| //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This is a utility pass used for testing the InstructionSimplify analysis. |
| // The analysis is applied to every instruction, and if it simplifies then the |
| // instruction is replaced by the simplification. If you are looking for a pass |
| // that performs serious instruction folding, use the instcombine pass instead. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/SimplifyLibCalls.h" |
| #include "llvm/DataLayout.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Function.h" |
| #include "llvm/IRBuilder.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Module.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Target/TargetLibraryInfo.h" |
| #include "llvm/Transforms/Utils/BuildLibCalls.h" |
| |
| using namespace llvm; |
| |
| /// This class is the abstract base class for the set of optimizations that |
| /// corresponds to one library call. |
| namespace { |
| class LibCallOptimization { |
| protected: |
| Function *Caller; |
| const DataLayout *TD; |
| const TargetLibraryInfo *TLI; |
| const LibCallSimplifier *LCS; |
| LLVMContext* Context; |
| public: |
| LibCallOptimization() { } |
| virtual ~LibCallOptimization() {} |
| |
| /// callOptimizer - This pure virtual method is implemented by base classes to |
| /// do various optimizations. If this returns null then no transformation was |
| /// performed. If it returns CI, then it transformed the call and CI is to be |
| /// deleted. If it returns something else, replace CI with the new value and |
| /// delete CI. |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) |
| =0; |
| |
| Value *optimizeCall(CallInst *CI, const DataLayout *TD, |
| const TargetLibraryInfo *TLI, |
| const LibCallSimplifier *LCS, IRBuilder<> &B) { |
| Caller = CI->getParent()->getParent(); |
| this->TD = TD; |
| this->TLI = TLI; |
| this->LCS = LCS; |
| if (CI->getCalledFunction()) |
| Context = &CI->getCalledFunction()->getContext(); |
| |
| // We never change the calling convention. |
| if (CI->getCallingConv() != llvm::CallingConv::C) |
| return NULL; |
| |
| return callOptimizer(CI->getCalledFunction(), CI, B); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Helper Functions |
| //===----------------------------------------------------------------------===// |
| |
| /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the |
| /// value is equal or not-equal to zero. |
| static bool isOnlyUsedInZeroEqualityComparison(Value *V) { |
| for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); |
| UI != E; ++UI) { |
| if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) |
| if (IC->isEquality()) |
| if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) |
| if (C->isNullValue()) |
| continue; |
| // Unknown instruction. |
| return false; |
| } |
| return true; |
| } |
| |
| /// isOnlyUsedInEqualityComparison - Return true if it is only used in equality |
| /// comparisons with With. |
| static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { |
| for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); |
| UI != E; ++UI) { |
| if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) |
| if (IC->isEquality() && IC->getOperand(1) == With) |
| continue; |
| // Unknown instruction. |
| return false; |
| } |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Fortified Library Call Optimizations |
| //===----------------------------------------------------------------------===// |
| |
| struct FortifiedLibCallOptimization : public LibCallOptimization { |
| protected: |
| virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, |
| bool isString) const = 0; |
| }; |
| |
| struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization { |
| CallInst *CI; |
| |
| bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const { |
| if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp)) |
| return true; |
| if (ConstantInt *SizeCI = |
| dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) { |
| if (SizeCI->isAllOnesValue()) |
| return true; |
| if (isString) { |
| uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp)); |
| // If the length is 0 we don't know how long it is and so we can't |
| // remove the check. |
| if (Len == 0) return false; |
| return SizeCI->getZExtValue() >= Len; |
| } |
| if (ConstantInt *Arg = dyn_cast<ConstantInt>( |
| CI->getArgOperand(SizeArgOp))) |
| return SizeCI->getZExtValue() >= Arg->getZExtValue(); |
| } |
| return false; |
| } |
| }; |
| |
| struct MemCpyChkOpt : public InstFortifiedLibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| this->CI = CI; |
| FunctionType *FT = Callee->getFunctionType(); |
| LLVMContext &Context = CI->getParent()->getContext(); |
| |
| // Check if this has the right signature. |
| if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || |
| !FT->getParamType(0)->isPointerTy() || |
| !FT->getParamType(1)->isPointerTy() || |
| FT->getParamType(2) != TD->getIntPtrType(Context) || |
| FT->getParamType(3) != TD->getIntPtrType(Context)) |
| return 0; |
| |
| if (isFoldable(3, 2, false)) { |
| B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), |
| CI->getArgOperand(2), 1); |
| return CI->getArgOperand(0); |
| } |
| return 0; |
| } |
| }; |
| |
| struct MemMoveChkOpt : public InstFortifiedLibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| this->CI = CI; |
| FunctionType *FT = Callee->getFunctionType(); |
| LLVMContext &Context = CI->getParent()->getContext(); |
| |
| // Check if this has the right signature. |
| if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || |
| !FT->getParamType(0)->isPointerTy() || |
| !FT->getParamType(1)->isPointerTy() || |
| FT->getParamType(2) != TD->getIntPtrType(Context) || |
| FT->getParamType(3) != TD->getIntPtrType(Context)) |
| return 0; |
| |
| if (isFoldable(3, 2, false)) { |
| B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), |
| CI->getArgOperand(2), 1); |
| return CI->getArgOperand(0); |
| } |
| return 0; |
| } |
| }; |
| |
