| //===- Expressions.cpp - Expression Analysis Utilities ----------------------=// |
| // |
| // This file defines a package of expression analysis utilties: |
| // |
| // ClassifyExpression: Analyze an expression to determine the complexity of the |
| // expression, and which other variables it depends on. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/Expressions.h" |
| #include "llvm/Optimizations/ConstantHandling.h" |
| #include "llvm/ConstantPool.h" |
| #include "llvm/Method.h" |
| #include "llvm/BasicBlock.h" |
| |
| using namespace opt; // Get all the constant handling stuff |
| using namespace analysis; |
| |
| class DefVal { |
| const ConstPoolInt * const Val; |
| ConstantPool &CP; |
| const Type * const Ty; |
| protected: |
| inline DefVal(const ConstPoolInt *val, ConstantPool &cp, const Type *ty) |
| : Val(val), CP(cp), Ty(ty) {} |
| public: |
| inline const Type *getType() const { return Ty; } |
| inline ConstantPool &getCP() const { return CP; } |
| inline const ConstPoolInt *getVal() const { return Val; } |
| inline operator const ConstPoolInt * () const { return Val; } |
| inline const ConstPoolInt *operator->() const { return Val; } |
| }; |
| |
| struct DefZero : public DefVal { |
| inline DefZero(const ConstPoolInt *val, ConstantPool &cp, const Type *ty) |
| : DefVal(val, cp, ty) {} |
| inline DefZero(const ConstPoolInt *val) |
| : DefVal(val, (ConstantPool&)val->getParent()->getConstantPool(), |
| val->getType()) {} |
| }; |
| |
| struct DefOne : public DefVal { |
| inline DefOne(const ConstPoolInt *val, ConstantPool &cp, const Type *ty) |
| : DefVal(val, cp, ty) {} |
| }; |
| |
| |
| // getIntegralConstant - Wrapper around the ConstPoolInt member of the same |
| // name. This method first checks to see if the desired constant is already in |
| // the constant pool. If it is, it is quickly recycled, otherwise a new one |
| // is allocated and added to the constant pool. |
| // |
| static ConstPoolInt *getIntegralConstant(ConstantPool &CP, unsigned char V, |
| const Type *Ty) { |
| // FIXME: Lookup prexisting constant in table! |
| |
| ConstPoolInt *CPI = ConstPoolInt::get(Ty, V); |
| CP.insert(CPI); |
| return CPI; |
| } |
| |
| static ConstPoolInt *getUnsignedConstant(ConstantPool &CP, uint64_t V, |
| const Type *Ty) { |
| // FIXME: Lookup prexisting constant in table! |
| |
| ConstPoolInt *CPI; |
| CPI = Ty->isSigned() ? new ConstPoolSInt(Ty, V) : new ConstPoolUInt(Ty, V); |
| CP.insert(CPI); |
| return CPI; |
| } |
| |
| // Add - Helper function to make later code simpler. Basically it just adds |
| // the two constants together, inserts the result into the constant pool, and |
| // returns it. Of course life is not simple, and this is no exception. Factors |
| // that complicate matters: |
| // 1. Either argument may be null. If this is the case, the null argument is |
| // treated as either 0 (if DefOne = false) or 1 (if DefOne = true) |
| // 2. Types get in the way. We want to do arithmetic operations without |
| // regard for the underlying types. It is assumed that the constants are |
| // integral constants. The new value takes the type of the left argument. |
| // 3. If DefOne is true, a null return value indicates a value of 1, if DefOne |
| // is false, a null return value indicates a value of 0. |
| // |
| static const ConstPoolInt *Add(ConstantPool &CP, const ConstPoolInt *Arg1, |
| const ConstPoolInt *Arg2, bool DefOne) { |
| assert(Arg1 && Arg2 && "No null arguments should exist now!"); |
| assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!"); |
| |
| // Actually perform the computation now! |
| ConstPoolVal *Result = *Arg1 + *Arg2; |
| assert(Result && Result->getType() == Arg1->getType() && |
