| //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SelectionDAG::Legalize method. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/DwarfWriter.h" |
| #include "llvm/Analysis/DebugInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/Target/TargetFrameInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Target/TargetSubtarget.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include <map> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and |
| /// hacks on it until the target machine can handle it. This involves |
| /// eliminating value sizes the machine cannot handle (promoting small sizes to |
| /// large sizes or splitting up large values into small values) as well as |
| /// eliminating operations the machine cannot handle. |
| /// |
| /// This code also does a small amount of optimization and recognition of idioms |
| /// as part of its processing. For example, if a target does not support a |
| /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this |
| /// will attempt merge setcc and brc instructions into brcc's. |
| /// |
| namespace { |
| class VISIBILITY_HIDDEN SelectionDAGLegalize { |
| TargetLowering &TLI; |
| SelectionDAG &DAG; |
| CodeGenOpt::Level OptLevel; |
| |
| // Libcall insertion helpers. |
| |
| /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been |
| /// legalized. We use this to ensure that calls are properly serialized |
| /// against each other, including inserted libcalls. |
| SDValue LastCALLSEQ_END; |
| |
| /// IsLegalizingCall - This member is used *only* for purposes of providing |
| /// helpful assertions that a libcall isn't created while another call is |
| /// being legalized (which could lead to non-serialized call sequences). |
| bool IsLegalizingCall; |
| |
| enum LegalizeAction { |
| Legal, // The target natively supports this operation. |
| Promote, // This operation should be executed in a larger type. |
| Expand // Try to expand this to other ops, otherwise use a libcall. |
| }; |
| |
| /// ValueTypeActions - This is a bitvector that contains two bits for each |
| /// value type, where the two bits correspond to the LegalizeAction enum. |
| /// This can be queried with "getTypeAction(VT)". |
| TargetLowering::ValueTypeActionImpl ValueTypeActions; |
| |
| /// LegalizedNodes - For nodes that are of legal width, and that have more |
| /// than one use, this map indicates what regularized operand to use. This |
| /// allows us to avoid legalizing the same thing more than once. |
| DenseMap<SDValue, SDValue> LegalizedNodes; |
| |
| void AddLegalizedOperand(SDValue From, SDValue To) { |
| LegalizedNodes.insert(std::make_pair(From, To)); |
| // If someone requests legalization of the new node, return itself. |
| if (From != To) |
| LegalizedNodes.insert(std::make_pair(To, To)); |
| } |
| |
| public: |
| SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol); |
| |
| /// getTypeAction - Return how we should legalize values of this type, either |
| /// it is already legal or we need to expand it into multiple registers of |
| /// smaller integer type, or we need to promote it to a larger type. |
| LegalizeAction getTypeAction(EVT VT) const { |
| return |
| (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT); |
| } |
| |
| /// isTypeLegal - Return true if this type is legal on this target. |
| /// |
| bool isTypeLegal(EVT VT) const { |
| return getTypeAction(VT) == Legal; |
| } |
| |
| void LegalizeDAG(); |
| |
| private: |
| /// LegalizeOp - We know that the specified value has a legal type. |
| /// Recursively ensure that the operands have legal types, then return the |
| /// result. |
| SDValue LegalizeOp(SDValue O); |
| |
| SDValue OptimizeFloatStore(StoreSDNode *ST); |
| |
| /// PerformInsertVectorEltInMemory - Some target cannot handle a variable |
| /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it |
| /// is necessary to spill the vector being inserted into to memory, perform |
| /// the insert there, and then read the result back. |
| SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, |
| SDValue Idx, DebugLoc dl); |
| SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, |
| SDValue Idx, DebugLoc dl); |
| |
| /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which |
| /// performs the same shuffe in terms of order or result bytes, but on a type |
| /// whose vector element type is narrower than the original shuffle type. |
| /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> |
| SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, |
| SDValue N1, SDValue N2, |
| SmallVectorImpl<int> &Mask) const; |
| |
| bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, |
| SmallPtrSet<SDNode*, 32> &NodesLeadingTo); |
| |
| void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, |
| DebugLoc dl); |
| |
| SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); |
| SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, |
| RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, |
| RTLIB::Libcall Call_PPCF128); |
| SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16, |
| RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64, |
| RTLIB::Libcall Call_I128); |
| |
| SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl); |
| SDValue ExpandBUILD_VECTOR(SDNode *Node); |
| SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); |
| SDValue ExpandDBG_STOPPOINT(SDNode *Node); |
| void ExpandDYNAMIC_STACKALLOC(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results); |
| SDValue ExpandFCOPYSIGN(SDNode *Node); |
| SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, |
| DebugLoc dl); |
| SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, |
| DebugLoc dl); |
| SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, |
| DebugLoc dl); |
| |
| SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); |
| SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); |
| |
| SDValue ExpandExtractFromVectorThroughStack(SDValue Op); |
| SDValue ExpandVectorBuildThroughStack(SDNode* Node); |
| |
| void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| }; |
| } |
| |
| /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which |
| /// performs the same shuffe in terms of order or result bytes, but on a type |
| /// whose vector element type is narrower than the original shuffle type. |
| /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> |
| SDValue |
| SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, |
| SDValue N1, SDValue N2, |
| SmallVectorImpl<int> &Mask) const { |
| EVT EltVT = NVT.getVectorElementType(); |
| unsigned NumMaskElts = VT.getVectorNumElements(); |
| unsigned NumDestElts = NVT.getVectorNumElements(); |
| unsigned NumEltsGrowth = NumDestElts / NumMaskElts; |
| |
| assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); |
| |
| if (NumEltsGrowth == 1) |
| return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); |
| |
| SmallVector<int, 8> NewMask; |
| for (unsigned i = 0; i != NumMaskElts; ++i) { |
| int Idx = Mask[i]; |
| for (unsigned j = 0; j != NumEltsGrowth; ++j) { |
| if (Idx < 0) |
| NewMask.push_back(-1); |
| else |
| NewMask.push_back(Idx * NumEltsGrowth + j); |
| } |
| } |
| assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); |
| assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); |
| return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); |
| } |
| |
| SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag, |
| CodeGenOpt::Level ol) |
| : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol), |
| ValueTypeActions(TLI.getValueTypeActions()) { |
| assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE && |
| "Too many value types for ValueTypeActions to hold!"); |
| } |
| |
| void SelectionDAGLegalize::LegalizeDAG() { |
| LastCALLSEQ_END = DAG.getEntryNode(); |
| IsLegalizingCall = false; |
| |
| // The legalize process is inherently a bottom-up recursive process (users |
| // legalize their uses before themselves). Given infinite stack space, we |
| // could just start legalizing on the root and traverse the whole graph. In |
| // practice however, this causes us to run out of stack space on large basic |
| // blocks. To avoid this problem, compute an ordering of the nodes where each |
| // node is only legalized after all of its operands are legalized. |
| DAG.AssignTopologicalOrder(); |
| for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), |
| E = prior(DAG.allnodes_end()); I != next(E); ++I) |
| LegalizeOp(SDValue(I, 0)); |
| |
| // Finally, it's possible the root changed. Get the new root. |
| SDValue OldRoot = DAG.getRoot(); |
| assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); |
| DAG.setRoot(LegalizedNodes[OldRoot]); |
| |
| LegalizedNodes.clear(); |
| |
| // Remove dead nodes now. |
| DAG.RemoveDeadNodes(); |
| } |
| |
| |
| /// FindCallEndFromCallStart - Given a chained node that is part of a call |
| /// sequence, find the CALLSEQ_END node that terminates the call sequence. |
| static SDNode *FindCallEndFromCallStart(SDNode *Node) { |
| if (Node->getOpcode() == ISD::CALLSEQ_END) |
| return Node; |
| if (Node->use_empty()) |
| return 0; // No CallSeqEnd |
| |
| // The chain is usually at the end. |
| SDValue TheChain(Node, Node->getNumValues()-1); |
| if (TheChain.getValueType() != MVT::Other) { |
| // Sometimes it's at the beginning. |
| TheChain = SDValue(Node, 0); |
| if (TheChain.getValueType() != MVT::Other) { |
| // Otherwise, hunt for it. |
| for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) |
| if (Node->getValueType(i) == MVT::Other) { |
| TheChain = SDValue(Node, i); |
| break; |
| } |
| |
| // Otherwise, we walked into a node without a chain. |
| if (TheChain.getValueType() != MVT::Other) |
| return 0; |
| } |
| } |
| |
| for (SDNode::use_iterator UI = Node->use_begin(), |
| E = Node->use_end(); UI != E; ++UI) { |
| |
| // Make sure to only follow users of our token chain. |
| SDNode *User = *UI; |
| for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) |
| if (User->getOperand(i) == TheChain) |
| if (SDNode *Result = FindCallEndFromCallStart(User)) |
| return Result; |
| } |
| return 0; |
| } |
| |
| /// FindCallStartFromCallEnd - Given a chained node that is part of a call |
| /// sequence, find the CALLSEQ_START node that initiates the call sequence. |
| static SDNode *FindCallStartFromCallEnd(SDNode *Node) { |
| assert(Node && "Didn't find callseq_start for a call??"); |
| if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; |
| |
| assert(Node->getOperand(0).getValueType() == MVT::Other && |
| "Node doesn't have a token chain argument!"); |
| return FindCallStartFromCallEnd(Node->getOperand(0).getNode()); |
| } |
| |
| /// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to |
| /// see if any uses can reach Dest. If no dest operands can get to dest, |
| /// legalize them, legalize ourself, and return false, otherwise, return true. |
| /// |
| /// Keep track of the nodes we fine that actually do lead to Dest in |
| /// NodesLeadingTo. This avoids retraversing them exponential number of times. |
| /// |
| bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, |
| SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { |
| if (N == Dest) return true; // N certainly leads to Dest :) |
| |
| // If we've already processed this node and it does lead to Dest, there is no |
| // need to reprocess it. |
| if (NodesLeadingTo.count(N)) return true; |
| |
| // If the first result of this node has been already legalized, then it cannot |
| // reach N. |
| if (LegalizedNodes.count(SDValue(N, 0))) return false; |
| |
| // Okay, this node has not already been legalized. Check and legalize all |
| // operands. If none lead to Dest, then we can legalize this node. |
| bool OperandsLeadToDest = false; |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| OperandsLeadToDest |= // If an operand leads to Dest, so do we. |
| LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo); |
| |
| if (OperandsLeadToDest) { |
| NodesLeadingTo.insert(N); |
| return true; |
| } |
| |
| // Okay, this node looks safe, legalize it and return false. |
| LegalizeOp(SDValue(N, 0)); |
| return false; |
| } |
| |
| /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or |
| /// a load from the constant pool. |
| static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, |
| SelectionDAG &DAG, const TargetLowering &TLI) { |
| bool Extend = false; |
| DebugLoc dl = CFP->getDebugLoc(); |
| |
| // If a FP immediate is precise when represented as a float and if the |
| // target can do an extending load from float to double, we put it into |
| // the constant pool as a float, even if it's is statically typed as a |
| // double. This shrinks FP constants and canonicalizes them for targets where |
| // an FP extending load is the same cost as a normal load (such as on the x87 |
| // fp stack or PPC FP unit). |
| EVT VT = CFP->getValueType(0); |
| ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); |
| if (!UseCP) { |
| assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); |
| return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), |
| (VT == MVT::f64) ? MVT::i64 : MVT::i32); |
| } |
| |
| EVT OrigVT = VT; |
| EVT SVT = VT; |
| while (SVT != MVT::f32) { |
| SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); |
| if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) && |
| // Only do this if the target has a native EXTLOAD instruction from |
| // smaller type. |
| TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && |
| TLI.ShouldShrinkFPConstant(OrigVT)) { |
| const Type *SType = SVT.getTypeForEVT(*DAG.getContext()); |
| LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); |
| VT = SVT; |
| Extend = true; |
| } |
| } |
| |
| SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); |
| unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| if (Extend) |
| return DAG.getExtLoad(ISD::EXTLOAD, dl, |
| OrigVT, DAG.getEntryNode(), |
| CPIdx, PseudoSourceValue::getConstantPool(), |
| 0, VT, false, Alignment); |
| return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, false, Alignment); |
| } |
| |
| /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. |
| static |
| SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| SDValue Chain = ST->getChain(); |
| SDValue Ptr = ST->getBasePtr(); |
| SDValue Val = ST->getValue(); |
| EVT VT = Val.getValueType(); |