| struct MemSetChkOpt : public InstFortifiedLibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| this->CI = CI; |
| FunctionType *FT = Callee->getFunctionType(); |
| LLVMContext &Context = CI->getParent()->getContext(); |
| |
| // Check if this has the right signature. |
| if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || |
| !FT->getParamType(0)->isPointerTy() || |
| !FT->getParamType(1)->isIntegerTy() || |
| FT->getParamType(2) != TD->getIntPtrType(Context) || |
| FT->getParamType(3) != TD->getIntPtrType(Context)) |
| return 0; |
| |
| if (isFoldable(3, 2, false)) { |
| Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), |
| false); |
| B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); |
| return CI->getArgOperand(0); |
| } |
| return 0; |
| } |
| }; |
| |
| struct StrCpyChkOpt : public InstFortifiedLibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| this->CI = CI; |
| StringRef Name = Callee->getName(); |
| FunctionType *FT = Callee->getFunctionType(); |
| LLVMContext &Context = CI->getParent()->getContext(); |
| |
| // Check if this has the right signature. |
| if (FT->getNumParams() != 3 || |
| FT->getReturnType() != FT->getParamType(0) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != Type::getInt8PtrTy(Context) || |
| FT->getParamType(2) != TD->getIntPtrType(Context)) |
| return 0; |
| |
| Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); |
| if (Dst == Src) // __strcpy_chk(x,x) -> x |
| return Src; |
| |
| // If a) we don't have any length information, or b) we know this will |
| // fit then just lower to a plain strcpy. Otherwise we'll keep our |
| // strcpy_chk call which may fail at runtime if the size is too long. |
| // TODO: It might be nice to get a maximum length out of the possible |
| // string lengths for varying. |
| if (isFoldable(2, 1, true)) { |
| Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6)); |
| return Ret; |
| } else { |
| // Maybe we can stil fold __strcpy_chk to __memcpy_chk. |
| uint64_t Len = GetStringLength(Src); |
| if (Len == 0) return 0; |
| |
| // This optimization require DataLayout. |
| if (!TD) return 0; |
| |
| Value *Ret = |
| EmitMemCpyChk(Dst, Src, |
| ConstantInt::get(TD->getIntPtrType(Context), Len), |
| CI->getArgOperand(2), B, TD, TLI); |
| return Ret; |
| } |
| return 0; |
| } |
| }; |
| |
| struct StpCpyChkOpt : public InstFortifiedLibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| this->CI = CI; |
| StringRef Name = Callee->getName(); |
| FunctionType *FT = Callee->getFunctionType(); |
| LLVMContext &Context = CI->getParent()->getContext(); |
| |
| // Check if this has the right signature. |
| if (FT->getNumParams() != 3 || |
| FT->getReturnType() != FT->getParamType(0) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != Type::getInt8PtrTy(Context) || |
| FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0))) |
| return 0; |
| |
| Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); |
| if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) |
| Value *StrLen = EmitStrLen(Src, B, TD, TLI); |
| return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0; |
| } |
| |
| // If a) we don't have any length information, or b) we know this will |
| // fit then just lower to a plain stpcpy. Otherwise we'll keep our |
| // stpcpy_chk call which may fail at runtime if the size is too long. |
| // TODO: It might be nice to get a maximum length out of the possible |
| // string lengths for varying. |
| if (isFoldable(2, 1, true)) { |
| Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6)); |
| return Ret; |
| } else { |
| // Maybe we can stil fold __stpcpy_chk to __memcpy_chk. |
| uint64_t Len = GetStringLength(Src); |
| if (Len == 0) return 0; |
| |
| // This optimization require DataLayout. |
| if (!TD) return 0; |
| |
| Type *PT = FT->getParamType(0); |
| Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len); |
| Value *DstEnd = B.CreateGEP(Dst, |
| ConstantInt::get(TD->getIntPtrType(PT), |
| Len - 1)); |
| if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, TD, TLI)) |
| return 0; |
| return DstEnd; |
| } |
| return 0; |
| } |
| }; |
| |
| struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| this->CI = CI; |
| StringRef Name = Callee->getName(); |
| FunctionType *FT = Callee->getFunctionType(); |
| LLVMContext &Context = CI->getParent()->getContext(); |
| |
| // Check if this has the right signature. |
| if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != Type::getInt8PtrTy(Context) || |
| !FT->getParamType(2)->isIntegerTy() || |
| FT->getParamType(3) != TD->getIntPtrType(Context)) |
| return 0; |
| |
| if (isFoldable(3, 2, false)) { |
| Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), |
| CI->getArgOperand(2), B, TD, TLI, |
| Name.substr(2, 7)); |
| return Ret; |
| } |
| return 0; |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // String and Memory Library Call Optimizations |
| //===----------------------------------------------------------------------===// |
| |
| struct StrCatOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strcat" function prototype. |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| FT->getReturnType() != B.getInt8PtrTy() || |
| FT->getParamType(0) != FT->getReturnType() || |
| FT->getParamType(1) != FT->getReturnType()) |
| return 0; |
| |
| // Extract some information from the instruction |
| Value *Dst = CI->getArgOperand(0); |
| Value *Src = CI->getArgOperand(1); |
| |
| // See if we can get the length of the input string. |
| uint64_t Len = GetStringLength(Src); |
| if (Len == 0) return 0; |
| --Len; // Unbias length. |
| |
| // Handle the simple, do-nothing case: strcat(x, "") -> x |
| if (Len == 0) |
| return Dst; |
| |
| // These optimizations require DataLayout. |
| if (!TD) return 0; |
| |
| return emitStrLenMemCpy(Src, Dst, Len, B); |
| } |
| |
| Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, |
| IRBuilder<> &B) { |
| // We need to find the end of the destination string. That's where the |
