFG.h" |
| #include "Support/StatisticReporter.h" |
| #include <algorithm> |
| |
| static Statistic<> NumInstRemoved("gcse\t\t- Number of instructions removed"); |
| static Statistic<> NumLoadRemoved("gcse\t\t- Number of loads removed"); |
| |
| namespace { |
| class GCSE : public FunctionPass, public InstVisitor<GCSE, bool> { |
| set<Instruction*> WorkList; |
| DominatorSet *DomSetInfo; |
| ImmediateDominators *ImmDominator; |
| |
| // BBContainsStore - Contains a value that indicates whether a basic block |
| // has a store or call instruction in it. This map is demand populated, so |
| // not having an entry means that the basic block has not been scanned yet. |
| // |
| map<BasicBlock*, bool> BBContainsStore; |
| public: |
| const char *getPassName() const { |
| return "Global Common Subexpression Elimination"; |
| } |
| |
| virtual bool runOnFunction(Function *F); |
| |
| // Visitation methods, these are invoked depending on the type of |
| // instruction being checked. They should return true if a common |
| // subexpression was folded. |
| // |
| bool visitUnaryOperator(Instruction *I); |
| bool visitBinaryOperator(Instruction *I); |
| bool visitGetElementPtrInst(GetElementPtrInst *I); |
| bool visitCastInst(CastInst *I){return visitUnaryOperator((Instruction*)I);} |
| bool visitShiftInst(ShiftInst *I) { |
| return visitBinaryOperator((Instruction*)I); |
| } |
| bool visitLoadInst(LoadInst *LI); |
| bool visitInstruction(Instruction *) { return false; } |
| |
| private: |
| void ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI); |
| void CommonSubExpressionFound(Instruction *I, Instruction *Other); |
| |
| // TryToRemoveALoad - Try to remove one of L1 or L2. The problem with |
| // removing loads is that intervening stores might make otherwise identical |
| // load's yield different values. To ensure that this is not the case, we |
| // check that there are no intervening stores or calls between the |
| // instructions. |
| // |
| bool TryToRemoveALoad(LoadInst *L1, LoadInst *L2); |
| |
| // CheckForInvalidatingInst - Return true if BB or any of the predecessors |
| // of BB (until DestBB) contain a store (or other invalidating) instruction. |
| // |
| bool CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB, |
| set<BasicBlock*> &VisitedSet); |
| |
| // This transformation requires dominator and immediate dominator info |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.preservesCFG(); |
| AU.addRequired(DominatorSet::ID); |
| AU.addRequired(ImmediateDominators::ID); |
| } |
| }; |
| } |
| |
| // createGCSEPass - The public interface to this file... |
| Pass *createGCSEPass() { return new GCSE(); } |
| |
| |
| // GCSE::runOnFunction - This is the main transformation entry point for a |
| // function. |
| // |
| bool GCSE::runOnFunction(Function *F) { |
| bool Changed = false; |
| |
| DomSetInfo = &getAnalysis<DominatorSet>(); |
| ImmDominator = &getAnalysis<ImmediateDominators>(); |
| |
| // Step #1: Add all instructions in the function to the worklist for |
| // processing. All of the instructions are considered to be our |
| // subexpressions to eliminate if possible. |
| // |
| WorkList.insert(inst_begin(F), inst_end(F)); |
| |
| // Step #2: WorkList processing. Iterate through all of the instructions, |
| // checking to see if there are any additionally defined subexpressions in the |
| // program. If so, eliminate them! |
| // |
| while (!WorkList.empty()) { |
| Instruction *I = *WorkList.begin(); // Get an instruction from the worklist |
| WorkList.erase(WorkList.begin()); |
| |
| // Visit the instruction, dispatching to the correct visit function based on |
| // the instruction type. This does the checking. |
| // |
| Changed |= visit(I); |
| } |
| |
| // Clear out data structure so that next function starts fresh |
| BBContainsStore.clear(); |
| |
| // When the worklist is empty, return whether or not we changed anything... |
| return Changed; |
| } |
| |
| |
| // ReplaceInstWithInst - Destroy the instruction pointed to by SI, making all |
| // uses of the instruction use First now instead. |
| // |
| void GCSE::ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI) { |
| Instruction *Second = *SI; |
| |
| //cerr << "DEL " << (void*)Second << Second; |