| int Alignment = ST->getAlignment(); |
| int SVOffset = ST->getSrcValueOffset(); |
| DebugLoc dl = ST->getDebugLoc(); |
| if (ST->getMemoryVT().isFloatingPoint() || |
| ST->getMemoryVT().isVector()) { |
| EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); |
| if (TLI.isTypeLegal(intVT)) { |
| // Expand to a bitconvert of the value to the integer type of the |
| // same size, then a (misaligned) int store. |
| // FIXME: Does not handle truncating floating point stores! |
| SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val); |
| return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(), |
| SVOffset, ST->isVolatile(), Alignment); |
| } else { |
| // Do a (aligned) store to a stack slot, then copy from the stack slot |
| // to the final destination using (unaligned) integer loads and stores. |
| EVT StoredVT = ST->getMemoryVT(); |
| EVT RegVT = |
| TLI.getRegisterType(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), StoredVT.getSizeInBits())); |
| unsigned StoredBytes = StoredVT.getSizeInBits() / 8; |
| unsigned RegBytes = RegVT.getSizeInBits() / 8; |
| unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; |
| |
| // Make sure the stack slot is also aligned for the register type. |
| SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); |
| |
| // Perform the original store, only redirected to the stack slot. |
| SDValue Store = DAG.getTruncStore(Chain, dl, |
| Val, StackPtr, NULL, 0, StoredVT); |
| SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); |
| SmallVector<SDValue, 8> Stores; |
| unsigned Offset = 0; |
| |
| // Do all but one copies using the full register width. |
| for (unsigned i = 1; i < NumRegs; i++) { |
| // Load one integer register's worth from the stack slot. |
| SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0); |
| // Store it to the final location. Remember the store. |
| Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, |
| ST->getSrcValue(), SVOffset + Offset, |
| ST->isVolatile(), |
| MinAlign(ST->getAlignment(), Offset))); |
| // Increment the pointers. |
| Offset += RegBytes; |
| StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, |
| Increment); |
| Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); |
| } |
| |
| // The last store may be partial. Do a truncating store. On big-endian |
| // machines this requires an extending load from the stack slot to ensure |
| // that the bits are in the right place. |
| EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); |
| |
| // Load from the stack slot. |
| SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, |
| NULL, 0, MemVT); |
| |
| Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, |
| ST->getSrcValue(), SVOffset + Offset, |
| MemVT, ST->isVolatile(), |
| MinAlign(ST->getAlignment(), Offset))); |
| // The order of the stores doesn't matter - say it with a TokenFactor. |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], |
| Stores.size()); |
| } |
| } |
| assert(ST->getMemoryVT().isInteger() && |
| !ST->getMemoryVT().isVector() && |
| "Unaligned store of unknown type."); |
| // Get the half-size VT |
| EVT NewStoredVT = |
| (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT().SimpleTy - 1); |
| int NumBits = NewStoredVT.getSizeInBits(); |
| int IncrementSize = NumBits / 8; |
| |
| // Divide the stored value in two parts. |
| SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); |
| SDValue Lo = Val; |
| SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); |
| |
| // Store the two parts |
| SDValue Store1, Store2; |
| Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, |
| ST->getSrcValue(), SVOffset, NewStoredVT, |
| ST->isVolatile(), Alignment); |
| Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, |
| DAG.getConstant(IncrementSize, TLI.getPointerTy())); |
| Alignment = MinAlign(Alignment, IncrementSize); |
| Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, |
| ST->getSrcValue(), SVOffset + IncrementSize, |
| NewStoredVT, ST->isVolatile(), Alignment); |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); |
| } |
| |
| /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. |
| static |
| SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| int SVOffset = LD->getSrcValueOffset(); |
| SDValue Chain = LD->getChain(); |
| SDValue Ptr = LD->getBasePtr(); |
| EVT VT = LD->getValueType(0); |
| EVT LoadedVT = LD->getMemoryVT(); |
| DebugLoc dl = LD->getDebugLoc(); |
| if (VT.isFloatingPoint() || VT.isVector()) { |
| EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); |
| if (TLI.isTypeLegal(intVT)) { |
| // Expand to a (misaligned) integer load of the same size, |
| // then bitconvert to floating point or vector. |
| SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(), |
| SVOffset, LD->isVolatile(), |
| LD->getAlignment()); |
| SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad); |
| if (VT.isFloatingPoint() && LoadedVT != VT) |
| Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result); |
| |
| SDValue Ops[] = { Result, Chain }; |
| return DAG.getMergeValues(Ops, 2, dl); |
| } else { |
| // Copy the value to a (aligned) stack slot using (unaligned) integer |
| // loads and stores, then do a (aligned) load from the stack slot. |
| EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT); |
| unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; |
| unsigned RegBytes = RegVT.getSizeInBits() / 8; |
| unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; |
| |
| // Make sure the stack slot is also aligned for the register type. |
| SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); |
| |
| SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); |
| SmallVector<SDValue, 8> Stores; |
| SDValue StackPtr = StackBase; |
| unsigned Offset = 0; |
| |
| // Do all but one copies using the full register width. |
| for (unsigned i = 1; i < NumRegs; i++) { |
| // Load one integer register's worth from the original location. |
| SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(), |
| SVOffset + Offset, LD->isVolatile(), |
| MinAlign(LD->getAlignment(), Offset)); |
| // Follow the load with a store to the stack slot. Remember the store. |
| Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, |
| NULL, 0)); |
| // Increment the pointers. |
| Offset += RegBytes; |
| Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); |
| StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, |
| Increment); |
| } |
| |
| // The last copy may be partial. Do an extending load. |
| EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (LoadedBytes - Offset)); |
| SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, |
| LD->getSrcValue(), SVOffset + Offset, |
| MemVT, LD->isVolatile(), |
| MinAlign(LD->getAlignment(), Offset)); |
| // Follow the load with a store to the stack slot. Remember the store. |
| // On big-endian machines this requires a truncating store to ensure |
| // that the bits end up in the right place. |
| Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, |
| NULL, 0, MemVT)); |
| |
| // The order of the stores doesn't matter - say it with a TokenFactor. |
| SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], |
| Stores.size()); |
| |
| // Finally, perform the original load only redirected to the stack slot. |
| Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, |
| NULL, 0, LoadedVT); |
| |
| // Callers expect a MERGE_VALUES node. |
| SDValue Ops[] = { Load, TF }; |
| return DAG.getMergeValues(Ops, 2, dl); |
| } |
| } |
| assert(LoadedVT.isInteger() && !LoadedVT.isVector() && |
| "Unaligned load of unsupported type."); |
| |
| // Compute the new VT that is half the size of the old one. This is an |
| // integer MVT. |
| unsigned NumBits = LoadedVT.getSizeInBits(); |
| EVT NewLoadedVT; |
| NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); |
| NumBits >>= 1; |
| |
| unsigned Alignment = LD->getAlignment(); |
| unsigned IncrementSize = NumBits / 8; |
| ISD::LoadExtType HiExtType = LD->getExtensionType(); |
| |
| // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. |
| if (HiExtType == ISD::NON_EXTLOAD) |
| HiExtType = ISD::ZEXTLOAD; |
| |
| // Load the value in two parts |
| SDValue Lo, Hi; |
| if (TLI.isLittleEndian()) { |
| Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(), |
| SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); |
| Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, |
| DAG.getConstant(IncrementSize, TLI.getPointerTy())); |
| Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(), |
| SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), |
| MinAlign(Alignment, IncrementSize)); |
| } else { |
| Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(), |
| SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); |
| Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, |
| DAG.getConstant(IncrementSize, TLI.getPointerTy())); |
| Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(), |
| SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), |
| MinAlign(Alignment, IncrementSize)); |
| } |
| |
| // aggregate the two parts |
| SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); |
| SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); |
| Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); |
| |
| SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), |
| Hi.getValue(1)); |
| |
| SDValue Ops[] = { Result, TF }; |
| return DAG.getMergeValues(Ops, 2, dl); |
| } |
| |
| /// PerformInsertVectorEltInMemory - Some target cannot handle a variable |
| /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it |
| /// is necessary to spill the vector being inserted into to memory, perform |
| /// the insert there, and then read the result back. |
| SDValue SelectionDAGLegalize:: |
| PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, |
| DebugLoc dl) { |
| SDValue Tmp1 = Vec; |
| SDValue Tmp2 = Val; |
| SDValue Tmp3 = Idx; |
| |
| // If the target doesn't support this, we have to spill the input vector |
| // to a temporary stack slot, update the element, then reload it. This is |
| // badness. We could also load the value into a vector register (either |
| // with a "move to register" or "extload into register" instruction, then |
| // permute it into place, if the idx is a constant and if the idx is |
| // supported by the target. |
| EVT VT = Tmp1.getValueType(); |
| EVT EltVT = VT.getVectorElementType(); |
| EVT IdxVT = Tmp3.getValueType(); |
| EVT PtrVT = TLI.getPointerTy(); |
| SDValue StackPtr = DAG.CreateStackTemporary(VT); |
| |
| int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); |
| |
| // Store the vector. |
| SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, |
| PseudoSourceValue::getFixedStack(SPFI), 0); |
| |
| // Truncate or zero extend offset to target pointer type. |
| unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; |
| Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); |
| // Add the offset to the index. |
| unsigned EltSize = EltVT.getSizeInBits()/8; |
| Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); |
| SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); |
| // Store the scalar value. |
| Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, |
| PseudoSourceValue::getFixedStack(SPFI), 0, EltVT); |
| // Load the updated vector. |
| return DAG.getLoad(VT, dl, Ch, StackPtr, |
| PseudoSourceValue::getFixedStack(SPFI), 0); |
| } |
| |
| |
| SDValue SelectionDAGLegalize:: |
| ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) { |
| if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { |
| // SCALAR_TO_VECTOR requires that the type of the value being inserted |
| // match the element type of the vector being created, except for |
| // integers in which case the inserted value can be over width. |
| EVT EltVT = Vec.getValueType().getVectorElementType(); |
| if (Val.getValueType() == EltVT || |
| (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { |
| SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, |
| Vec.getValueType(), Val); |
| |
| unsigned NumElts = Vec.getValueType().getVectorNumElements(); |
| // We generate a shuffle of InVec and ScVec, so the shuffle mask |
| // should be 0,1,2,3,4,5... with the appropriate element replaced with |
| // elt 0 of the RHS. |
| SmallVector<int, 8> ShufOps; |
| for (unsigned i = 0; i != NumElts; ++i) |
| ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); |
| |
| return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, |
| &ShufOps[0]); |
| } |
| } |
| return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); |
| } |
| |
| SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { |
| // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' |
| // FIXME: We shouldn't do this for TargetConstantFP's. |
| // FIXME: move this to the DAG Combiner! Note that we can't regress due |
| // to phase ordering between legalized code and the dag combiner. This |
| // probably means that we need to integrate dag combiner and legalizer |
| // together. |
| // We generally can't do this one for long doubles. |
| SDValue Tmp1 = ST->getChain(); |
| SDValue Tmp2 = ST->getBasePtr(); |
| SDValue Tmp3; |
| int SVOffset = ST->getSrcValueOffset(); |
| unsigned Alignment = ST->getAlignment(); |
| bool isVolatile = ST->isVolatile(); |
| DebugLoc dl = ST->getDebugLoc(); |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { |
| if (CFP->getValueType(0) == MVT::f32 && |
| getTypeAction(MVT::i32) == Legal) { |
| Tmp3 = DAG.getConstant(CFP->getValueAPF(). |
| bitcastToAPInt().zextOrTrunc(32), |
| MVT::i32); |
| return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), |
| SVOffset, isVolatile, Alignment); |
| } else if (CFP->getValueType(0) == MVT::f64) { |
| // If this target supports 64-bit registers, do a single 64-bit store. |
| if (getTypeAction(MVT::i64) == Legal) { |
| Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). |
| zextOrTrunc(64), MVT::i64); |
| return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), |
| SVOffset, isVolatile, Alignment); |
| } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) { |
| // Otherwise, if the target supports 32-bit registers, use 2 32-bit |
| // stores. If the target supports neither 32- nor 64-bits, this |
| // xform is certainly not worth it. |
| const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); |
| SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32); |
| SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); |