| // memory is to be moved to. We just generate a call to strlen. |
| Value *DstLen = EmitStrLen(Dst, B, TD, TLI); |
| if (!DstLen) |
| return 0; |
| |
| // Now that we have the destination's length, we must index into the |
| // destination's pointer to get the actual memcpy destination (end of |
| // the string .. we're concatenating). |
| Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr"); |
| |
| // We have enough information to now generate the memcpy call to do the |
| // concatenation for us. Make a memcpy to copy the nul byte with align = 1. |
| B.CreateMemCpy(CpyDst, Src, |
| ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1); |
| return Dst; |
| } |
| }; |
| |
| struct StrNCatOpt : public StrCatOpt { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strncat" function prototype. |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 3 || |
| FT->getReturnType() != B.getInt8PtrTy() || |
| FT->getParamType(0) != FT->getReturnType() || |
| FT->getParamType(1) != FT->getReturnType() || |
| !FT->getParamType(2)->isIntegerTy()) |
| return 0; |
| |
| // Extract some information from the instruction |
| Value *Dst = CI->getArgOperand(0); |
| Value *Src = CI->getArgOperand(1); |
| uint64_t Len; |
| |
| // We don't do anything if length is not constant |
| if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) |
| Len = LengthArg->getZExtValue(); |
| else |
| return 0; |
| |
| // See if we can get the length of the input string. |
| uint64_t SrcLen = GetStringLength(Src); |
| if (SrcLen == 0) return 0; |
| --SrcLen; // Unbias length. |
| |
| // Handle the simple, do-nothing cases: |
| // strncat(x, "", c) -> x |
| // strncat(x, c, 0) -> x |
| if (SrcLen == 0 || Len == 0) return Dst; |
| |
| // These optimizations require DataLayout. |
| if (!TD) return 0; |
| |
| // We don't optimize this case |
| if (Len < SrcLen) return 0; |
| |
| // strncat(x, s, c) -> strcat(x, s) |
| // s is constant so the strcat can be optimized further |
| return emitStrLenMemCpy(Src, Dst, SrcLen, B); |
| } |
| }; |
| |
| struct StrChrOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strchr" function prototype. |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| FT->getReturnType() != B.getInt8PtrTy() || |
| FT->getParamType(0) != FT->getReturnType() || |
| !FT->getParamType(1)->isIntegerTy(32)) |
| return 0; |
| |
| Value *SrcStr = CI->getArgOperand(0); |
| |
| // If the second operand is non-constant, see if we can compute the length |
| // of the input string and turn this into memchr. |
| ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); |
| if (CharC == 0) { |
| // These optimizations require DataLayout. |
| if (!TD) return 0; |
| |
| uint64_t Len = GetStringLength(SrcStr); |
| if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32. |
| return 0; |
| |
| return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul. |
| ConstantInt::get(TD->getIntPtrType(*Context), Len), |
| B, TD, TLI); |
| } |
| |
| // Otherwise, the character is a constant, see if the first argument is |
| // a string literal. If so, we can constant fold. |
| StringRef Str; |
| if (!getConstantStringInfo(SrcStr, Str)) |
| return 0; |
| |
| // Compute the offset, make sure to handle the case when we're searching for |
| // zero (a weird way to spell strlen). |
| size_t I = CharC->getSExtValue() == 0 ? |
| Str.size() : Str.find(CharC->getSExtValue()); |
| if (I == StringRef::npos) // Didn't find the char. strchr returns null. |
| return Constant::getNullValue(CI->getType()); |
| |
| // strchr(s+n,c) -> gep(s+n+i,c) |
| return B.CreateGEP(SrcStr, B.getInt64(I), "strchr"); |
| } |
| }; |
| |
| struct StrRChrOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strrchr" function prototype. |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| FT->getReturnType() != B.getInt8PtrTy() || |
| FT->getParamType(0) != FT->getReturnType() || |
| !FT->getParamType(1)->isIntegerTy(32)) |
| return 0; |
| |
| Value *SrcStr = CI->getArgOperand(0); |
| ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); |
| |
| // Cannot fold anything if we're not looking for a constant. |
| if (!CharC) |
| return 0; |
| |
| StringRef Str; |
| if (!getConstantStringInfo(SrcStr, Str)) { |
| // strrchr(s, 0) -> strchr(s, 0) |
| if (TD && CharC->isZero()) |
| return EmitStrChr(SrcStr, '\0', B, TD, TLI); |
| return 0; |
| } |
| |
| // Compute the offset. |
| size_t I = CharC->getSExtValue() == 0 ? |
| Str.size() : Str.rfind(CharC->getSExtValue()); |
| if (I == StringRef::npos) // Didn't find the char. Return null. |
| return Constant::getNullValue(CI->getType()); |
| |
| // strrchr(s+n,c) -> gep(s+n+i,c) |
| return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr"); |
| } |
| }; |
| |
| struct StrCmpOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strcmp" function prototype. |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| !FT->getReturnType()->isIntegerTy(32) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != B.getInt8PtrTy()) |
| return 0; |
| |
| Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); |
| if (Str1P == Str2P) // strcmp(x,x) -> 0 |
| return ConstantInt::get(CI->getType(), 0); |
| |
| StringRef Str1, Str2; |
| bool HasStr1 = getConstantStringInfo(Str1P, Str1); |
| bool HasStr2 = getConstantStringInfo(Str2P, Str2); |
| |
| // strcmp(x, y) -> cnst (if both x and y are constant strings) |
| if (HasStr1 && HasStr2) |
| return ConstantInt::get(CI->getType(), Str1.compare(Str2)); |
| |
| if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x |
| return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), |
| CI->getType())); |
| |
| if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x |
| return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); |
| |
| // strcmp(P, "x") -> memcmp(P, "x", 2) |
| uint64_t Len1 = GetStringLength(Str1P); |
| uint64_t Len2 = GetStringLength(Str2P); |
| if (Len1 && Len2) { |
| // These optimizations require DataLayout. |
| if (!TD) return 0; |