| "Couldn't perform addition!"); |
| ConstPoolInt *ResultI = (ConstPoolInt*)Result; |
| |
| // Check to see if the result is one of the special cases that we want to |
| // recognize... |
| if (ResultI->equalsInt(DefOne ? 1 : 0)) { |
| // Yes it is, simply delete the constant and return null. |
| delete ResultI; |
| return 0; |
| } |
| |
| CP.insert(ResultI); |
| return ResultI; |
| } |
| |
| inline const ConstPoolInt *operator+(const DefZero &L, const DefZero &R) { |
| if (L == 0) return R; |
| if (R == 0) return L; |
| return Add(L.getCP(), L, R, false); |
| } |
| |
| inline const ConstPoolInt *operator+(const DefOne &L, const DefOne &R) { |
| if (L == 0) { |
| if (R == 0) |
| return getIntegralConstant(L.getCP(), 2, L.getType()); |
| else |
| return Add(L.getCP(), getIntegralConstant(L.getCP(), 1, L.getType()), |
| R, true); |
| } else if (R == 0) { |
| return Add(L.getCP(), L, |
| getIntegralConstant(L.getCP(), 1, L.getType()), true); |
| } |
| return Add(L.getCP(), L, R, true); |
| } |
| |
| |
| // Mul - Helper function to make later code simpler. Basically it just |
| // multiplies the two constants together, inserts the result into the constant |
| // pool, and returns it. Of course life is not simple, and this is no |
| // exception. Factors that complicate matters: |
| // 1. Either argument may be null. If this is the case, the null argument is |
| // treated as either 0 (if DefOne = false) or 1 (if DefOne = true) |
| // 2. Types get in the way. We want to do arithmetic operations without |
| // regard for the underlying types. It is assumed that the constants are |
| // integral constants. |
| // 3. If DefOne is true, a null return value indicates a value of 1, if DefOne |
| // is false, a null return value indicates a value of 0. |
| // |
| inline const ConstPoolInt *Mul(ConstantPool &CP, const ConstPoolInt *Arg1, |
| const ConstPoolInt *Arg2, bool DefOne = false) { |
| assert(Arg1 && Arg2 && "No null arguments should exist now!"); |
| assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!"); |
| |
| // Actually perform the computation now! |
| ConstPoolVal *Result = *Arg1 * *Arg2; |
| assert(Result && Result->getType() == Arg1->getType() && |
| "Couldn't perform mult!"); |
| ConstPoolInt *ResultI = (ConstPoolInt*)Result; |
| |
| // Check to see if the result is one of the special cases that we want to |
| // recognize... |
| if (ResultI->equalsInt(DefOne ? 1 : 0)) { |
| // Yes it is, simply delete the constant and return null. |
| delete ResultI; |
| return 0; |
| } |
| |
| CP.insert(ResultI); |
| return ResultI; |
| } |
| |
| inline const ConstPoolInt *operator*(const DefZero &L, const DefZero &R) { |
| if (L == 0 || R == 0) return 0; |
| return Mul(L.getCP(), L, R, false); |
| } |
| inline const ConstPoolInt *operator*(const DefOne &L, const DefZero &R) { |
| if (R == 0) return getIntegralConstant(L.getCP(), 0, L.getType()); |
| if (L == 0) return R->equalsInt(1) ? 0 : R.getVal(); |
| return Mul(L.getCP(), L, R, false); |
| } |
| inline const ConstPoolInt *operator*(const DefZero &L, const DefOne &R) { |
| return R*L; |
| } |
| |
| |
| |
| // ClassifyExpression: Analyze an expression to determine the complexity of the |
| // expression, and which other values it depends on. |
| // |
| // Note that this analysis cannot get into infinite loops because it treats PHI |
| // nodes as being an unknown linear expression. |
| // |
| ExprType analysis::ClassifyExpression(Value *Expr) { |
| assert(Expr != 0 && "Can't classify a null expression!"); |
| switch (Expr->getValueType()) { |
| case Value::InstructionVal: break; // Instruction... hmmm... investigate. |
| case Value::TypeVal: case Value::BasicBlockVal: |