| if (TLI.isBigEndian()) std::swap(Lo, Hi); |
| |
| Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(), |
| SVOffset, isVolatile, Alignment); |
| Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, |
| DAG.getIntPtrConstant(4)); |
| Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, |
| isVolatile, MinAlign(Alignment, 4U)); |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); |
| } |
| } |
| } |
| return SDValue(); |
| } |
| |
| /// LegalizeOp - We know that the specified value has a legal type, and |
| /// that its operands are legal. Now ensure that the operation itself |
| /// is legal, recursively ensuring that the operands' operations remain |
| /// legal. |
| SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) { |
| if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. |
| return Op; |
| |
| SDNode *Node = Op.getNode(); |
| DebugLoc dl = Node->getDebugLoc(); |
| |
| for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) |
| assert(getTypeAction(Node->getValueType(i)) == Legal && |
| "Unexpected illegal type!"); |
| |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) |
| assert((isTypeLegal(Node->getOperand(i).getValueType()) || |
| Node->getOperand(i).getOpcode() == ISD::TargetConstant) && |
| "Unexpected illegal type!"); |
| |
| // Note that LegalizeOp may be reentered even from single-use nodes, which |
| // means that we always must cache transformed nodes. |
| DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); |
| if (I != LegalizedNodes.end()) return I->second; |
| |
| SDValue Tmp1, Tmp2, Tmp3, Tmp4; |
| SDValue Result = Op; |
| bool isCustom = false; |
| |
| // Figure out the correct action; the way to query this varies by opcode |
| TargetLowering::LegalizeAction Action; |
| bool SimpleFinishLegalizing = true; |
| switch (Node->getOpcode()) { |
| case ISD::INTRINSIC_W_CHAIN: |
| case ISD::INTRINSIC_WO_CHAIN: |
| case ISD::INTRINSIC_VOID: |
| case ISD::VAARG: |
| case ISD::STACKSAVE: |
| Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); |
| break; |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| case ISD::EXTRACT_VECTOR_ELT: |
| Action = TLI.getOperationAction(Node->getOpcode(), |
| Node->getOperand(0).getValueType()); |
| break; |
| case ISD::FP_ROUND_INREG: |
| case ISD::SIGN_EXTEND_INREG: { |
| EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); |
| Action = TLI.getOperationAction(Node->getOpcode(), InnerType); |
| break; |
| } |
| case ISD::SELECT_CC: |
| case ISD::SETCC: |
| case ISD::BR_CC: { |
| unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : |
| Node->getOpcode() == ISD::SETCC ? 2 : 1; |
| unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; |
| EVT OpVT = Node->getOperand(CompareOperand).getValueType(); |
| ISD::CondCode CCCode = |
| cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); |
| Action = TLI.getCondCodeAction(CCCode, OpVT); |
| if (Action == TargetLowering::Legal) { |
| if (Node->getOpcode() == ISD::SELECT_CC) |
| Action = TLI.getOperationAction(Node->getOpcode(), |
| Node->getValueType(0)); |
| else |
| Action = TLI.getOperationAction(Node->getOpcode(), OpVT); |
| } |
| break; |
| } |
| case ISD::LOAD: |
| case ISD::STORE: |
| // FIXME: Model these properly. LOAD and STORE are complicated, and |
| // STORE expects the unlegalized operand in some cases. |
| SimpleFinishLegalizing = false; |
| break; |
| case ISD::CALLSEQ_START: |
| case ISD::CALLSEQ_END: |
| // FIXME: This shouldn't be necessary. These nodes have special properties |
| // dealing with the recursive nature of legalization. Removing this |
| // special case should be done as part of making LegalizeDAG non-recursive. |
| SimpleFinishLegalizing = false; |
| break; |
| case ISD::EXTRACT_ELEMENT: |
| case ISD::FLT_ROUNDS_: |
| case ISD::SADDO: |
| case ISD::SSUBO: |
| case ISD::UADDO: |
| case ISD::USUBO: |
| case ISD::SMULO: |
| case ISD::UMULO: |
| case ISD::FPOWI: |
| case ISD::MERGE_VALUES: |
| case ISD::EH_RETURN: |
| case ISD::FRAME_TO_ARGS_OFFSET: |
| // These operations lie about being legal: when they claim to be legal, |
| // they should actually be expanded. |
| Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); |
| if (Action == TargetLowering::Legal) |
| Action = TargetLowering::Expand; |
| break; |
| case ISD::TRAMPOLINE: |
| case ISD::FRAMEADDR: |
| case ISD::RETURNADDR: |
| // These operations lie about being legal: when they claim to be legal, |
| // they should actually be custom-lowered. |
| Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); |
| if (Action == TargetLowering::Legal) |
| Action = TargetLowering::Custom; |
| break; |
| case ISD::BUILD_VECTOR: |
| // A weird case: legalization for BUILD_VECTOR never legalizes the |
| // operands! |
| // FIXME: This really sucks... changing it isn't semantically incorrect, |
| // but it massively pessimizes the code for floating-point BUILD_VECTORs |
| // because ConstantFP operands get legalized into constant pool loads |
| // before the BUILD_VECTOR code can see them. It doesn't usually bite, |
| // though, because BUILD_VECTORS usually get lowered into other nodes |
| // which get legalized properly. |
| SimpleFinishLegalizing = false; |
| break; |
| default: |
| if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { |
| Action = TargetLowering::Legal; |
| } else { |
| Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); |
| } |
| break; |
| } |
| |
| if (SimpleFinishLegalizing) { |
| SmallVector<SDValue, 8> Ops, ResultVals; |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) |
| Ops.push_back(LegalizeOp(Node->getOperand(i))); |
| switch (Node->getOpcode()) { |
| default: break; |
| case ISD::BR: |
| case ISD::BRIND: |
| case ISD::BR_JT: |
| case ISD::BR_CC: |
| case ISD::BRCOND: |
| // Branches tweak the chain to include LastCALLSEQ_END |
| Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0], |
| LastCALLSEQ_END); |
| Ops[0] = LegalizeOp(Ops[0]); |
| LastCALLSEQ_END = DAG.getEntryNode(); |
| break; |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::SRA: |
| case ISD::ROTL: |
| case ISD::ROTR: |
| // Legalizing shifts/rotates requires adjusting the shift amount |
| // to the appropriate width. |
| if (!Ops[1].getValueType().isVector()) |
| Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1])); |
| break; |
| } |
| |
| Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(), |
| Ops.size()); |
| switch (Action) { |
| case TargetLowering::Legal: |
| for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) |
| ResultVals.push_back(Result.getValue(i)); |
| break; |
| case TargetLowering::Custom: |
| // FIXME: The handling for custom lowering with multiple results is |
| // a complete mess. |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) { |
| for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { |
| if (e == 1) |
| ResultVals.push_back(Tmp1); |
| else |
| ResultVals.push_back(Tmp1.getValue(i)); |
| } |
| break; |
| } |
| |
| // FALL THROUGH |
| case TargetLowering::Expand: |
| ExpandNode(Result.getNode(), ResultVals); |
| break; |
| case TargetLowering::Promote: |
| PromoteNode(Result.getNode(), ResultVals); |
| break; |
| } |
| if (!ResultVals.empty()) { |
| for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) { |
| if (ResultVals[i] != SDValue(Node, i)) |
| ResultVals[i] = LegalizeOp(ResultVals[i]); |
| AddLegalizedOperand(SDValue(Node, i), ResultVals[i]); |
| } |
| return ResultVals[Op.getResNo()]; |
| } |
| } |
| |
| switch (Node->getOpcode()) { |
| default: |
| #ifndef NDEBUG |
| cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; |
| #endif |
| llvm_unreachable("Do not know how to legalize this operator!"); |
| |
| case ISD::BUILD_VECTOR: |
| switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { |
| default: llvm_unreachable("This action is not supported yet!"); |
| case TargetLowering::Custom: |
| Tmp3 = TLI.LowerOperation(Result, DAG); |
| if (Tmp3.getNode()) { |
| Result = Tmp3; |
| break; |
| } |
| // FALLTHROUGH |
| case TargetLowering::Expand: |
| Result = ExpandBUILD_VECTOR(Result.getNode()); |
| break; |
| } |
| break; |
| case ISD::CALLSEQ_START: { |
| SDNode *CallEnd = FindCallEndFromCallStart(Node); |
| |
| // Recursively Legalize all of the inputs of the call end that do not lead |
| // to this call start. This ensures that any libcalls that need be inserted |
| // are inserted *before* the CALLSEQ_START. |
| {SmallPtrSet<SDNode*, 32> NodesLeadingTo; |
| for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) |
| LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node, |
| NodesLeadingTo); |
| } |
| |
| // Now that we legalized all of the inputs (which may have inserted |
| // libcalls) create the new CALLSEQ_START node. |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| |
| // Merge in the last call, to ensure that this call start after the last |
| // call ended. |
| if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { |
| Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| Tmp1, LastCALLSEQ_END); |
| Tmp1 = LegalizeOp(Tmp1); |
| } |
| |
| // Do not try to legalize the target-specific arguments (#1+). |
| if (Tmp1 != Node->getOperand(0)) { |
| SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); |
| Ops[0] = Tmp1; |
| Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); |
| } |
| |
| // Remember that the CALLSEQ_START is legalized. |
| AddLegalizedOperand(Op.getValue(0), Result); |
| if (Node->getNumValues() == 2) // If this has a flag result, remember it. |
| AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); |
| |
| // Now that the callseq_start and all of the non-call nodes above this call |
| // sequence have been legalized, legalize the call itself. During this |
| // process, no libcalls can/will be inserted, guaranteeing that no calls |
| // can overlap. |
| assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); |
| // Note that we are selecting this call! |
| LastCALLSEQ_END = SDValue(CallEnd, 0); |
| IsLegalizingCall = true; |
| |
| // Legalize the call, starting from the CALLSEQ_END. |
| LegalizeOp(LastCALLSEQ_END); |
| assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); |
| return Result; |
| } |
| case ISD::CALLSEQ_END: |
| // If the CALLSEQ_START node hasn't been legalized first, legalize it. This |
| // will cause this node to be legalized as well as handling libcalls right. |
| if (LastCALLSEQ_END.getNode() != Node) { |
| LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0)); |
| DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); |
| assert(I != LegalizedNodes.end() && |
| "Legalizing the call start should have legalized this node!"); |
| return I->second; |
| } |
| |
| // Otherwise, the call start has been legalized and everything is going |
| // according to plan. Just legalize ourselves normally here. |
| Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. |
| // Do not try to legalize the target-specific arguments (#1+), except for |
| // an optional flag input. |
| if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ |
| if (Tmp1 != Node->getOperand(0)) { |
| SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); |
| Ops[0] = Tmp1; |
| Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); |
| } |
| } else { |
| Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); |
| if (Tmp1 != Node->getOperand(0) || |
| Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { |
| SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); |
| Ops[0] = Tmp1; |
| Ops.back() = Tmp2; |
| Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); |
| } |
| } |
| assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); |
| // This finishes up call legalization. |
| IsLegalizingCall = false; |
| |
| // If the CALLSEQ_END node has a flag, remember that we legalized it. |
| AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); |
| if (Node->getNumValues() == 2) |
| AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); |
| return Result.getValue(Op.getResNo()); |
| case ISD::LOAD: { |
| LoadSDNode *LD = cast<LoadSDNode>(Node); |
| Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. |
| Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. |
| |
| ISD::LoadExtType ExtType = LD->getExtensionType(); |
| if (ExtType == ISD::NON_EXTLOAD) { |
| EVT VT = Node->getValueType(0); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); |
| Tmp3 = Result.getValue(0); |
| Tmp4 = Result.getValue(1); |
| |
| switch (TLI.getOperationAction(Node->getOpcode(), VT)) { |
| default: llvm_unreachable("This action is not supported yet!"); |
| case TargetLowering::Legal: |
| // If this is an unaligned load and the target doesn't support it, |
| // expand it. |
| if (!TLI.allowsUnalignedMemoryAccesses()) { |
| unsigned ABIAlignment = TLI.getTargetData()-> |
| getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext())); |
| if (LD->getAlignment() < ABIAlignment){ |
| Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), |
| DAG, TLI); |
| Tmp3 = Result.getOperand(0); |
| Tmp4 = Result.getOperand(1); |
| Tmp3 = LegalizeOp(Tmp3); |
| Tmp4 = LegalizeOp(Tmp4); |
| } |
| } |
| break; |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Tmp3, DAG); |
| if (Tmp1.getNode()) { |
| Tmp3 = LegalizeOp(Tmp1); |
| Tmp4 = LegalizeOp(Tmp1.getValue(1)); |
| } |
| break; |
| case TargetLowering::Promote: { |
| // Only promote a load of vector type to another. |
| assert(VT.isVector() && "Cannot promote this load!"); |
| // Change base type to a different vector type. |
| EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); |
| |
| Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(), |
| LD->getSrcValueOffset(), |
| LD->isVolatile(), LD->getAlignment()); |
| Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1)); |
| Tmp4 = LegalizeOp(Tmp1.getValue(1)); |
| break; |
| } |
| } |
| // Since loads produce two values, make sure to remember that we |
| // legalized both of them. |
| AddLegalizedOperand(SDValue(Node, 0), Tmp3); |
| AddLegalizedOperand(SDValue(Node, 1), Tmp4); |
| return Op.getResNo() ? Tmp4 : Tmp3; |
| } else { |
| EVT SrcVT = LD->getMemoryVT(); |
| unsigned SrcWidth = SrcVT.getSizeInBits(); |
| int SVOffset = LD->getSrcValueOffset(); |
| unsigned Alignment = LD->getAlignment(); |
| bool isVolatile = LD->isVolatile(); |
| |
| if (SrcWidth != SrcVT.getStoreSizeInBits() && |
| // Some targets pretend to have an i1 loading operation, and actually |