| |
| return EmitMemCmp(Str1P, Str2P, |
| ConstantInt::get(TD->getIntPtrType(*Context), |
| std::min(Len1, Len2)), B, TD, TLI); |
| } |
| |
| return 0; |
| } |
| }; |
| |
| struct StrNCmpOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strncmp" function prototype. |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 3 || |
| !FT->getReturnType()->isIntegerTy(32) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != B.getInt8PtrTy() || |
| !FT->getParamType(2)->isIntegerTy()) |
| return 0; |
| |
| Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); |
| if (Str1P == Str2P) // strncmp(x,x,n) -> 0 |
| return ConstantInt::get(CI->getType(), 0); |
| |
| // Get the length argument if it is constant. |
| uint64_t Length; |
| if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) |
| Length = LengthArg->getZExtValue(); |
| else |
| return 0; |
| |
| if (Length == 0) // strncmp(x,y,0) -> 0 |
| return ConstantInt::get(CI->getType(), 0); |
| |
| if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) |
| return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD, TLI); |
| |
| StringRef Str1, Str2; |
| bool HasStr1 = getConstantStringInfo(Str1P, Str1); |
| bool HasStr2 = getConstantStringInfo(Str2P, Str2); |
| |
| // strncmp(x, y) -> cnst (if both x and y are constant strings) |
| if (HasStr1 && HasStr2) { |
| StringRef SubStr1 = Str1.substr(0, Length); |
| StringRef SubStr2 = Str2.substr(0, Length); |
| return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); |
| } |
| |
| if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x |
| return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), |
| CI->getType())); |
| |
| if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x |
| return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); |
| |
| return 0; |
| } |
| }; |
| |
| struct StrCpyOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strcpy" function prototype. |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| FT->getReturnType() != FT->getParamType(0) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != B.getInt8PtrTy()) |
| return 0; |
| |
| Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); |
| if (Dst == Src) // strcpy(x,x) -> x |
| return Src; |
| |
| // These optimizations require DataLayout. |
| if (!TD) return 0; |
| |
| // See if we can get the length of the input string. |
| uint64_t Len = GetStringLength(Src); |
| if (Len == 0) return 0; |
| |
| // We have enough information to now generate the memcpy call to do the |
| // copy for us. Make a memcpy to copy the nul byte with align = 1. |
| B.CreateMemCpy(Dst, Src, |
| ConstantInt::get(TD->getIntPtrType(*Context), Len), 1); |
| return Dst; |
| } |
| }; |
| |
| struct StpCpyOpt: public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "stpcpy" function prototype. |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| FT->getReturnType() != FT->getParamType(0) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != B.getInt8PtrTy()) |
| return 0; |
| |
| // These optimizations require DataLayout. |
| if (!TD) return 0; |
| |
| Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); |
| if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) |
| Value *StrLen = EmitStrLen(Src, B, TD, TLI); |
| return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0; |
| } |
| |
| // See if we can get the length of the input string. |
| uint64_t Len = GetStringLength(Src); |
| if (Len == 0) return 0; |
| |
| Type *PT = FT->getParamType(0); |
| Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len); |
| Value *DstEnd = B.CreateGEP(Dst, |
| ConstantInt::get(TD->getIntPtrType(PT), |
| Len - 1)); |
| |
| // We have enough information to now generate the memcpy call to do the |
| // copy for us. Make a memcpy to copy the nul byte with align = 1. |
| B.CreateMemCpy(Dst, Src, LenV, 1); |
| return DstEnd; |
| } |
| }; |
| |
| struct StrNCpyOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != B.getInt8PtrTy() || |
| !FT->getParamType(2)->isIntegerTy()) |
| return 0; |
| |
| Value *Dst = CI->getArgOperand(0); |
| Value *Src = CI->getArgOperand(1); |
| Value *LenOp = CI->getArgOperand(2); |
| |
| // See if we can get the length of the input string. |
| uint64_t SrcLen = GetStringLength(Src); |
| if (SrcLen == 0) return 0; |
| --SrcLen; |
| |
| if (SrcLen == 0) { |
| // strncpy(x, "", y) -> memset(x, '\0', y, 1) |
| B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); |
| return Dst; |
| } |
| |
| uint64_t Len; |
| if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) |
| Len = LengthArg->getZExtValue(); |
| else |
| return 0; |
| |
| if (Len == 0) return Dst; // strncpy(x, y, 0) -> x |
| |
| // These optimizations require DataLayout. |
| if (!TD) return 0; |
| |
| // Let strncpy handle the zero padding |
| if (Len > SrcLen+1) return 0; |
| |
| Type *PT = FT->getParamType(0); |
| // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] |
| B.CreateMemCpy(Dst, Src, |
| ConstantInt::get(TD->getIntPtrType(PT), Len), 1); |
| |
| return Dst; |
| } |
| }; |
| |
| struct StrLenOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 1 || |
| FT->getParamType(0) != B.getInt8PtrTy() || |
| !FT->getReturnType()->isIntegerTy()) |
| return 0; |
| |
| Value *Src = CI->getArgOperand(0); |
| |
| // Constant folding: strlen("xyz") -> 3 |
| if (uint64_t Len = GetStringLength(Src)) |
| return ConstantInt::get(CI->getType(), Len-1); |
| |
| // strlen(x) != 0 --> *x != 0 |
| // strlen(x) == 0 --> *x == 0 |
| if (isOnlyUsedInZeroEqualityComparison(CI)) |
| return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); |
| return 0; |
| } |
| }; |
| |
| struct StrPBrkOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| FT->getParamType(0) != B.getInt8PtrTy() || |
| FT->getParamType(1) != FT->getParamType(0) || |
| FT->getReturnType() != FT->getParamType(0)) |
| return 0; |
| |
| StringRef S1, S2; |
| bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); |
| bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); |