| |
| // Add the first instruction back to the worklist |
| WorkList.insert(First); |
| |
| // Add all uses of the second instruction to the worklist |
| for (Value::use_iterator UI = Second->use_begin(), UE = Second->use_end(); |
| UI != UE; ++UI) |
| WorkList.insert(cast<Instruction>(*UI)); |
| |
| // Make all users of 'Second' now use 'First' |
| Second->replaceAllUsesWith(First); |
| |
| // Erase the second instruction from the program |
| delete Second->getParent()->getInstList().remove(SI); |
| } |
| |
| // CommonSubExpressionFound - The two instruction I & Other have been found to |
| // be common subexpressions. This function is responsible for eliminating one |
| // of them, and for fixing the worklist to be correct. |
| // |
| void GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) { |
| assert(I != Other); |
| |
| WorkList.erase(I); |
| WorkList.erase(Other); // Other may not actually be on the worklist anymore... |
| |
| ++NumInstRemoved; // Keep track of number of instructions eliminated |
| |
| // Handle the easy case, where both instructions are in the same basic block |
| BasicBlock *BB1 = I->getParent(), *BB2 = Other->getParent(); |
| if (BB1 == BB2) { |
| // Eliminate the second occuring instruction. Add all uses of the second |
| // instruction to the worklist. |
| // |
| // Scan the basic block looking for the "first" instruction |
| BasicBlock::iterator BI = BB1->begin(); |
| while (*BI != I && *BI != Other) { |
| ++BI; |
| assert(BI != BB1->end() && "Instructions not found in parent BB!"); |
| } |
| |
| // Keep track of which instructions occurred first & second |
| Instruction *First = *BI; |
| Instruction *Second = I != First ? I : Other; // Get iterator to second inst |
| BI = find(BI, BB1->end(), Second); |
| assert(BI != BB1->end() && "Second instruction not found in parent block!"); |
| |
| // Destroy Second, using First instead. |
| ReplaceInstWithInst(First, BI); |
| |
| // Otherwise, the two instructions are in different basic blocks. If one |
| // dominates the other instruction, we can simply use it |
| // |
| } else if (DomSetInfo->dominates(BB1, BB2)) { // I dom Other? |
| BasicBlock::iterator BI = find(BB2->begin(), BB2->end(), Other); |
| assert(BI != BB2->end() && "Other not in parent basic block!"); |
| ReplaceInstWithInst(I, BI); |
| } else if (DomSetInfo->dominates(BB2, BB1)) { // Other dom I? |
| BasicBlock::iterator BI = find(BB1->begin(), BB1->end(), I); |
| assert(BI != BB1->end() && "I not in parent basic block!"); |
| ReplaceInstWithInst(Other, BI); |
| } else { |
| // Handle the most general case now. In this case, neither I dom Other nor |
| // Other dom I. Because we are in SSA form, we are guaranteed that the |
| // operands of the two instructions both dominate the uses, so we _know_ |
| // that there must exist a block that dominates both instructions (if the |
| // operands of the instructions are globals or constants, worst case we |
| // would get the entry node of the function). Search for this block now. |
| // |
| |
| // Search up the immediate dominator chain of BB1 for the shared dominator |
| BasicBlock *SharedDom = (*ImmDominator)[BB1]; |
| while (!DomSetInfo->dominates(SharedDom, BB2)) |
| SharedDom = (*ImmDominator)[SharedDom]; |
| |
| // At this point, shared dom must dominate BOTH BB1 and BB2... |
| assert(SharedDom && DomSetInfo->dominates(SharedDom, BB1) && |
| DomSetInfo->dominates(SharedDom, BB2) && "Dominators broken!"); |
| |
| // Rip 'I' out of BB1, and move it to the end of SharedDom. |
| BB1->getInstList().remove(I); |
| SharedDom->getInstList().insert(SharedDom->end()-1, I); |
| |
| // Eliminate 'Other' now. |
| BasicBlock::iterator BI = find(BB2->begin(), BB2->end(), Other); |
| assert(BI != BB2->end() && "I not in parent basic block!"); |
| ReplaceInstWithInst(I, BI); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // Visitation methods, these are invoked depending on the type of instruction |
| // being checked. They should return true if a common subexpression was folded. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| bool GCSE::visitUnaryOperator(Instruction *I) { |
| Value *Op = I->getOperand(0); |
| Function *F = I->getParent()->getParent(); |
| |
| for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end(); |