| // load an i8. This trick is correct for ZEXTLOAD because the top 7 |
| // bits are guaranteed to be zero; it helps the optimizers understand |
| // that these bits are zero. It is also useful for EXTLOAD, since it |
| // tells the optimizers that those bits are undefined. It would be |
| // nice to have an effective generic way of getting these benefits... |
| // Until such a way is found, don't insist on promoting i1 here. |
| (SrcVT != MVT::i1 || |
| TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { |
| // Promote to a byte-sized load if not loading an integral number of |
| // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. |
| unsigned NewWidth = SrcVT.getStoreSizeInBits(); |
| EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); |
| SDValue Ch; |
| |
| // The extra bits are guaranteed to be zero, since we stored them that |
| // way. A zext load from NVT thus automatically gives zext from SrcVT. |
| |
| ISD::LoadExtType NewExtType = |
| ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; |
| |
| Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), |
| Tmp1, Tmp2, LD->getSrcValue(), SVOffset, |
| NVT, isVolatile, Alignment); |
| |
| Ch = Result.getValue(1); // The chain. |
| |
| if (ExtType == ISD::SEXTLOAD) |
| // Having the top bits zero doesn't help when sign extending. |
| Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, |
| Result.getValueType(), |
| Result, DAG.getValueType(SrcVT)); |
| else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) |
| // All the top bits are guaranteed to be zero - inform the optimizers. |
| Result = DAG.getNode(ISD::AssertZext, dl, |
| Result.getValueType(), Result, |
| DAG.getValueType(SrcVT)); |
| |
| Tmp1 = LegalizeOp(Result); |
| Tmp2 = LegalizeOp(Ch); |
| } else if (SrcWidth & (SrcWidth - 1)) { |
| // If not loading a power-of-2 number of bits, expand as two loads. |
| assert(SrcVT.isExtended() && !SrcVT.isVector() && |
| "Unsupported extload!"); |
| unsigned RoundWidth = 1 << Log2_32(SrcWidth); |
| assert(RoundWidth < SrcWidth); |
| unsigned ExtraWidth = SrcWidth - RoundWidth; |
| assert(ExtraWidth < RoundWidth); |
| assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && |
| "Load size not an integral number of bytes!"); |
| EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); |
| EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); |
| SDValue Lo, Hi, Ch; |
| unsigned IncrementSize; |
| |
| if (TLI.isLittleEndian()) { |
| // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) |
| // Load the bottom RoundWidth bits. |
| Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, |
| Node->getValueType(0), Tmp1, Tmp2, |
| LD->getSrcValue(), SVOffset, RoundVT, isVolatile, |
| Alignment); |
| |
| // Load the remaining ExtraWidth bits. |
| IncrementSize = RoundWidth / 8; |
| Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, |
| DAG.getIntPtrConstant(IncrementSize)); |
| Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, |
| LD->getSrcValue(), SVOffset + IncrementSize, |
| ExtraVT, isVolatile, |
| MinAlign(Alignment, IncrementSize)); |
| |
| // Build a factor node to remember that this load is independent of the |
| // other one. |
| Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), |
| Hi.getValue(1)); |
| |
| // Move the top bits to the right place. |
| Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, |
| DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); |
| |
| // Join the hi and lo parts. |
| Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); |
| } else { |
| // Big endian - avoid unaligned loads. |
| // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 |
| // Load the top RoundWidth bits. |
| Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, |
| LD->getSrcValue(), SVOffset, RoundVT, isVolatile, |
| Alignment); |
| |
| // Load the remaining ExtraWidth bits. |
| IncrementSize = RoundWidth / 8; |
| Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, |
| DAG.getIntPtrConstant(IncrementSize)); |
| Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, |
| Node->getValueType(0), Tmp1, Tmp2, |
| LD->getSrcValue(), SVOffset + IncrementSize, |
| ExtraVT, isVolatile, |
| MinAlign(Alignment, IncrementSize)); |
| |
| // Build a factor node to remember that this load is independent of the |
| // other one. |
| Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), |
| Hi.getValue(1)); |
| |
| // Move the top bits to the right place. |
| Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, |
| DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); |
| |
| // Join the hi and lo parts. |
| Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); |
| } |
| |
| Tmp1 = LegalizeOp(Result); |
| Tmp2 = LegalizeOp(Ch); |
| } else { |
| switch (TLI.getLoadExtAction(ExtType, SrcVT)) { |
| default: llvm_unreachable("This action is not supported yet!"); |
| case TargetLowering::Custom: |
| isCustom = true; |
| // FALLTHROUGH |
| case TargetLowering::Legal: |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); |
| Tmp1 = Result.getValue(0); |
| Tmp2 = Result.getValue(1); |
| |
| if (isCustom) { |
| Tmp3 = TLI.LowerOperation(Result, DAG); |
| if (Tmp3.getNode()) { |
| Tmp1 = LegalizeOp(Tmp3); |
| Tmp2 = LegalizeOp(Tmp3.getValue(1)); |
| } |
| } else { |
| // If this is an unaligned load and the target doesn't support it, |
| // expand it. |
| if (!TLI.allowsUnalignedMemoryAccesses()) { |
| unsigned ABIAlignment = TLI.getTargetData()-> |
| getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext())); |
| if (LD->getAlignment() < ABIAlignment){ |
| Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), |
| DAG, TLI); |
| Tmp1 = Result.getOperand(0); |
| Tmp2 = Result.getOperand(1); |
| Tmp1 = LegalizeOp(Tmp1); |
| Tmp2 = LegalizeOp(Tmp2); |
| } |
| } |
| } |
| break; |
| case TargetLowering::Expand: |
| // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND |
| if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { |
| SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(), |
| LD->getSrcValueOffset(), |
| LD->isVolatile(), LD->getAlignment()); |
| Result = DAG.getNode(ISD::FP_EXTEND, dl, |
| Node->getValueType(0), Load); |
| Tmp1 = LegalizeOp(Result); // Relegalize new nodes. |
| Tmp2 = LegalizeOp(Load.getValue(1)); |
| break; |
| } |
| assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); |
| // Turn the unsupported load into an EXTLOAD followed by an explicit |
| // zero/sign extend inreg. |
| Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), |
| Tmp1, Tmp2, LD->getSrcValue(), |
| LD->getSrcValueOffset(), SrcVT, |
| LD->isVolatile(), LD->getAlignment()); |
| SDValue ValRes; |
| if (ExtType == ISD::SEXTLOAD) |
| ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, |
| Result.getValueType(), |
| Result, DAG.getValueType(SrcVT)); |
| else |
| ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); |
| Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. |
| Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. |
| break; |
| } |
| } |
| |
| // Since loads produce two values, make sure to remember that we legalized |
| // both of them. |
| AddLegalizedOperand(SDValue(Node, 0), Tmp1); |
| AddLegalizedOperand(SDValue(Node, 1), Tmp2); |
| return Op.getResNo() ? Tmp2 : Tmp1; |
| } |
| } |
| case ISD::STORE: { |
| StoreSDNode *ST = cast<StoreSDNode>(Node); |
| Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. |
| Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. |
| int SVOffset = ST->getSrcValueOffset(); |
| unsigned Alignment = ST->getAlignment(); |
| bool isVolatile = ST->isVolatile(); |
| |
| if (!ST->isTruncatingStore()) { |
| if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { |
| Result = SDValue(OptStore, 0); |
| break; |
| } |
| |
| { |
| Tmp3 = LegalizeOp(ST->getValue()); |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, |
| ST->getOffset()); |
| |
| EVT VT = Tmp3.getValueType(); |
| switch (TLI.getOperationAction(ISD::STORE, VT)) { |
| default: llvm_unreachable("This action is not supported yet!"); |
| case TargetLowering::Legal: |
| // If this is an unaligned store and the target doesn't support it, |
| // expand it. |
| if (!TLI.allowsUnalignedMemoryAccesses()) { |
| unsigned ABIAlignment = TLI.getTargetData()-> |
| getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext())); |
| if (ST->getAlignment() < ABIAlignment) |
| Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG, |
| TLI); |
| } |
| break; |
| case TargetLowering::Custom: |
| Tmp1 = TLI.LowerOperation(Result, DAG); |
| if (Tmp1.getNode()) Result = Tmp1; |
| break; |
| case TargetLowering::Promote: |
| assert(VT.isVector() && "Unknown legal promote case!"); |
| Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl, |
| TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); |
| Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, |
| ST->getSrcValue(), SVOffset, isVolatile, |
| Alignment); |
| break; |
| } |
| break; |
| } |
| } else { |
| Tmp3 = LegalizeOp(ST->getValue()); |
| |
| EVT StVT = ST->getMemoryVT(); |
| unsigned StWidth = StVT.getSizeInBits(); |
| |
| if (StWidth != StVT.getStoreSizeInBits()) { |
| // Promote to a byte-sized store with upper bits zero if not |
| // storing an integral number of bytes. For example, promote |
| // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) |
| EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StVT.getStoreSizeInBits()); |
| Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT); |
| Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), |
| SVOffset, NVT, isVolatile, Alignment); |
| } else if (StWidth & (StWidth - 1)) { |
| // If not storing a power-of-2 number of bits, expand as two stores. |
| assert(StVT.isExtended() && !StVT.isVector() && |
| "Unsupported truncstore!"); |
| unsigned RoundWidth = 1 << Log2_32(StWidth); |
| assert(RoundWidth < StWidth); |
| unsigned ExtraWidth = StWidth - RoundWidth; |
| assert(ExtraWidth < RoundWidth); |
| assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && |
| "Store size not an integral number of bytes!"); |
| EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); |
| EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); |
| SDValue Lo, Hi; |
| unsigned IncrementSize; |
| |
| if (TLI.isLittleEndian()) { |
| // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) |
| // Store the bottom RoundWidth bits. |
| Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), |
| SVOffset, RoundVT, |
| isVolatile, Alignment); |
| |
| // Store the remaining ExtraWidth bits. |
| IncrementSize = RoundWidth / 8; |
| Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, |
| DAG.getIntPtrConstant(IncrementSize)); |
| Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, |
| DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); |
| Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), |
| SVOffset + IncrementSize, ExtraVT, isVolatile, |
| MinAlign(Alignment, IncrementSize)); |
| } else { |
| // Big endian - avoid unaligned stores. |
| // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X |
| // Store the top RoundWidth bits. |
| Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, |
| DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); |
| Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), |
| SVOffset, RoundVT, isVolatile, Alignment); |
| |
| // Store the remaining ExtraWidth bits. |
| IncrementSize = RoundWidth / 8; |
| Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, |
| DAG.getIntPtrConstant(IncrementSize)); |
| Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), |
| SVOffset + IncrementSize, ExtraVT, isVolatile, |
| MinAlign(Alignment, IncrementSize)); |
| } |
| |
| // The order of the stores doesn't matter. |
| Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); |
| } else { |
| if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || |
| Tmp2 != ST->getBasePtr()) |
| Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, |
| ST->getOffset()); |
| |
| switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { |
| default: llvm_unreachable("This action is not supported yet!"); |
| case TargetLowering::Legal: |
| // If this is an unaligned store and the target doesn't support it, |
| // expand it. |
| if (!TLI.allowsUnalignedMemoryAccesses()) { |
| unsigned ABIAlignment = TLI.getTargetData()-> |
| getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext())); |
| if (ST->getAlignment() < ABIAlignment) |
| Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG, |
| TLI); |
| } |
| break; |
| case TargetLowering::Custom: |
| Result = TLI.LowerOperation(Result, DAG); |
| break; |
| case Expand: |
| // TRUNCSTORE:i16 i32 -> STORE i16 |
| assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); |
| Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3); |
| Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), |
| SVOffset, isVolatile, Alignment); |
| break; |
| } |
| } |
| } |
| break; |
| } |
| } |
| assert(Result.getValueType() == Op.getValueType() && |
| "Bad legalization!"); |
| |
| // Make sure that the generated code is itself legal. |
| if (Result != Op) |
| Result = LegalizeOp(Result); |
| |
| // Note that LegalizeOp may be reentered even from single-use nodes, which |
| // means that we always must cache transformed nodes. |
| AddLegalizedOperand(Op, Result); |
| return Result; |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { |
| SDValue Vec = Op.getOperand(0); |
| SDValue Idx = Op.getOperand(1); |
| DebugLoc dl = Op.getDebugLoc(); |
| // Store the value to a temporary stack slot, then LOAD the returned part. |
| SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); |
| SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0); |
| |
| // Add the offset to the index. |
| unsigned EltSize = |
| Vec.getValueType().getVectorElementType().getSizeInBits()/8; |
| Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, |
| DAG.getConstant(EltSize, Idx.getValueType())); |
| |
| if (Idx.getValueType().bitsGT(TLI.getPointerTy())) |
| Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); |
| else |
| Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); |
| |
| StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); |
| |
| if (Op.getValueType().isVector()) |
| return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0); |
| else |
| return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, |
| NULL, 0, Vec.getValueType().getVectorElementType()); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { |
| // We can't handle this case efficiently. Allocate a sufficiently |
| // aligned object on the stack, store each element into it, then load |
| // the result as a vector. |
| // Create the stack frame object. |
| EVT VT = Node->getValueType(0); |
| EVT OpVT = Node->getOperand(0).getValueType(); |
| DebugLoc dl = Node->getDebugLoc(); |
| SDValue FIPtr = DAG.CreateStackTemporary(VT); |
| int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); |
| const Value *SV = PseudoSourceValue::getFixedStack(FI); |
| |
| // Emit a store of each element to the stack slot. |
| SmallVector<SDValue, 8> Stores; |
| unsigned TypeByteSize = OpVT.getSizeInBits() / 8; |
| // Store (in the right endianness) the elements to memory. |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { |
| // Ignore undef elements. |
| if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; |
| |
| unsigned Offset = TypeByteSize*i; |
| |
| SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); |
| Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); |
| |
| Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), |
| Idx, SV, Offset)); |
| } |
| |
| SDValue StoreChain; |
| if (!Stores.empty()) // Not all undef elements? |
| StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &Stores[0], Stores.size()); |
| else |
| StoreChain = DAG.getEntryNode(); |
| |
| // Result is a load from the stack slot. |
| return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) { |
| DebugLoc dl = Node->getDebugLoc(); |
| SDValue Tmp1 = Node->getOperand(0); |
| SDValue Tmp2 = Node->getOperand(1); |
| assert((Tmp2.getValueType() == MVT::f32 || |
| Tmp2.getValueType() == MVT::f64) && |
| "Ugly special-cased code!"); |
| // Get the sign bit of the RHS. |
| SDValue SignBit; |
| EVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32; |
| if (isTypeLegal(IVT)) { |
| SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2); |
| } else { |
| assert(isTypeLegal(TLI.getPointerTy()) && |
| (TLI.getPointerTy() == MVT::i32 || |
| TLI.getPointerTy() == MVT::i64) && |
| "Legal type for load?!"); |
| SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType()); |
| SDValue StorePtr = StackPtr, LoadPtr = StackPtr; |
| SDValue Ch = |
| DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0); |
| if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian()) |
| LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), |
| LoadPtr, DAG.getIntPtrConstant(4)); |
| SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(), |
| Ch, LoadPtr, NULL, 0, MVT::i32); |
| } |
| SignBit = |
| DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()), |
| SignBit, DAG.getConstant(0, SignBit.getValueType()), |
| ISD::SETLT); |
| // Get the absolute value of the result. |
| SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); |
| // Select between the nabs and abs value based on the sign bit of |
| // the input. |
| return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, |
| DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal), |
| AbsVal); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) { |
| DebugLoc dl = Node->getDebugLoc(); |
| DwarfWriter *DW = DAG.getDwarfWriter(); |
| bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC, |
| MVT::Other); |
| bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other); |
| |
| const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node); |
| GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit()); |
| if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) { |
| DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit())); |
| |
| unsigned Line = DSP->getLine(); |
| unsigned Col = DSP->getColumn(); |
| |
| if (OptLevel == CodeGenOpt::None) { |
| // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it |
| // won't hurt anything. |
| if (useDEBUG_LOC) { |
| return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0), |
| DAG.getConstant(Line, MVT::i32), |
| DAG.getConstant(Col, MVT::i32), |
| DAG.getSrcValue(CU.getGV())); |
| } else { |
| unsigned ID = DW->RecordSourceLine(Line, Col, CU); |
| return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID); |
| } |
| } |
| } |
| return Node->getOperand(0); |
| } |
| |
| void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, |
| SmallVectorImpl<SDValue> &Results) { |
| unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); |
| assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" |
| " not tell us which reg is the stack pointer!"); |
| DebugLoc dl = Node->getDebugLoc(); |
| EVT VT = Node->getValueType(0); |
| SDValue Tmp1 = SDValue(Node, 0); |
| SDValue Tmp2 = SDValue(Node, 1); |
| SDValue Tmp3 = Node->getOperand(2); |
| SDValue Chain = Tmp1.getOperand(0); |
| |
| // Chain the dynamic stack allocation so that it doesn't modify the stack |
| // pointer when other instructions are using the stack. |
| Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); |
| |
| SDValue Size = Tmp2.getOperand(1); |
| SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); |
| Chain = SP.getValue(1); |
| unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); |
| unsigned StackAlign = |
| TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); |
| if (Align > StackAlign) |
| SP = DAG.getNode(ISD::AND, dl, VT, SP, |
| DAG.getConstant(-(uint64_t)Align, VT)); |
| Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value |
| Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain |
| |
| Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), |
| DAG.getIntPtrConstant(0, true), SDValue()); |
| |
| Results.push_back(Tmp1); |
| Results.push_back(Tmp2); |
| } |
| |
| /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and |
| /// condition code CC on the current target. This routine assumes LHS and rHS |
| /// have already been legalized by LegalizeSetCCOperands. It expands SETCC with |
| /// illegal condition code into AND / OR of multiple SETCC values. |
| void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, |
| SDValue &LHS, SDValue &RHS, |
| SDValue &CC, |
| DebugLoc dl) { |
| EVT OpVT = LHS.getValueType(); |
| ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); |
| switch (TLI.getCondCodeAction(CCCode, OpVT)) { |
| default: llvm_unreachable("Unknown condition code action!"); |
| case TargetLowering::Legal: |
| // Nothing to do. |
| break; |
| case TargetLowering::Expand: { |
| ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; |
| unsigned Opc = 0; |
| switch (CCCode) { |
| default: llvm_unreachable("Don't know how to expand this condition!"); |
| case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break; |
| case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break; |
| case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break; |
| case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break; |
| case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break; |
| case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break; |
| case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break; |
| case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break; |
| case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break; |
| case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break; |
| case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break; |
| case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break; |
| // FIXME: Implement more expansions. |
| } |
| |
| SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); |
| SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); |
| LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); |
| RHS = SDValue(); |
| CC = SDValue(); |
| break; |
| } |
| } |
| } |
| |
| /// EmitStackConvert - Emit a store/load combination to the stack. This stores |
| /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does |
| /// a load from the stack slot to DestVT, extending it if needed. |
| /// The resultant code need not be legal. |
| SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, |
| EVT SlotVT, |
| EVT DestVT, |
| DebugLoc dl) { |
| // Create the stack frame object. |
| unsigned SrcAlign = |
| TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType(). |
| getTypeForEVT(*DAG.getContext())); |
| SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); |
| |
| FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); |
| int SPFI = StackPtrFI->getIndex(); |
| const Value *SV = PseudoSourceValue::getFixedStack(SPFI); |
| |
| unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); |
| unsigned SlotSize = SlotVT.getSizeInBits(); |
| unsigned DestSize = DestVT.getSizeInBits(); |
| unsigned DestAlign = |
| TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForEVT(*DAG.getContext())); |
| |
| // Emit a store to the stack slot. Use a truncstore if the input value is |
| // later than DestVT. |
| SDValue Store; |
| |
| if (SrcSize > SlotSize) |
| Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, |
| SV, 0, SlotVT, false, SrcAlign); |
| else { |
| assert(SrcSize == SlotSize && "Invalid store"); |
| Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, |
| SV, 0, false, SrcAlign); |
| } |
| |
| // Result is a load from the stack slot. |
| if (SlotSize == DestSize) |
| return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign); |
| |
| assert(SlotSize < DestSize && "Unknown extension!"); |
| return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT, |
| false, DestAlign); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { |
| DebugLoc dl = Node->getDebugLoc(); |
| // Create a vector sized/aligned stack slot, store the value to element #0, |
| // then load the whole vector back out. |
| SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); |
| |
| FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); |
| int SPFI = StackPtrFI->getIndex(); |
| |
| SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), |
| StackPtr, |
| PseudoSourceValue::getFixedStack(SPFI), 0, |
| Node->getValueType(0).getVectorElementType()); |
| return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, |
| PseudoSourceValue::getFixedStack(SPFI), 0); |
| } |
| |
| |
| /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't |
| /// support the operation, but do support the resultant vector type. |
| SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { |
| unsigned NumElems = Node->getNumOperands(); |
| SDValue Value1, Value2; |
| DebugLoc dl = Node->getDebugLoc(); |
| EVT VT = Node->getValueType(0); |
| EVT OpVT = Node->getOperand(0).getValueType(); |
| EVT EltVT = VT.getVectorElementType(); |
| |
| // If the only non-undef value is the low element, turn this into a |
| // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. |
| bool isOnlyLowElement = true; |
| bool MoreThanTwoValues = false; |
| bool isConstant = true; |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDValue V = Node->getOperand(i); |
| if (V.getOpcode() == ISD::UNDEF) |
| continue; |
| if (i > 0) |
| isOnlyLowElement = false; |
| if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) |
| isConstant = false; |
| |
| if (!Value1.getNode()) { |
| Value1 = V; |
| } else if (!Value2.getNode()) { |
| if (V != Value1) |
| Value2 = V; |
| } else if (V != Value1 && V != Value2) { |
| MoreThanTwoValues = true; |
| } |
| } |
| |
| if (!Value1.getNode()) |
| return DAG.getUNDEF(VT); |
| |
| if (isOnlyLowElement) |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); |
| |
| // If all elements are constants, create a load from the constant pool. |
| if (isConstant) { |
| std::vector<Constant*> CV; |
| for (unsigned i = 0, e = NumElems; i != e; ++i) { |
| if (ConstantFPSDNode *V = |
| dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { |
| CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); |
| } else if (ConstantSDNode *V = |
| dyn_cast<ConstantSDNode>(Node->getOperand(i))) { |
| CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); |
| } else { |
| assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); |
| const Type *OpNTy = OpVT.getTypeForEVT(*DAG.getContext()); |
| CV.push_back(UndefValue::get(OpNTy)); |
| } |
| } |
| Constant *CP = ConstantVector::get(CV); |
| SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); |
| unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, Alignment); |
| } |
| |
| if (!MoreThanTwoValues) { |
| SmallVector<int, 8> ShuffleVec(NumElems, -1); |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDValue V = Node->getOperand(i); |
| if (V.getOpcode() == ISD::UNDEF) |
| continue; |
| ShuffleVec[i] = V == Value1 ? 0 : NumElems; |
| } |
| if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { |
| // Get the splatted value into the low element of a vector register. |
| SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); |
| SDValue Vec2; |
| if (Value2.getNode()) |
| Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); |
| else |
| Vec2 = DAG.getUNDEF(VT); |
| |
| // Return shuffle(LowValVec, undef, <0,0,0,0>) |
| return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); |
| } |
| } |
| |
| // Otherwise, we can't handle this case efficiently. |
| return ExpandVectorBuildThroughStack(Node); |
| } |
| |
| // ExpandLibCall - Expand a node into a call to a libcall. If the result value |
| // does not fit into a register, return the lo part and set the hi part to the |
| // by-reg argument. If it does fit into a single register, return the result |
| // and leave the Hi part unset. |
| SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, |
| bool isSigned) { |
| assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); |
| // The input chain to this libcall is the entry node of the function. |
| // Legalizing the call will automatically add the previous call to the |
| // dependence. |
| SDValue InChain = DAG.getEntryNode(); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { |
| EVT ArgVT = Node->getOperand(i).getValueType(); |
| const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; |
| Entry.isSExt = isSigned; |
| Entry.isZExt = !isSigned; |
| Args.push_back(Entry); |
| } |
| SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), |
| TLI.getPointerTy()); |
| |
| // Splice the libcall in wherever FindInputOutputChains tells us to. |
| const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); |
| std::pair<SDValue, SDValue> CallInfo = |
| TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, |