| |
| // strpbrk(s, "") -> NULL |
| // strpbrk("", s) -> NULL |
| if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) |
| return Constant::getNullValue(CI->getType()); |
| |
| // Constant folding. |
| if (HasS1 && HasS2) { |
| size_t I = S1.find_first_of(S2); |
| if (I == std::string::npos) // No match. |
| return Constant::getNullValue(CI->getType()); |
| |
| return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk"); |
| } |
| |
| // strpbrk(s, "a") -> strchr(s, 'a') |
| if (TD && HasS2 && S2.size() == 1) |
| return EmitStrChr(CI->getArgOperand(0), S2[0], B, TD, TLI); |
| |
| return 0; |
| } |
| }; |
| |
| struct StrToOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| FunctionType *FT = Callee->getFunctionType(); |
| if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || |
| !FT->getParamType(0)->isPointerTy() || |
| !FT->getParamType(1)->isPointerTy()) |
| return 0; |
| |
| Value *EndPtr = CI->getArgOperand(1); |
| if (isa<ConstantPointerNull>(EndPtr)) { |
| // With a null EndPtr, this function won't capture the main argument. |
| // It would be readonly too, except that it still may write to errno. |
| CI->addAttribute(1, Attributes::get(Callee->getContext(), |
| Attributes::NoCapture)); |
| } |
| |
| return 0; |
| } |
| }; |
| |
| struct StrSpnOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| FT->getParamType(0) != B.getInt8PtrTy() || |
| FT->getParamType(1) != FT->getParamType(0) || |
| !FT->getReturnType()->isIntegerTy()) |
| return 0; |
| |
| StringRef S1, S2; |
| bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); |
| bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); |
| |
| // strspn(s, "") -> 0 |
| // strspn("", s) -> 0 |
| if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) |
| return Constant::getNullValue(CI->getType()); |
| |
| // Constant folding. |
| if (HasS1 && HasS2) { |
| size_t Pos = S1.find_first_not_of(S2); |
| if (Pos == StringRef::npos) Pos = S1.size(); |
| return ConstantInt::get(CI->getType(), Pos); |
| } |
| |
| return 0; |
| } |
| }; |
| |
| struct StrCSpnOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| FT->getParamType(0) != B.getInt8PtrTy() || |
| FT->getParamType(1) != FT->getParamType(0) || |
| !FT->getReturnType()->isIntegerTy()) |
| return 0; |
| |
| StringRef S1, S2; |
| bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); |
| bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); |
| |
| // strcspn("", s) -> 0 |
| if (HasS1 && S1.empty()) |
| return Constant::getNullValue(CI->getType()); |
| |
| // Constant folding. |
| if (HasS1 && HasS2) { |
| size_t Pos = S1.find_first_of(S2); |
| if (Pos == StringRef::npos) Pos = S1.size(); |
| return ConstantInt::get(CI->getType(), Pos); |
| } |
| |
| // strcspn(s, "") -> strlen(s) |
| if (TD && HasS2 && S2.empty()) |
| return EmitStrLen(CI->getArgOperand(0), B, TD, TLI); |
| |
| return 0; |
| } |
| }; |
| |
| struct StrStrOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| !FT->getParamType(0)->isPointerTy() || |
| !FT->getParamType(1)->isPointerTy() || |
| !FT->getReturnType()->isPointerTy()) |
| return 0; |
| |
| // fold strstr(x, x) -> x. |
| if (CI->getArgOperand(0) == CI->getArgOperand(1)) |
| return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); |
| |
| // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 |
| if (TD && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { |
| Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, TD, TLI); |
| if (!StrLen) |
| return 0; |
| Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), |
| StrLen, B, TD, TLI); |
| if (!StrNCmp) |
| return 0; |
| for (Value::use_iterator UI = CI->use_begin(), UE = CI->use_end(); |
| UI != UE; ) { |
| ICmpInst *Old = cast<ICmpInst>(*UI++); |
| Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp, |
| ConstantInt::getNullValue(StrNCmp->getType()), |
| "cmp"); |
| LCS->replaceAllUsesWith(Old, Cmp); |
| } |
| return CI; |
| } |
| |
| // See if either input string is a constant string. |
| StringRef SearchStr, ToFindStr; |
| bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); |
| bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); |
| |
| // fold strstr(x, "") -> x. |
| if (HasStr2 && ToFindStr.empty()) |
| return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); |
| |
| // If both strings are known, constant fold it. |
| if (HasStr1 && HasStr2) { |
| std::string::size_type Offset = SearchStr.find(ToFindStr); |
| |
| if (Offset == StringRef::npos) // strstr("foo", "bar") -> null |
| return Constant::getNullValue(CI->getType()); |
| |
| // strstr("abcd", "bc") -> gep((char*)"abcd", 1) |
| Value *Result = CastToCStr(CI->getArgOperand(0), B); |
| Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); |
| return B.CreateBitCast(Result, CI->getType()); |
| } |
| |
| // fold strstr(x, "y") -> strchr(x, 'y'). |
| if (HasStr2 && ToFindStr.size() == 1) { |
| Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TD, TLI); |
| return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : 0; |
| } |
| return 0; |
| } |
| }; |
| |
| struct MemCmpOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || |
| !FT->getParamType(1)->isPointerTy() || |
| !FT->getReturnType()->isIntegerTy(32)) |
| return 0; |
| |
| Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); |
| |
| if (LHS == RHS) // memcmp(s,s,x) -> 0 |
| return Constant::getNullValue(CI->getType()); |
| |
| // Make sure we have a constant length. |
| ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); |
| if (!LenC) return 0; |
| uint64_t Len = LenC->getZExtValue(); |
| |
| if (Len == 0) // memcmp(s1,s2,0) -> 0 |
| return Constant::getNullValue(CI->getType()); |
| |
| // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS |
| if (Len == 1) { |
| Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"), |
| CI->getType(), "lhsv"); |
| Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"), |
| CI->getType(), "rhsv"); |
| return B.CreateSub(LHSV, RHSV, "chardiff"); |