| UI != UE; ++UI) |
| if (Instruction *Other = dyn_cast<Instruction>(*UI)) |
| // Check to see if this new binary operator is not I, but same operand... |
| if (Other != I && Other->getOpcode() == I->getOpcode() && |
| Other->getOperand(0) == Op && // Is the operand the same? |
| // Is it embeded in the same function? (This could be false if LHS |
| // is a constant or global!) |
| Other->getParent()->getParent() == F && |
| |
| // Check that the types are the same, since this code handles casts... |
| Other->getType() == I->getType()) { |
| |
| // These instructions are identical. Handle the situation. |
| CommonSubExpressionFound(I, Other); |
| return true; // One instruction eliminated! |
| } |
| |
| return false; |
| } |
| |
| // isIdenticalBinaryInst - Return true if the two binary instructions are |
| // identical. |
| // |
| static inline bool isIdenticalBinaryInst(const Instruction *I1, |
| const Instruction *I2) { |
| // Is it embeded in the same function? (This could be false if LHS |
| // is a constant or global!) |
| if (I1->getOpcode() != I2->getOpcode() || |
| I1->getParent()->getParent() != I2->getParent()->getParent()) |
| return false; |
| |
| // They are identical if both operands are the same! |
| if (I1->getOperand(0) == I2->getOperand(0) && |
| I1->getOperand(1) == I2->getOperand(1)) |
| return true; |
| |
| // If the instruction is commutative and associative, the instruction can |
| // match if the operands are swapped! |
| // |
| if ((I1->getOperand(0) == I2->getOperand(1) && |
| I1->getOperand(1) == I2->getOperand(0)) && |
| (I1->getOpcode() == Instruction::Add || |
| I1->getOpcode() == Instruction::Mul || |
| I1->getOpcode() == Instruction::And || |
| I1->getOpcode() == Instruction::Or || |
| I1->getOpcode() == Instruction::Xor)) |
| return true; |
| |
| return false; |
| } |
| |
| bool GCSE::visitBinaryOperator(Instruction *I) { |
| Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); |
| Function *F = I->getParent()->getParent(); |
| |
| for (Value::use_iterator UI = LHS->use_begin(), UE = LHS->use_end(); |
| UI != UE; ++UI) |
| if (Instruction *Other = dyn_cast<Instruction>(*UI)) |
| // Check to see if this new binary operator is not I, but same operand... |
| if (Other != I && isIdenticalBinaryInst(I, Other)) { |
| // These instructions are identical. Handle the situation. |
| CommonSubExpressionFound(I, Other); |
| return true; // One instruction eliminated! |
| } |
| |
| return false; |
| } |
| |
| // IdenticalComplexInst - Return true if the two instructions are the same, by |
| // using a brute force comparison. |
| // |
| static bool IdenticalComplexInst(const Instruction *I1, const Instruction *I2) { |
| assert(I1->getOpcode() == I2->getOpcode()); |
| // Equal if they are in the same function... |
| return I1->getParent()->getParent() == I2->getParent()->getParent() && |
| // And return the same type... |
| I1->getType() == I2->getType() && |
| // And have the same number of operands... |
| I1->getNumOperands() == I2->getNumOperands() && |
| // And all of the operands are equal. |
| std::equal(I1->op_begin(), I1->op_end(), I2->op_begin()); |
| } |
| |
| bool GCSE::visitGetElementPtrInst(GetElementPtrInst *I) { |
| Value *Op = I->getOperand(0); |
| Function *F = I->getParent()->getParent(); |
| |
| for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end(); |
| UI != UE; ++UI) |
| if (GetElementPtrInst *Other = dyn_cast<GetElementPtrInst>(*UI)) |
| // Check to see if this new getelementptr is not I, but same operand... |
| if (Other != I && IdenticalComplexInst(I, Other)) { |
| // These instructions are identical. Handle the situation. |
| CommonSubExpressionFound(I, Other); |
| return true; // One instruction eliminated! |
| } |
| |
| return false; |
| } |
| |
| bool GCSE::visitLoadInst(LoadInst *LI) { |
| Value *Op = LI->getOperand(0); |
| Function *F = LI->getParent()->getParent(); |
| |
| for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end(); |
| UI != UE; ++UI) |
| if (LoadInst *Other = dyn_cast<LoadInst>(*UI)) |
| // Check to see if this new load is not LI, but has the same operands... |
| if (Other != LI && IdenticalComplexInst(LI, Other) && |
| TryToRemoveALoad(LI, Other)) |
| return true; // An instruction was eliminated! |