| 0, CallingConv::C, false, |
| /*isReturnValueUsed=*/true, |
| Callee, Args, DAG, |
| Node->getDebugLoc()); |
| |
| // Legalize the call sequence, starting with the chain. This will advance |
| // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that |
| // was added by LowerCallTo (guaranteeing proper serialization of calls). |
| LegalizeOp(CallInfo.second); |
| return CallInfo.first; |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, |
| RTLIB::Libcall Call_F32, |
| RTLIB::Libcall Call_F64, |
| RTLIB::Libcall Call_F80, |
| RTLIB::Libcall Call_PPCF128) { |
| RTLIB::Libcall LC; |
| switch (Node->getValueType(0).getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unexpected request for libcall!"); |
| case MVT::f32: LC = Call_F32; break; |
| case MVT::f64: LC = Call_F64; break; |
| case MVT::f80: LC = Call_F80; break; |
| case MVT::ppcf128: LC = Call_PPCF128; break; |
| } |
| return ExpandLibCall(LC, Node, false); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, |
| RTLIB::Libcall Call_I16, |
| RTLIB::Libcall Call_I32, |
| RTLIB::Libcall Call_I64, |
| RTLIB::Libcall Call_I128) { |
| RTLIB::Libcall LC; |
| switch (Node->getValueType(0).getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unexpected request for libcall!"); |
| case MVT::i16: LC = Call_I16; break; |
| case MVT::i32: LC = Call_I32; break; |
| case MVT::i64: LC = Call_I64; break; |
| case MVT::i128: LC = Call_I128; break; |
| } |
| return ExpandLibCall(LC, Node, isSigned); |
| } |
| |
| /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a |
| /// INT_TO_FP operation of the specified operand when the target requests that |
| /// we expand it. At this point, we know that the result and operand types are |
| /// legal for the target. |
| SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, |
| SDValue Op0, |
| EVT DestVT, |
| DebugLoc dl) { |
| if (Op0.getValueType() == MVT::i32) { |
| // simple 32-bit [signed|unsigned] integer to float/double expansion |
| |
| // Get the stack frame index of a 8 byte buffer. |
| SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); |
| |
| // word offset constant for Hi/Lo address computation |
| SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); |
| // set up Hi and Lo (into buffer) address based on endian |
| SDValue Hi = StackSlot; |
| SDValue Lo = DAG.getNode(ISD::ADD, dl, |
| TLI.getPointerTy(), StackSlot, WordOff); |
| if (TLI.isLittleEndian()) |
| std::swap(Hi, Lo); |
| |
| // if signed map to unsigned space |
| SDValue Op0Mapped; |
| if (isSigned) { |
| // constant used to invert sign bit (signed to unsigned mapping) |
| SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); |
| Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); |
| } else { |
| Op0Mapped = Op0; |
| } |
| // store the lo of the constructed double - based on integer input |
| SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, |
| Op0Mapped, Lo, NULL, 0); |
| // initial hi portion of constructed double |
| SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); |
| // store the hi of the constructed double - biased exponent |
| SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0); |
| // load the constructed double |
| SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0); |
| // FP constant to bias correct the final result |
| SDValue Bias = DAG.getConstantFP(isSigned ? |
| BitsToDouble(0x4330000080000000ULL) : |
| BitsToDouble(0x4330000000000000ULL), |
| MVT::f64); |
| // subtract the bias |
| SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); |
| // final result |
| SDValue Result; |
| // handle final rounding |
| if (DestVT == MVT::f64) { |
| // do nothing |
| Result = Sub; |
| } else if (DestVT.bitsLT(MVT::f64)) { |
| Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, |
| DAG.getIntPtrConstant(0)); |
| } else if (DestVT.bitsGT(MVT::f64)) { |
| Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); |
| } |
| return Result; |
| } |
| assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); |
| SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); |
| |
| SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), |
| Op0, DAG.getConstant(0, Op0.getValueType()), |
| ISD::SETLT); |
| SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); |
| SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), |
| SignSet, Four, Zero); |
| |
| // If the sign bit of the integer is set, the large number will be treated |
| // as a negative number. To counteract this, the dynamic code adds an |
| // offset depending on the data type. |
| uint64_t FF; |
| switch (Op0.getValueType().getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unsupported integer type!"); |
| case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) |
| case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) |
| case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) |
| case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) |
| } |
| if (TLI.isLittleEndian()) FF <<= 32; |
| Constant *FudgeFactor = ConstantInt::get( |
| Type::getInt64Ty(*DAG.getContext()), FF); |
| |
| SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); |
| unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); |
| Alignment = std::min(Alignment, 4u); |
| SDValue FudgeInReg; |
| if (DestVT == MVT::f32) |
| FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, Alignment); |
| else { |
| FudgeInReg = |
| LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, |
| DAG.getEntryNode(), CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, |
| MVT::f32, false, Alignment)); |
| } |
| |
| return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); |
| } |
| |
| /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a |
| /// *INT_TO_FP operation of the specified operand when the target requests that |
| /// we promote it. At this point, we know that the result and operand types are |
| /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP |
| /// operation that takes a larger input. |
| SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, |
| EVT DestVT, |
| bool isSigned, |
| DebugLoc dl) { |
| // First step, figure out the appropriate *INT_TO_FP operation to use. |
| EVT NewInTy = LegalOp.getValueType(); |
| |
| unsigned OpToUse = 0; |
| |
| // Scan for the appropriate larger type to use. |
| while (1) { |
| NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); |
| assert(NewInTy.isInteger() && "Ran out of possibilities!"); |
| |
| // If the target supports SINT_TO_FP of this type, use it. |
| if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { |
| OpToUse = ISD::SINT_TO_FP; |
| break; |
| } |
| if (isSigned) continue; |
| |
| // If the target supports UINT_TO_FP of this type, use it. |
| if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { |
| OpToUse = ISD::UINT_TO_FP; |
| break; |
| } |
| |
| // Otherwise, try a larger type. |
| } |
| |
| // Okay, we found the operation and type to use. Zero extend our input to the |
| // desired type then run the operation on it. |
| return DAG.getNode(OpToUse, dl, DestVT, |
| DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, |
| dl, NewInTy, LegalOp)); |
| } |
| |
| /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a |
| /// FP_TO_*INT operation of the specified operand when the target requests that |
| /// we promote it. At this point, we know that the result and operand types are |
| /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT |
| /// operation that returns a larger result. |
| SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, |
| EVT DestVT, |
| bool isSigned, |
| DebugLoc dl) { |
| // First step, figure out the appropriate FP_TO*INT operation to use. |
| EVT NewOutTy = DestVT; |
| |
| unsigned OpToUse = 0; |
| |
| // Scan for the appropriate larger type to use. |
| while (1) { |
| NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); |
| assert(NewOutTy.isInteger() && "Ran out of possibilities!"); |
| |
| if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { |
| OpToUse = ISD::FP_TO_SINT; |
| break; |
| } |
| |
| if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { |
| OpToUse = ISD::FP_TO_UINT; |
| break; |
| } |
| |
| // Otherwise, try a larger type. |
| } |
| |
| |
| // Okay, we found the operation and type to use. |
| SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); |
| |
| // Truncate the result of the extended FP_TO_*INT operation to the desired |
| // size. |
| return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); |
| } |
| |
| /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. |
| /// |
| SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { |
| EVT VT = Op.getValueType(); |
| EVT SHVT = TLI.getShiftAmountTy(); |
| SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unhandled Expand type in BSWAP!"); |
| case MVT::i16: |
| Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); |
| Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); |
| return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); |
| case MVT::i32: |
| Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); |
| Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); |
| Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); |
| Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); |
| Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); |
| Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); |
| Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); |
| Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); |
| return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); |
| case MVT::i64: |
| Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); |
| Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); |
| Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); |
| Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); |
| Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); |
| Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); |
| Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); |
| Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); |
| Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); |
| Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); |
| Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); |
| Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); |
| Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); |
| Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); |
| Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); |
| Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); |
| Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); |
| Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); |
| Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); |
| Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); |
| return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); |
| } |
| } |
| |
| /// ExpandBitCount - Expand the specified bitcount instruction into operations. |
| /// |
| SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, |
| DebugLoc dl) { |
| switch (Opc) { |
| default: llvm_unreachable("Cannot expand this yet!"); |
| case ISD::CTPOP: { |
| static const uint64_t mask[6] = { |
| 0x5555555555555555ULL, 0x3333333333333333ULL, |
| 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, |
| 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL |
| }; |
| EVT VT = Op.getValueType(); |
| EVT ShVT = TLI.getShiftAmountTy(); |
| unsigned len = VT.getSizeInBits(); |
| for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { |
| //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) |
| unsigned EltSize = VT.isVector() ? |
| VT.getVectorElementType().getSizeInBits() : len; |
| SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT); |
| SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); |
| Op = DAG.getNode(ISD::ADD, dl, VT, |
| DAG.getNode(ISD::AND, dl, VT, Op, Tmp2), |
| DAG.getNode(ISD::AND, dl, VT, |
| DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3), |
| Tmp2)); |
| } |
| return Op; |
| } |
| case ISD::CTLZ: { |
| // for now, we do this: |
| // x = x | (x >> 1); |
| // x = x | (x >> 2); |
| // ... |
| // x = x | (x >>16); |
| // x = x | (x >>32); // for 64-bit input |
| // return popcount(~x); |
| // |
| // but see also: http://www.hackersdelight.org/HDcode/nlz.cc |
| EVT VT = Op.getValueType(); |
| EVT ShVT = TLI.getShiftAmountTy(); |
| unsigned len = VT.getSizeInBits(); |
| for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { |
| SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); |
| Op = DAG.getNode(ISD::OR, dl, VT, Op, |
| DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); |
| } |
| Op = DAG.getNOT(dl, Op, VT); |
| return DAG.getNode(ISD::CTPOP, dl, VT, Op); |
| } |
| case ISD::CTTZ: { |
| // for now, we use: { return popcount(~x & (x - 1)); } |
| // unless the target has ctlz but not ctpop, in which case we use: |
| // { return 32 - nlz(~x & (x-1)); } |
| // see also http://www.hackersdelight.org/HDcode/ntz.cc |
| EVT VT = Op.getValueType(); |
| SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, |
| DAG.getNOT(dl, Op, VT), |
| DAG.getNode(ISD::SUB, dl, VT, Op, |
| DAG.getConstant(1, VT))); |
| // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. |
| if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && |
| TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) |
| return DAG.getNode(ISD::SUB, dl, VT, |
| DAG.getConstant(VT.getSizeInBits(), VT), |
| DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); |
| return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); |
| } |
| } |
| } |
| |
| void SelectionDAGLegalize::ExpandNode(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| DebugLoc dl = Node->getDebugLoc(); |
| SDValue Tmp1, Tmp2, Tmp3, Tmp4; |
| switch (Node->getOpcode()) { |
| case ISD::CTPOP: |
| case ISD::CTLZ: |
| case ISD::CTTZ: |
| Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); |
| Results.push_back(Tmp1); |
| break; |
| case ISD::BSWAP: |
| Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); |
| break; |
| case ISD::FRAMEADDR: |
| case ISD::RETURNADDR: |
| case ISD::FRAME_TO_ARGS_OFFSET: |
| Results.push_back(DAG.getConstant(0, Node->getValueType(0))); |
| break; |
| case ISD::FLT_ROUNDS_: |
| Results.push_back(DAG.getConstant(1, Node->getValueType(0))); |
| break; |
| case ISD::EH_RETURN: |
| case ISD::DECLARE: |
| case ISD::DBG_LABEL: |
| case ISD::EH_LABEL: |
| case ISD::PREFETCH: |