| } |
| |
| // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) |
| StringRef LHSStr, RHSStr; |
| if (getConstantStringInfo(LHS, LHSStr) && |
| getConstantStringInfo(RHS, RHSStr)) { |
| // Make sure we're not reading out-of-bounds memory. |
| if (Len > LHSStr.size() || Len > RHSStr.size()) |
| return 0; |
| // Fold the memcmp and normalize the result. This way we get consistent |
| // results across multiple platforms. |
| uint64_t Ret = 0; |
| int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); |
| if (Cmp < 0) |
| Ret = -1; |
| else if (Cmp > 0) |
| Ret = 1; |
| return ConstantInt::get(CI->getType(), Ret); |
| } |
| |
| return 0; |
| } |
| }; |
| |
| struct MemCpyOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // These optimizations require DataLayout. |
| if (!TD) return 0; |
| |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || |
| !FT->getParamType(0)->isPointerTy() || |
| !FT->getParamType(1)->isPointerTy() || |
| FT->getParamType(2) != TD->getIntPtrType(*Context)) |
| return 0; |
| |
| // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) |
| B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), |
| CI->getArgOperand(2), 1); |
| return CI->getArgOperand(0); |
| } |
| }; |
| |
| struct MemMoveOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // These optimizations require DataLayout. |
| if (!TD) return 0; |
| |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || |
| !FT->getParamType(0)->isPointerTy() || |
| !FT->getParamType(1)->isPointerTy() || |
| FT->getParamType(2) != TD->getIntPtrType(*Context)) |
| return 0; |
| |
| // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) |
| B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), |
| CI->getArgOperand(2), 1); |
| return CI->getArgOperand(0); |
| } |
| }; |
| |
| struct MemSetOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // These optimizations require DataLayout. |
| if (!TD) return 0; |
| |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || |
| !FT->getParamType(0)->isPointerTy() || |
| !FT->getParamType(1)->isIntegerTy() || |
| FT->getParamType(2) != TD->getIntPtrType(*Context)) |
| return 0; |
| |
| // memset(p, v, n) -> llvm.memset(p, v, n, 1) |
| Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); |
| B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); |
| return CI->getArgOperand(0); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Math Library Optimizations |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Double -> Float Shrinking Optimizations for Unary Functions like 'floor' |
| |
| struct UnaryDoubleFPOpt : public LibCallOptimization { |
| bool CheckRetType; |
| UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {} |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() || |
| !FT->getParamType(0)->isDoubleTy()) |
| return 0; |
| |
| if (CheckRetType) { |
| // Check if all the uses for function like 'sin' are converted to float. |
| for (Value::use_iterator UseI = CI->use_begin(); UseI != CI->use_end(); |
| ++UseI) { |
| FPTruncInst *Cast = dyn_cast<FPTruncInst>(*UseI); |
| if (Cast == 0 || !Cast->getType()->isFloatTy()) |
| return 0; |
| } |
| } |
| |
| // If this is something like 'floor((double)floatval)', convert to floorf. |
| FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0)); |
| if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy()) |
| return 0; |
| |
| // floor((double)floatval) -> (double)floorf(floatval) |
| Value *V = Cast->getOperand(0); |
| V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); |
| return B.CreateFPExt(V, B.getDoubleTy()); |
| } |
| }; |
| |
| struct UnsafeFPLibCallOptimization : public LibCallOptimization { |
| bool UnsafeFPShrink; |
| UnsafeFPLibCallOptimization(bool UnsafeFPShrink) { |
| this->UnsafeFPShrink = UnsafeFPShrink; |
| } |
| }; |
| |
| struct CosOpt : public UnsafeFPLibCallOptimization { |
| CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {} |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| Value *Ret = NULL; |
| if (UnsafeFPShrink && Callee->getName() == "cos" && |
| TLI->has(LibFunc::cosf)) { |
| UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); |
| Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B); |
| } |
| |
| FunctionType *FT = Callee->getFunctionType(); |
| // Just make sure this has 1 argument of FP type, which matches the |
| // result type. |
| if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || |
| !FT->getParamType(0)->isFloatingPointTy()) |
| return Ret; |
| |
| // cos(-x) -> cos(x) |
| Value *Op1 = CI->getArgOperand(0); |
| if (BinaryOperator::isFNeg(Op1)) { |
| BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); |
| return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); |
| } |
| return Ret; |
| } |
| }; |
| |
| struct PowOpt : public UnsafeFPLibCallOptimization { |
| PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {} |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| Value *Ret = NULL; |
| if (UnsafeFPShrink && Callee->getName() == "pow" && |
| TLI->has(LibFunc::powf)) { |
| UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); |
| Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B); |
| } |
| |
| FunctionType *FT = Callee->getFunctionType(); |
| // Just make sure this has 2 arguments of the same FP type, which match the |
| // result type. |
| if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| !FT->getParamType(0)->isFloatingPointTy()) |
| return Ret; |
| |
| Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); |
| if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { |
| if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0 |
| return Op1C; |
| if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x) |
| return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes()); |
| } |
| |
| ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); |
| if (Op2C == 0) return Ret; |
| |
| if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 |
| return ConstantFP::get(CI->getType(), 1.0); |