| case Value::MethodVal: case Value::ModuleVal: |
| assert(0 && "Unexpected expression type to classify!"); |
| case Value::MethodArgumentVal: // Method arg: nothing known, return var |
| return Expr; |
| case Value::ConstantVal: // Constant value, just return constant |
| ConstPoolVal *CPV = Expr->castConstantAsserting(); |
| if (CPV->getType()->isIntegral()) { // It's an integral constant! |
| ConstPoolInt *CPI = (ConstPoolInt*)Expr; |
| return ExprType(CPI->equalsInt(0) ? 0 : (ConstPoolInt*)Expr); |
| } |
| return Expr; |
| } |
| |
| Instruction *I = Expr->castInstructionAsserting(); |
| ConstantPool &CP = I->getParent()->getParent()->getConstantPool(); |
| const Type *Ty = I->getType(); |
| |
| switch (I->getOpcode()) { // Handle each instruction type seperately |
| case Instruction::Add: { |
| ExprType Left (ClassifyExpression(I->getOperand(0))); |
| ExprType Right(ClassifyExpression(I->getOperand(1))); |
| if (Left.ExprTy > Right.ExprTy) |
| swap(Left, Right); // Make left be simpler than right |
| |
| switch (Left.ExprTy) { |
| case ExprType::Constant: |
| return ExprType(Right.Scale, Right.Var, |
| DefZero(Right.Offset,CP,Ty) + DefZero(Left.Offset, CP,Ty)); |
| case ExprType::Linear: // RHS side must be linear or scaled |
| case ExprType::ScaledLinear: // RHS must be scaled |
| if (Left.Var != Right.Var) // Are they the same variables? |
| return ExprType(I); // if not, we don't know anything! |
| |
| return ExprType(DefOne(Left.Scale ,CP,Ty) + DefOne(Right.Scale , CP,Ty), |
| Left.Var, |
| DefZero(Left.Offset,CP,Ty) + DefZero(Right.Offset, CP,Ty)); |
| } |
| } // end case Instruction::Add |
| |
| case Instruction::Shl: { |
| ExprType Right(ClassifyExpression(I->getOperand(1))); |
| if (Right.ExprTy != ExprType::Constant) break; |
| ExprType Left(ClassifyExpression(I->getOperand(0))); |
| if (Right.Offset == 0) return Left; // shl x, 0 = x |
| assert(Right.Offset->getType() == Type::UByteTy && |
| "Shift amount must always be a unsigned byte!"); |
| uint64_t ShiftAmount = ((ConstPoolUInt*)Right.Offset)->getValue(); |
| ConstPoolInt *Multiplier = getUnsignedConstant(CP, 1ULL << ShiftAmount, Ty); |
| |
| return ExprType(DefOne(Left.Scale, CP, Ty) * Multiplier, |
| Left.Var, |
| DefZero(Left.Offset, CP, Ty) * Multiplier); |
| } // end case Instruction::Shl |
| |
| case Instruction::Mul: { |
| ExprType Left (ClassifyExpression(I->getOperand(0))); |
| ExprType Right(ClassifyExpression(I->getOperand(1))); |
| if (Left.ExprTy > Right.ExprTy) |
| swap(Left, Right); // Make left be simpler than right |
| |
| if (Left.ExprTy != ExprType::Constant) // RHS must be > constant |
| return I; // Quadratic eqn! :( |
| |
| const ConstPoolInt *Offs = Left.Offset; |
| if (Offs == 0) return ExprType(); |
| return ExprType(DefOne(Right.Scale, CP, Ty) * Offs, |
| Right.Var, |
| DefZero(Right.Offset, CP, Ty) * Offs); |
| } // end case Instruction::Mul |
| |
| case Instruction::Cast: { |
| ExprType Src(ClassifyExpression(I->getOperand(0))); |
| if (Src.ExprTy != ExprType::Constant) |
| return I; |
| const ConstPoolInt *Offs = Src.Offset; |
| if (Offs == 0) return ExprType(); |
| |
| if (I->getType()->isPointerType()) |
| return Offs; // Pointer types do not lose precision |
| |
| assert(I->getType()->isIntegral() && "Can only handle integral types!"); |
| |
| const ConstPoolVal *CPV = ConstRules::get(*Offs)->castTo(Offs, I->getType()); |
| if (!CPV) return I; |
| assert(CPV->getType()->isIntegral() && "Must have an integral type!"); |
| return (ConstPoolInt*)CPV; |
| } // end case Instruction::Cast |
| // TODO: Handle SUB (at least!) |
| |
| } // end switch |
| |
| // Otherwise, I don't know anything about this value! |
| return I; |
| } |