| case ISD::MEMBARRIER: |
| case ISD::VAEND: |
| Results.push_back(Node->getOperand(0)); |
| break; |
| case ISD::DBG_STOPPOINT: |
| Results.push_back(ExpandDBG_STOPPOINT(Node)); |
| break; |
| case ISD::DYNAMIC_STACKALLOC: |
| ExpandDYNAMIC_STACKALLOC(Node, Results); |
| break; |
| case ISD::MERGE_VALUES: |
| for (unsigned i = 0; i < Node->getNumValues(); i++) |
| Results.push_back(Node->getOperand(i)); |
| break; |
| case ISD::UNDEF: { |
| EVT VT = Node->getValueType(0); |
| if (VT.isInteger()) |
| Results.push_back(DAG.getConstant(0, VT)); |
| else if (VT.isFloatingPoint()) |
| Results.push_back(DAG.getConstantFP(0, VT)); |
| else |
| llvm_unreachable("Unknown value type!"); |
| break; |
| } |
| case ISD::TRAP: { |
| // If this operation is not supported, lower it to 'abort()' call |
| TargetLowering::ArgListTy Args; |
| std::pair<SDValue, SDValue> CallResult = |
| TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()), |
| false, false, false, false, 0, CallingConv::C, false, |
| /*isReturnValueUsed=*/true, |
| DAG.getExternalSymbol("abort", TLI.getPointerTy()), |
| Args, DAG, dl); |
| Results.push_back(CallResult.second); |
| break; |
| } |
| case ISD::FP_ROUND: |
| case ISD::BIT_CONVERT: |
| Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), |
| Node->getValueType(0), dl); |
| Results.push_back(Tmp1); |
| break; |
| case ISD::FP_EXTEND: |
| Tmp1 = EmitStackConvert(Node->getOperand(0), |
| Node->getOperand(0).getValueType(), |
| Node->getValueType(0), dl); |
| Results.push_back(Tmp1); |
| break; |
| case ISD::SIGN_EXTEND_INREG: { |
| // NOTE: we could fall back on load/store here too for targets without |
| // SAR. However, it is doubtful that any exist. |
| EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); |
| unsigned BitsDiff = Node->getValueType(0).getSizeInBits() - |
| ExtraVT.getSizeInBits(); |
| SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); |
| Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), |
| Node->getOperand(0), ShiftCst); |
| Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::FP_ROUND_INREG: { |
| // The only way we can lower this is to turn it into a TRUNCSTORE, |
| // EXTLOAD pair, targetting a temporary location (a stack slot). |
| |
| // NOTE: there is a choice here between constantly creating new stack |
| // slots and always reusing the same one. We currently always create |
| // new ones, as reuse may inhibit scheduling. |
| EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); |
| Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, |
| Node->getValueType(0), dl); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, |
| Node->getOperand(0), Node->getValueType(0), dl); |
| Results.push_back(Tmp1); |
| break; |
| case ISD::FP_TO_UINT: { |
| SDValue True, False; |
| EVT VT = Node->getOperand(0).getValueType(); |
| EVT NVT = Node->getValueType(0); |
| const uint64_t zero[] = {0, 0}; |
| APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero)); |
| APInt x = APInt::getSignBit(NVT.getSizeInBits()); |
| (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); |
| Tmp1 = DAG.getConstantFP(apf, VT); |
| Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), |
| Node->getOperand(0), |
| Tmp1, ISD::SETLT); |
| True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); |
| False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, |
| DAG.getNode(ISD::FSUB, dl, VT, |
| Node->getOperand(0), Tmp1)); |
| False = DAG.getNode(ISD::XOR, dl, NVT, False, |
| DAG.getConstant(x, NVT)); |
| Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::VAARG: { |
| const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); |
| EVT VT = Node->getValueType(0); |
| Tmp1 = Node->getOperand(0); |
| Tmp2 = Node->getOperand(1); |
| SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0); |
| // Increment the pointer, VAList, to the next vaarg |
| Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, |
| DAG.getConstant(TLI.getTargetData()-> |
| getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())), |
| TLI.getPointerTy())); |
| // Store the incremented VAList to the legalized pointer |
| Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0); |
| // Load the actual argument out of the pointer VAList |
| Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0)); |
| Results.push_back(Results[0].getValue(1)); |
| break; |
| } |
| case ISD::VACOPY: { |
| // This defaults to loading a pointer from the input and storing it to the |
| // output, returning the chain. |
| const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); |
| const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); |
| Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0), |
| Node->getOperand(2), VS, 0); |
| Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::EXTRACT_VECTOR_ELT: |
| if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) |
| // This must be an access of the only element. Return it. |
| Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), |
| Node->getOperand(0)); |
| else |
| Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); |
| Results.push_back(Tmp1); |
| break; |
| case ISD::EXTRACT_SUBVECTOR: |
| Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); |
| break; |
| case ISD::CONCAT_VECTORS: { |
| Results.push_back(ExpandVectorBuildThroughStack(Node)); |
| break; |
| } |
| case ISD::SCALAR_TO_VECTOR: |
| Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); |
| break; |
| case ISD::INSERT_VECTOR_ELT: |
| Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), |
| Node->getOperand(1), |
| Node->getOperand(2), dl)); |
| break; |
| case ISD::VECTOR_SHUFFLE: { |
| SmallVector<int, 8> Mask; |
| cast<ShuffleVectorSDNode>(Node)->getMask(Mask); |
| |
| EVT VT = Node->getValueType(0); |
| EVT EltVT = VT.getVectorElementType(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (Mask[i] < 0) { |
| Ops.push_back(DAG.getUNDEF(EltVT)); |
| continue; |
| } |
| unsigned Idx = Mask[i]; |
| if (Idx < NumElems) |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, |
| Node->getOperand(0), |
| DAG.getIntPtrConstant(Idx))); |
| else |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, |
| Node->getOperand(1), |
| DAG.getIntPtrConstant(Idx - NumElems))); |
| } |
| Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::EXTRACT_ELEMENT: { |
| EVT OpTy = Node->getOperand(0).getValueType(); |
| if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { |
| // 1 -> Hi |
| Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), |
| DAG.getConstant(OpTy.getSizeInBits()/2, |
| TLI.getShiftAmountTy())); |
| Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); |
| } else { |
| // 0 -> Lo |
| Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), |
| Node->getOperand(0)); |
| } |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::STACKSAVE: |
| // Expand to CopyFromReg if the target set |
| // StackPointerRegisterToSaveRestore. |
| if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { |
| Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, |
| Node->getValueType(0))); |
| Results.push_back(Results[0].getValue(1)); |
| } else { |
| Results.push_back(DAG.getUNDEF(Node->getValueType(0))); |
| Results.push_back(Node->getOperand(0)); |
| } |
| break; |
| case ISD::STACKRESTORE: |
| // Expand to CopyToReg if the target set |
| // StackPointerRegisterToSaveRestore. |
| if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { |
| Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, |
| Node->getOperand(1))); |
| } else { |
| Results.push_back(Node->getOperand(0)); |
| } |
| break; |
| case ISD::FCOPYSIGN: |
| Results.push_back(ExpandFCOPYSIGN(Node)); |
| break; |
| case ISD::FNEG: |
| // Expand Y = FNEG(X) -> Y = SUB -0.0, X |
| Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0)); |
| Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, |
| Node->getOperand(0)); |
| Results.push_back(Tmp1); |
| break; |
| case ISD::FABS: { |
| // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). |
| EVT VT = Node->getValueType(0); |
| Tmp1 = Node->getOperand(0); |
| Tmp2 = DAG.getConstantFP(0.0, VT); |
| Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), |
| Tmp1, Tmp2, ISD::SETUGT); |
| Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); |
| Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::FSQRT: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, |
| RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128)); |
| break; |
| case ISD::FSIN: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, |
| RTLIB::SIN_F80, RTLIB::SIN_PPCF128)); |
| break; |
| case ISD::FCOS: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, |
| RTLIB::COS_F80, RTLIB::COS_PPCF128)); |
| break; |
| case ISD::FLOG: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, |
| RTLIB::LOG_F80, RTLIB::LOG_PPCF128)); |
| break; |
| case ISD::FLOG2: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, |
| RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128)); |
| break; |
| case ISD::FLOG10: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, |
| RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128)); |
| break; |
| case ISD::FEXP: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, |
| RTLIB::EXP_F80, RTLIB::EXP_PPCF128)); |
| break; |
| case ISD::FEXP2: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, |
| RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128)); |
| break; |
| case ISD::FTRUNC: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, |
| RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128)); |
| break; |
| case ISD::FFLOOR: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, |
| RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128)); |
| break; |
| case ISD::FCEIL: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, |
| RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128)); |
| break; |
| case ISD::FRINT: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, |
| RTLIB::RINT_F80, RTLIB::RINT_PPCF128)); |
| break; |
| case ISD::FNEARBYINT: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, |
| RTLIB::NEARBYINT_F64, |
| RTLIB::NEARBYINT_F80, |
| RTLIB::NEARBYINT_PPCF128)); |
| break; |
| case ISD::FPOWI: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, |
| RTLIB::POWI_F80, RTLIB::POWI_PPCF128)); |
| break; |
| case ISD::FPOW: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, |
| RTLIB::POW_F80, RTLIB::POW_PPCF128)); |
| break; |
| case ISD::FDIV: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, |
| RTLIB::DIV_F80, RTLIB::DIV_PPCF128)); |
| break; |
| case ISD::FREM: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, |
| RTLIB::REM_F80, RTLIB::REM_PPCF128)); |
| break; |
| case ISD::ConstantFP: { |
| ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); |
| // Check to see if this FP immediate is already legal. |
| bool isLegal = false; |
| for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), |
| E = TLI.legal_fpimm_end(); I != E; ++I) { |
| if (CFP->isExactlyValue(*I)) { |
| isLegal = true; |
| break; |
| } |
| } |
| // If this is a legal constant, turn it into a TargetConstantFP node. |
| if (isLegal) |
| Results.push_back(SDValue(Node, 0)); |
| else |
| Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI)); |
| break; |
| } |
| case ISD::EHSELECTION: { |
| unsigned Reg = TLI.getExceptionSelectorRegister(); |
| assert(Reg && "Can't expand to unknown register!"); |
| Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg, |
| Node->getValueType(0))); |
| Results.push_back(Results[0].getValue(1)); |
| break; |
| } |
| case ISD::EXCEPTIONADDR: { |
| unsigned Reg = TLI.getExceptionAddressRegister(); |
| assert(Reg && "Can't expand to unknown register!"); |
| Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg, |
| Node->getValueType(0))); |
| Results.push_back(Results[0].getValue(1)); |
| break; |
| } |
| case ISD::SUB: { |
| EVT VT = Node->getValueType(0); |
| assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && |
| TLI.isOperationLegalOrCustom(ISD::XOR, VT) && |
| "Don't know how to expand this subtraction!"); |
| Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), |
| DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); |
| Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT)); |
| Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); |
| break; |
| } |
| case ISD::UREM: |
| case ISD::SREM: { |
| EVT VT = Node->getValueType(0); |
| SDVTList VTs = DAG.getVTList(VT, VT); |
| bool isSigned = Node->getOpcode() == ISD::SREM; |
| unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; |
| unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; |
| Tmp2 = Node->getOperand(0); |
| Tmp3 = Node->getOperand(1); |
| if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { |
| Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); |
| } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { |
| // X % Y -> X-X/Y*Y |
| Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); |
| Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); |
| Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); |
| } else if (isSigned) { |
| Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32, |
| RTLIB::SREM_I64, RTLIB::SREM_I128); |
| } else { |
| Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32, |
| RTLIB::UREM_I64, RTLIB::UREM_I128); |
| } |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::UDIV: |
| case ISD::SDIV: { |
| bool isSigned = Node->getOpcode() == ISD::SDIV; |
| unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; |
| EVT VT = Node->getValueType(0); |
| SDVTList VTs = DAG.getVTList(VT, VT); |
| if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) |
| Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), |
| Node->getOperand(1)); |
| else if (isSigned) |
| Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32, |
| RTLIB::SDIV_I64, RTLIB::SDIV_I128); |
| else |
| Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32, |
| RTLIB::UDIV_I64, RTLIB::UDIV_I128); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::MULHU: |
| case ISD::MULHS: { |
| unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : |
| ISD::SMUL_LOHI; |
| EVT VT = Node->getValueType(0); |
| SDVTList VTs = DAG.getVTList(VT, VT); |
| assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && |
| "If this wasn't legal, it shouldn't have been created!"); |
| Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), |
| Node->getOperand(1)); |