| |
| if (Op2C->isExactlyValue(0.5)) { |
| // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). |
| // This is faster than calling pow, and still handles negative zero |
| // and negative infinity correctly. |
| // TODO: In fast-math mode, this could be just sqrt(x). |
| // TODO: In finite-only mode, this could be just fabs(sqrt(x)). |
| Value *Inf = ConstantFP::getInfinity(CI->getType()); |
| Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); |
| Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, |
| Callee->getAttributes()); |
| Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B, |
| Callee->getAttributes()); |
| Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); |
| Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); |
| return Sel; |
| } |
| |
| if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x |
| return Op1; |
| if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x |
| return B.CreateFMul(Op1, Op1, "pow2"); |
| if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x |
| return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), |
| Op1, "powrecip"); |
| return 0; |
| } |
| }; |
| |
| struct Exp2Opt : public UnsafeFPLibCallOptimization { |
| Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {} |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| Value *Ret = NULL; |
| if (UnsafeFPShrink && Callee->getName() == "exp2" && |
| TLI->has(LibFunc::exp2)) { |
| UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); |
| Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B); |
| } |
| |
| FunctionType *FT = Callee->getFunctionType(); |
| // Just make sure this has 1 argument of FP type, which matches the |
| // result type. |
| if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || |
| !FT->getParamType(0)->isFloatingPointTy()) |
| return Ret; |
| |
| Value *Op = CI->getArgOperand(0); |
| // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 |
| // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 |
| Value *LdExpArg = 0; |
| if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { |
| if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) |
| LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); |
| } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { |
| if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) |
| LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); |
| } |
| |
| if (LdExpArg) { |
| const char *Name; |
| if (Op->getType()->isFloatTy()) |
| Name = "ldexpf"; |
| else if (Op->getType()->isDoubleTy()) |
| Name = "ldexp"; |
| else |
| Name = "ldexpl"; |
| |
| Constant *One = ConstantFP::get(*Context, APFloat(1.0f)); |
| if (!Op->getType()->isFloatTy()) |
| One = ConstantExpr::getFPExtend(One, Op->getType()); |
| |
| Module *M = Caller->getParent(); |
| Value *Callee = M->getOrInsertFunction(Name, Op->getType(), |
| Op->getType(), |
| B.getInt32Ty(), NULL); |
| CallInst *CI = B.CreateCall2(Callee, One, LdExpArg); |
| if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) |
| CI->setCallingConv(F->getCallingConv()); |
| |
| return CI; |
| } |
| return Ret; |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Integer Library Call Optimizations |
| //===----------------------------------------------------------------------===// |
| |
| struct FFSOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| FunctionType *FT = Callee->getFunctionType(); |
| // Just make sure this has 2 arguments of the same FP type, which match the |
| // result type. |
| if (FT->getNumParams() != 1 || |
| !FT->getReturnType()->isIntegerTy(32) || |
| !FT->getParamType(0)->isIntegerTy()) |
| return 0; |
| |
| Value *Op = CI->getArgOperand(0); |
| |
| // Constant fold. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { |
| if (CI->isZero()) // ffs(0) -> 0. |
| return B.getInt32(0); |
| // ffs(c) -> cttz(c)+1 |
| return B.getInt32(CI->getValue().countTrailingZeros() + 1); |
| } |
| |
| // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 |
| Type *ArgType = Op->getType(); |
| Value *F = Intrinsic::getDeclaration(Callee->getParent(), |
| Intrinsic::cttz, ArgType); |
| Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz"); |
| V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); |
| V = B.CreateIntCast(V, B.getInt32Ty(), false); |
| |
| Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); |
| return B.CreateSelect(Cond, V, B.getInt32(0)); |
| } |
| }; |
| |
| } // End anonymous namespace. |
| |
| namespace llvm { |
| |
| class LibCallSimplifierImpl { |
| const DataLayout *TD; |
| const TargetLibraryInfo *TLI; |
| const LibCallSimplifier *LCS; |
| bool UnsafeFPShrink; |
| StringMap<LibCallOptimization*> Optimizations; |
| |
| // Fortified library call optimizations. |
| MemCpyChkOpt MemCpyChk; |
| MemMoveChkOpt MemMoveChk; |
| MemSetChkOpt MemSetChk; |
| StrCpyChkOpt StrCpyChk; |
| StpCpyChkOpt StpCpyChk; |
| StrNCpyChkOpt StrNCpyChk; |
| |
| // String library call optimizations. |
| StrCatOpt StrCat; |
| StrNCatOpt StrNCat; |
| StrChrOpt StrChr; |
| StrRChrOpt StrRChr; |
| StrCmpOpt StrCmp; |
| StrNCmpOpt StrNCmp; |
| StrCpyOpt StrCpy; |
| StpCpyOpt StpCpy; |
| StrNCpyOpt StrNCpy; |
| StrLenOpt StrLen; |
| StrPBrkOpt StrPBrk; |
| StrToOpt StrTo; |
| StrSpnOpt StrSpn; |
| StrCSpnOpt StrCSpn; |
| StrStrOpt StrStr; |
| |
| // Memory library call optimizations. |
| MemCmpOpt MemCmp; |
| MemCpyOpt MemCpy; |
| MemMoveOpt MemMove; |
| MemSetOpt MemSet; |
| |
| // Math library call optimizations. |
| UnaryDoubleFPOpt UnaryDoubleFP, UnsafeUnaryDoubleFP; |
| CosOpt Cos; PowOpt Pow; Exp2Opt Exp2; |
| |
| // Integer library call optimizations. |
| FFSOpt FFS; |
| |
| void initOptimizations(); |
| void addOpt(LibFunc::Func F, LibCallOptimization* Opt); |
| void addOpt(LibFunc::Func F1, LibFunc::Func F2, LibCallOptimization* Opt); |
| public: |
| LibCallSimplifierImpl(const DataLayout *TD, const TargetLibraryInfo *TLI, |
| const LibCallSimplifier *LCS, |
| bool UnsafeFPShrink = false) |
| : UnaryDoubleFP(false), UnsafeUnaryDoubleFP(true), |
| Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) { |
| this->TD = TD; |
| this->TLI = TLI; |
| this->LCS = LCS; |
| this->UnsafeFPShrink = UnsafeFPShrink; |
| } |
| |
| Value *optimizeCall(CallInst *CI); |
| }; |
| |
| void LibCallSimplifierImpl::initOptimizations() { |
| // Fortified library call optimizations. |
| Optimizations["__memcpy_chk"] = &MemCpyChk; |
| Optimizations["__memmove_chk"] = &MemMoveChk; |
| Optimizations["__memset_chk"] = &MemSetChk; |
| Optimizations["__strcpy_chk"] = &StrCpyChk; |
| Optimizations["__stpcpy_chk"] = &StpCpyChk; |
| Optimizations["__strncpy_chk"] = &StrNCpyChk; |
| Optimizations["__stpncpy_chk"] = &StrNCpyChk; |
| |
| // String library call optimizations. |
| addOpt(LibFunc::strcat, &StrCat); |
| addOpt(LibFunc::strncat, &StrNCat); |
| addOpt(LibFunc::strchr, &StrChr); |
| addOpt(LibFunc::strrchr, &StrRChr); |
| addOpt(LibFunc::strcmp, &StrCmp); |
| addOpt(LibFunc::strncmp, &StrNCmp); |
| addOpt(LibFunc::strcpy, &StrCpy); |
| addOpt(LibFunc::stpcpy, &StpCpy); |
| addOpt(LibFunc::strncpy, &StrNCpy); |
| addOpt(LibFunc::strlen, &StrLen); |
| addOpt(LibFunc::strpbrk, &StrPBrk); |
| addOpt(LibFunc::strtol, &StrTo); |
| addOpt(LibFunc::strtod, &StrTo); |
| addOpt(LibFunc::strtof, &StrTo); |
| addOpt(LibFunc::strtoul, &StrTo); |
| addOpt(LibFunc::strtoll, &StrTo); |
| addOpt(LibFunc::strtold, &StrTo); |
| addOpt(LibFunc::strtoull, &StrTo); |
| addOpt(LibFunc::strspn, &StrSpn); |
| addOpt(LibFunc::strcspn, &StrCSpn); |
| addOpt(LibFunc::strstr, &StrStr); |
| |
| // Memory library call optimizations. |
| addOpt(LibFunc::memcmp, &MemCmp); |
| addOpt(LibFunc::memcpy, &MemCpy); |
| addOpt(LibFunc::memmove, &MemMove); |
| addOpt(LibFunc::memset, &MemSet); |
| |
| // Math library call optimizations. |
| addOpt(LibFunc::ceil, LibFunc::ceilf, &UnaryDoubleFP); |
| addOpt(LibFunc::fabs, LibFunc::fabsf, &UnaryDoubleFP); |
| addOpt(LibFunc::floor, LibFunc::floorf, &UnaryDoubleFP); |
| addOpt(LibFunc::rint, LibFunc::rintf, &UnaryDoubleFP); |
| addOpt(LibFunc::round, LibFunc::roundf, &UnaryDoubleFP); |
| addOpt(LibFunc::nearbyint, LibFunc::nearbyintf, &UnaryDoubleFP); |
| addOpt(LibFunc::trunc, LibFunc::truncf, &UnaryDoubleFP); |
| |
| if(UnsafeFPShrink) { |
| addOpt(LibFunc::acos, LibFunc::acosf, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::acosh, LibFunc::acoshf, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::asin, LibFunc::asinf, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::asinh, LibFunc::asinhf, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::atan, LibFunc::atanf, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::atanh, LibFunc::atanhf, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::cbrt, LibFunc::cbrtf, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::cosh, LibFunc::coshf, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::exp, LibFunc::expf, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::exp10, LibFunc::exp10f, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::expm1, LibFunc::expm1f, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::log, LibFunc::logf, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::log10, LibFunc::log10f, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::log1p, LibFunc::log1pf, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::log2, LibFunc::log2f, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::logb, LibFunc::logbf, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::sin, LibFunc::sinf, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::sinh, LibFunc::sinhf, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::sqrt, LibFunc::sqrtf, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::tan, LibFunc::tanf, &UnsafeUnaryDoubleFP); |
| addOpt(LibFunc::tanh, LibFunc::tanhf, &UnsafeUnaryDoubleFP); |
| } |
| |
| addOpt(LibFunc::cosf, &Cos); |
| addOpt(LibFunc::cos, &Cos); |
| addOpt(LibFunc::cosl, &Cos); |
| addOpt(LibFunc::powf, &Pow); |
| addOpt(LibFunc::pow, &Pow); |
| addOpt(LibFunc::powl, &Pow); |
| Optimizations["llvm.pow.f32"] = &Pow; |
| Optimizations["llvm.pow.f64"] = &Pow; |
| Optimizations["llvm.pow.f80"] = &Pow; |
| Optimizations["llvm.pow.f128"] = &Pow; |
| Optimizations["llvm.pow.ppcf128"] = &Pow; |
| addOpt(LibFunc::exp2l, &Exp2); |
| addOpt(LibFunc::exp2, &Exp2); |
| addOpt(LibFunc::exp2f, &Exp2); |
| Optimizations["llvm.exp2.ppcf128"] = &Exp2; |
| Optimizations["llvm.exp2.f128"] = &Exp2; |
| Optimizations["llvm.exp2.f80"] = &Exp2; |
| Optimizations["llvm.exp2.f64"] = &Exp2; |
| Optimizations["llvm.exp2.f32"] = &Exp2; |
| |
| // Integer library call optimizations. |
| addOpt(LibFunc::ffs, &FFS); |
| addOpt(LibFunc::ffsl, &FFS); |
| addOpt(LibFunc::ffsll, &FFS); |
| } |
| |
| Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) { |
| if (Optimizations.empty()) |
| initOptimizations(); |
| |
| Function *Callee = CI->getCalledFunction(); |
| LibCallOptimization *LCO = Optimizations.lookup(Callee->getName()); |
| if (LCO) { |
| IRBuilder<> Builder(CI); |
| return LCO->optimizeCall(CI, TD, TLI, LCS, Builder); |
| } |
| return 0; |
| } |
| |
| void LibCallSimplifierImpl::addOpt(LibFunc::Func F, LibCallOptimization* Opt) { |
| if (TLI->has(F)) |
| Optimizations[TLI->getName(F)] = Opt; |
| } |
| |
| void LibCallSimplifierImpl::addOpt(LibFunc::Func F1, LibFunc::Func F2, |
| LibCallOptimization* Opt) { |
| if (TLI->has(F1) && TLI->has(F2)) |
| Optimizations[TLI->getName(F1)] = Opt; |
| } |
| |
| LibCallSimplifier::LibCallSimplifier(const DataLayout *TD, |
| const TargetLibraryInfo *TLI, |
| bool UnsafeFPShrink) { |
| Impl = new LibCallSimplifierImpl(TD, TLI, this, UnsafeFPShrink); |
| } |
| |
| LibCallSimplifier::~LibCallSimplifier() { |
| delete Impl; |
| } |
| |
| Value *LibCallSimplifier::optimizeCall(CallInst *CI) { |
| return Impl->optimizeCall(CI); |
| } |
| |
| void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const { |
| I->replaceAllUsesWith(With); |
| I->eraseFromParent(); |
| } |
| |
| } |