| |
| return false; |
| } |
| |
| static inline bool isInvalidatingInst(const Instruction *I) { |
| return I->getOpcode() == Instruction::Store || |
| I->getOpcode() == Instruction::Call || |
| I->getOpcode() == Instruction::Invoke; |
| } |
| |
| // TryToRemoveALoad - Try to remove one of L1 or L2. The problem with removing |
| // loads is that intervening stores might make otherwise identical load's yield |
| // different values. To ensure that this is not the case, we check that there |
| // are no intervening stores or calls between the instructions. |
| // |
| bool GCSE::TryToRemoveALoad(LoadInst *L1, LoadInst *L2) { |
| // Figure out which load dominates the other one. If neither dominates the |
| // other we cannot eliminate one... |
| // |
| if (DomSetInfo->dominates(L2, L1)) |
| std::swap(L1, L2); // Make L1 dominate L2 |
| else if (!DomSetInfo->dominates(L1, L2)) |
| return false; // Neither instruction dominates the other one... |
| |
| BasicBlock *BB1 = L1->getParent(), *BB2 = L2->getParent(); |
| |
| // FIXME: This is incredibly painful with broken rep |
| BasicBlock::iterator L1I = std::find(BB1->begin(), BB1->end(), L1); |
| assert(L1I != BB1->end() && "Inst not in own parent?"); |
| |
| // L1 now dominates L2. Check to see if the intervening instructions between |
| // the two loads include a store or call... |
| // |
| if (BB1 == BB2) { // In same basic block? |
| // In this degenerate case, no checking of global basic blocks has to occur |
| // just check the instructions BETWEEN L1 & L2... |
| // |
| for (++L1I; *L1I != L2; ++L1I) |
| if (isInvalidatingInst(*L1I)) |
| return false; // Cannot eliminate load |
| |
| ++NumLoadRemoved; |
| CommonSubExpressionFound(L1, L2); |
| return true; |
| } else { |
| // Make sure that there are no store instructions between L1 and the end of |
| // it's basic block... |
| // |
| for (++L1I; L1I != BB1->end(); ++L1I) |
| if (isInvalidatingInst(*L1I)) { |
| BBContainsStore[BB1] = true; |
| return false; // Cannot eliminate load |
| } |
| |
| // Make sure that there are no store instructions between the start of BB2 |
| // and the second load instruction... |
| // |
| for (BasicBlock::iterator II = BB2->begin(); *II != L2; ++II) |
| if (isInvalidatingInst(*II)) { |
| BBContainsStore[BB2] = true; |
| return false; // Cannot eliminate load |
| } |
| |
| // Do a depth first traversal of the inverse CFG starting at L2's block, |
| // looking for L1's block. The inverse CFG is made up of the predecessor |
| // nodes of a block... so all of the edges in the graph are "backward". |
| // |
| set<BasicBlock*> VisitedSet; |
| for (pred_iterator PI = pred_begin(BB2), PE = pred_end(BB2); PI != PE; ++PI) |
| if (CheckForInvalidatingInst(*PI, BB1, VisitedSet)) |
| return false; |
| |
| ++NumLoadRemoved; |
| CommonSubExpressionFound(L1, L2); |
| return true; |
| } |
| return false; |
| } |
| |
| // CheckForInvalidatingInst - Return true if BB or any of the predecessors of BB |
| // (until DestBB) contain a store (or other invalidating) instruction. |
| // |
| bool GCSE::CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB, |
| set<BasicBlock*> &VisitedSet) { |
| // Found the termination point! |
| if (BB == DestBB || VisitedSet.count(BB)) return false; |
| |
| // Avoid infinite recursion! |
| VisitedSet.insert(BB); |
| |
| // Have we already checked this block? |
| map<BasicBlock*, bool>::iterator MI = BBContainsStore.find(BB); |
| |
| if (MI != BBContainsStore.end()) { |
| // If this block is known to contain a store, exit the recursion early... |
| if (MI->second) return true; |
| // Otherwise continue checking predecessors... |
| } else { |
| // We don't know if this basic block contains an invalidating instruction. |
| // Check now: |
| bool HasStore = std::find_if(BB->begin(), BB->end(), |
| isInvalidatingInst) != BB->end(); |
| if ((BBContainsStore[BB] = HasStore)) // Update map |
| return true; // Exit recursion early... |
| } |
| |
| // Check all of our predecessor blocks... |
| for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) |
| if (CheckForInvalidatingInst(*PI, DestBB, VisitedSet)) |
| return true; |
| |
| // None of our predecessor blocks contain a store, and we don't either! |
| return false; |
| } |