| Results.push_back(Tmp1.getValue(1)); |
| break; |
| } |
| case ISD::MUL: { |
| EVT VT = Node->getValueType(0); |
| SDVTList VTs = DAG.getVTList(VT, VT); |
| // See if multiply or divide can be lowered using two-result operations. |
| // We just need the low half of the multiply; try both the signed |
| // and unsigned forms. If the target supports both SMUL_LOHI and |
| // UMUL_LOHI, form a preference by checking which forms of plain |
| // MULH it supports. |
| bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); |
| bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); |
| bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); |
| bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); |
| unsigned OpToUse = 0; |
| if (HasSMUL_LOHI && !HasMULHS) { |
| OpToUse = ISD::SMUL_LOHI; |
| } else if (HasUMUL_LOHI && !HasMULHU) { |
| OpToUse = ISD::UMUL_LOHI; |
| } else if (HasSMUL_LOHI) { |
| OpToUse = ISD::SMUL_LOHI; |
| } else if (HasUMUL_LOHI) { |
| OpToUse = ISD::UMUL_LOHI; |
| } |
| if (OpToUse) { |
| Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), |
| Node->getOperand(1))); |
| break; |
| } |
| Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32, |
| RTLIB::MUL_I64, RTLIB::MUL_I128); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::SADDO: |
| case ISD::SSUBO: { |
| SDValue LHS = Node->getOperand(0); |
| SDValue RHS = Node->getOperand(1); |
| SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? |
| ISD::ADD : ISD::SUB, dl, LHS.getValueType(), |
| LHS, RHS); |
| Results.push_back(Sum); |
| EVT OType = Node->getValueType(1); |
| |
| SDValue Zero = DAG.getConstant(0, LHS.getValueType()); |
| |
| // LHSSign -> LHS >= 0 |
| // RHSSign -> RHS >= 0 |
| // SumSign -> Sum >= 0 |
| // |
| // Add: |
| // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) |
| // Sub: |
| // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) |
| // |
| SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); |
| SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); |
| SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, |
| Node->getOpcode() == ISD::SADDO ? |
| ISD::SETEQ : ISD::SETNE); |
| |
| SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); |
| SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); |
| |
| SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); |
| Results.push_back(Cmp); |
| break; |
| } |
| case ISD::UADDO: |
| case ISD::USUBO: { |
| SDValue LHS = Node->getOperand(0); |
| SDValue RHS = Node->getOperand(1); |
| SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? |
| ISD::ADD : ISD::SUB, dl, LHS.getValueType(), |
| LHS, RHS); |
| Results.push_back(Sum); |
| Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS, |
| Node->getOpcode () == ISD::UADDO ? |
| ISD::SETULT : ISD::SETUGT)); |
| break; |
| } |
| case ISD::UMULO: |
| case ISD::SMULO: { |
| EVT VT = Node->getValueType(0); |
| SDValue LHS = Node->getOperand(0); |
| SDValue RHS = Node->getOperand(1); |
| SDValue BottomHalf; |
| SDValue TopHalf; |
| static unsigned Ops[2][3] = |
| { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, |
| { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; |
| bool isSigned = Node->getOpcode() == ISD::SMULO; |
| if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { |
| BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); |
| TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); |
| } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { |
| BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, |
| RHS); |
| TopHalf = BottomHalf.getValue(1); |
| } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2))) { |
| EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); |
| LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); |
| RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); |
| Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); |
| BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, |
| DAG.getIntPtrConstant(0)); |
| TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, |
| DAG.getIntPtrConstant(1)); |
| } else { |
| // FIXME: We should be able to fall back to a libcall with an illegal |
| // type in some cases cases. |
| // Also, we can fall back to a division in some cases, but that's a big |
| // performance hit in the general case. |
| llvm_unreachable("Don't know how to expand this operation yet!"); |
| } |
| if (isSigned) { |
| Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy()); |
| Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); |
| TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1, |
| ISD::SETNE); |
| } else { |
| TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, |
| DAG.getConstant(0, VT), ISD::SETNE); |
| } |
| Results.push_back(BottomHalf); |
| Results.push_back(TopHalf); |
| break; |
| } |
| case ISD::BUILD_PAIR: { |
| EVT PairTy = Node->getValueType(0); |
| Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); |
| Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); |
| Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, |
| DAG.getConstant(PairTy.getSizeInBits()/2, |
| TLI.getShiftAmountTy())); |
| Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); |
| break; |
| } |
| case ISD::SELECT: |
| Tmp1 = Node->getOperand(0); |
| Tmp2 = Node->getOperand(1); |
| Tmp3 = Node->getOperand(2); |
| if (Tmp1.getOpcode() == ISD::SETCC) { |
| Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), |
| Tmp2, Tmp3, |
| cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); |
| } else { |
| Tmp1 = DAG.getSelectCC(dl, Tmp1, |
| DAG.getConstant(0, Tmp1.getValueType()), |
| Tmp2, Tmp3, ISD::SETNE); |
| } |
| Results.push_back(Tmp1); |
| break; |
| case ISD::BR_JT: { |
| SDValue Chain = Node->getOperand(0); |
| SDValue Table = Node->getOperand(1); |
| SDValue Index = Node->getOperand(2); |
| |
| EVT PTy = TLI.getPointerTy(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); |
| Index= DAG.getNode(ISD::MUL, dl, PTy, |
| Index, DAG.getConstant(EntrySize, PTy)); |
| SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); |
| |
| EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); |
| SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, |
| PseudoSourceValue::getJumpTable(), 0, MemVT); |
| Addr = LD; |
| if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { |
| // For PIC, the sequence is: |
| // BRIND(load(Jumptable + index) + RelocBase) |
| // RelocBase can be JumpTable, GOT or some sort of global base. |
| Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, |
| TLI.getPICJumpTableRelocBase(Table, DAG)); |
| } |
| Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::BRCOND: |
| // Expand brcond's setcc into its constituent parts and create a BR_CC |
| // Node. |
| Tmp1 = Node->getOperand(0); |
| Tmp2 = Node->getOperand(1); |
| if (Tmp2.getOpcode() == ISD::SETCC) { |
| Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, |
| Tmp1, Tmp2.getOperand(2), |
| Tmp2.getOperand(0), Tmp2.getOperand(1), |
| Node->getOperand(2)); |
| } else { |
| Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, |
| DAG.getCondCode(ISD::SETNE), Tmp2, |
| DAG.getConstant(0, Tmp2.getValueType()), |
| Node->getOperand(2)); |
| } |
| Results.push_back(Tmp1); |
| break; |
| case ISD::SETCC: { |
| Tmp1 = Node->getOperand(0); |
| Tmp2 = Node->getOperand(1); |
| Tmp3 = Node->getOperand(2); |
| LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); |
| |
| // If we expanded the SETCC into an AND/OR, return the new node |
| if (Tmp2.getNode() == 0) { |
| Results.push_back(Tmp1); |
| break; |
| } |
| |
| // Otherwise, SETCC for the given comparison type must be completely |
| // illegal; expand it into a SELECT_CC. |
| EVT VT = Node->getValueType(0); |
| Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, |
| DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::SELECT_CC: { |
| Tmp1 = Node->getOperand(0); // LHS |
| Tmp2 = Node->getOperand(1); // RHS |
| Tmp3 = Node->getOperand(2); // True |
| Tmp4 = Node->getOperand(3); // False |
| SDValue CC = Node->getOperand(4); |
| |
| LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()), |
| Tmp1, Tmp2, CC, dl); |
| |
| assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!"); |
| Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); |
| CC = DAG.getCondCode(ISD::SETNE); |
| Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, |
| Tmp3, Tmp4, CC); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::BR_CC: { |
| Tmp1 = Node->getOperand(0); // Chain |
| Tmp2 = Node->getOperand(2); // LHS |
| Tmp3 = Node->getOperand(3); // RHS |
| Tmp4 = Node->getOperand(1); // CC |
| |
| LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()), |
| Tmp2, Tmp3, Tmp4, dl); |
| LastCALLSEQ_END = DAG.getEntryNode(); |
| |
| assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!"); |
| Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); |
| Tmp4 = DAG.getCondCode(ISD::SETNE); |
| Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, |
| Tmp3, Node->getOperand(4)); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::GLOBAL_OFFSET_TABLE: |
| case ISD::GlobalAddress: |
| case ISD::GlobalTLSAddress: |
| case ISD::ExternalSymbol: |
| case ISD::ConstantPool: |
| case ISD::JumpTable: |
| case ISD::INTRINSIC_W_CHAIN: |
| case ISD::INTRINSIC_WO_CHAIN: |
| case ISD::INTRINSIC_VOID: |
| // FIXME: Custom lowering for these operations shouldn't return null! |
| for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) |
| Results.push_back(SDValue(Node, i)); |
| break; |
| } |
| } |
| void SelectionDAGLegalize::PromoteNode(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| EVT OVT = Node->getValueType(0); |
| if (Node->getOpcode() == ISD::UINT_TO_FP || |
| Node->getOpcode() == ISD::SINT_TO_FP || |
| Node->getOpcode() == ISD::SETCC) { |
| OVT = Node->getOperand(0).getValueType(); |
| } |
| EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); |
| DebugLoc dl = Node->getDebugLoc(); |
| SDValue Tmp1, Tmp2, Tmp3; |
| switch (Node->getOpcode()) { |
| case ISD::CTTZ: |
| case ISD::CTLZ: |
| case ISD::CTPOP: |
| // Zero extend the argument. |
| Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); |
| // Perform the larger operation. |
| Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); |
| if (Node->getOpcode() == ISD::CTTZ) { |
| //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) |
| Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), |
| Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), |
| ISD::SETEQ); |
| Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, |
| DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); |
| } else if (Node->getOpcode() == ISD::CTLZ) { |
| // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) |
| Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, |
| DAG.getConstant(NVT.getSizeInBits() - |
| OVT.getSizeInBits(), NVT)); |
| } |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); |
| break; |
| case ISD::BSWAP: { |
| unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); |
| Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1); |
| Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); |
| Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, |
| DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::FP_TO_UINT: |
| case ISD::FP_TO_SINT: |
| Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), |
| Node->getOpcode() == ISD::FP_TO_SINT, dl); |
| Results.push_back(Tmp1); |
| break; |
| case ISD::UINT_TO_FP: |
| case ISD::SINT_TO_FP: |
| Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), |
| Node->getOpcode() == ISD::SINT_TO_FP, dl); |
| Results.push_back(Tmp1); |
| break; |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: { |
| unsigned ExtOp, TruncOp; |
| if (OVT.isVector()) { |
| ExtOp = ISD::BIT_CONVERT; |
| TruncOp = ISD::BIT_CONVERT; |
| } else if (OVT.isInteger()) { |
| ExtOp = ISD::ANY_EXTEND; |
| TruncOp = ISD::TRUNCATE; |
| } else { |
| llvm_report_error("Cannot promote logic operation"); |
| } |
| // Promote each of the values to the new type. |
| Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); |
| Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); |
| // Perform the larger operation, then convert back |
| Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); |
| Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); |
| break; |
| } |
| case ISD::SELECT: { |
| unsigned ExtOp, TruncOp; |
| if (Node->getValueType(0).isVector()) { |
| ExtOp = ISD::BIT_CONVERT; |
| TruncOp = ISD::BIT_CONVERT; |
| } else if (Node->getValueType(0).isInteger()) { |
| ExtOp = ISD::ANY_EXTEND; |
| TruncOp = ISD::TRUNCATE; |
| } else { |
| ExtOp = ISD::FP_EXTEND; |
| TruncOp = ISD::FP_ROUND; |
| } |
| Tmp1 = Node->getOperand(0); |
| // Promote each of the values to the new type. |
| Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); |
| Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); |
| // Perform the larger operation, then round down. |
| Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3); |
| if (TruncOp != ISD::FP_ROUND) |
| Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); |
| else |
| Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, |
| DAG.getIntPtrConstant(0)); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::VECTOR_SHUFFLE: { |
| SmallVector<int, 8> Mask; |
| cast<ShuffleVectorSDNode>(Node)->getMask(Mask); |
| |
| // Cast the two input vectors. |
| Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); |
| Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1)); |
| |
| // Convert the shuffle mask to the right # elements. |
| Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); |
| Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::SETCC: { |
| unsigned ExtOp = ISD::FP_EXTEND; |
| if (NVT.isInteger()) { |
| ISD::CondCode CCCode = |
| cast<CondCodeSDNode>(Node->getOperand(2))->get(); |
| ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| } |
| Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); |
| Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); |
| Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), |
| Tmp1, Tmp2, Node->getOperand(2))); |
| break; |
| } |
| } |
| } |
| |
| // SelectionDAG::Legalize - This is the entry point for the file. |
| // |
| void SelectionDAG::Legalize(bool TypesNeedLegalizing, |
| CodeGenOpt::Level OptLevel) { |
| /// run - This is the main entry point to this class. |
| /// |
| SelectionDAGLegalize(*this, OptLevel).LegalizeDAG(); |
| } |
| |