| //===- SCCP.cpp - Sparse Conditional Constant Propogation -----------------===// |
| // |
| // This file implements sparse conditional constant propogation and merging: |
| // |
| // Specifically, this: |
| // * Assumes values are constant unless proven otherwise |
| // * Assumes BasicBlocks are dead unless proven otherwise |
| // * Proves values to be constant, and replaces them with constants |
| // * Proves conditional branches to be unconditional |
| // |
| // Notice that: |
| // * This pass has a habit of making definitions be dead. It is a good idea |
| // to to run a DCE pass sometime after running this pass. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/ConstantHandling.h" |
| #include "llvm/Function.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "Support/STLExtras.h" |
| #include "Support/Statistic.h" |
| #include <algorithm> |
| #include <set> |
| |
| // InstVal class - This class represents the different lattice values that an |
| // instruction may occupy. It is a simple class with value semantics. |
| // |
| namespace { |
| Statistic<> NumInstRemoved("sccp", "Number of instructions removed"); |
| |
| class InstVal { |
| enum { |
| undefined, // This instruction has no known value |
| constant, // This instruction has a constant value |
| overdefined // This instruction has an unknown value |
| } LatticeValue; // The current lattice position |
| Constant *ConstantVal; // If Constant value, the current value |
| public: |
| inline InstVal() : LatticeValue(undefined), ConstantVal(0) {} |
| |
| // markOverdefined - Return true if this is a new status to be in... |
| inline bool markOverdefined() { |
| if (LatticeValue != overdefined) { |
| LatticeValue = overdefined; |
| return true; |
| } |
| return false; |
| } |
| |
| // markConstant - Return true if this is a new status for us... |
| inline bool markConstant(Constant *V) { |
| if (LatticeValue != constant) { |
| LatticeValue = constant; |
| ConstantVal = V; |
| return true; |
| } else { |
| assert(ConstantVal == V && "Marking constant with different value"); |
| } |
| return false; |
| } |
| |
| inline bool isUndefined() const { return LatticeValue == undefined; } |
| inline bool isConstant() const { return LatticeValue == constant; } |
| inline bool isOverdefined() const { return LatticeValue == overdefined; } |
| |
| inline Constant *getConstant() const { return ConstantVal; } |
| }; |
| |
| } // end anonymous namespace |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SCCP Class |
| // |
| // This class does all of the work of Sparse Conditional Constant Propogation. |
| // |
| namespace { |
| class SCCP : public FunctionPass, public InstVisitor<SCCP> { |
| std::set<BasicBlock*> BBExecutable;// The basic blocks that are executable |
| std::map<Value*, InstVal> ValueState; // The state each value is in... |
| |
| std::vector<Instruction*> InstWorkList;// The instruction work list |
| std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list |
| public: |
| |
| // runOnFunction - Run the Sparse Conditional Constant Propogation algorithm, |
| // and return true if the function was modified. |
| // |
| bool runOnFunction(Function &F); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| } |
| |
| |
| //===--------------------------------------------------------------------===// |
| // The implementation of this class |
| // |
| private: |
| friend class InstVisitor<SCCP>; // Allow callbacks from visitor |
| |
| // markValueOverdefined - Make a value be marked as "constant". If the value |
| // is not already a constant, add it to the instruction work list so that |
| // the users of the instruction are updated later. |
| // |
| inline bool markConstant(Instruction *I, Constant *V) { |
| if (ValueState[I].markConstant(V)) { |
| DEBUG(std::cerr << "markConstant: " << V << " = " << I); |
| InstWorkList.push_back(I); |
| return true; |
| } |
| return false; |
| } |
| |
| // markValueOverdefined - Make a value be marked as "overdefined". If the |
| // value is not already overdefined, add it to the instruction work list so |
| // that the users of the instruction are updated later. |
| // |
| inline bool markOverdefined(Value *V) { |
| if (ValueState[V].markOverdefined()) { |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| DEBUG(std::cerr << "markOverdefined: " << V); |
| InstWorkList.push_back(I); // Only instructions go on the work list |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| // getValueState - Return the InstVal object that corresponds to the value. |
| // This function is neccesary because not all values should start out in the |
| // underdefined state... Argument's should be overdefined, and |
| // constants should be marked as constants. If a value is not known to be an |
| // Instruction object, then use this accessor to get its value from the map. |
| // |
| inline InstVal &getValueState(Value *V) { |
| std::map<Value*, InstVal>::iterator I = ValueState.find(V); |
| if (I != ValueState.end()) return I->second; // Common case, in the map |
| |
| if (Constant *CPV = dyn_cast<Constant>(V)) { // Constants are constant |
| ValueState[CPV].markConstant(CPV); |
| } else if (isa<Argument>(V)) { // Arguments are overdefined |
| ValueState[V].markOverdefined(); |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| // The address of a global is a constant... |
| ValueState[V].markConstant(ConstantPointerRef::get(GV)); |
| } |
| // All others are underdefined by default... |
| return ValueState[V]; |
| } |
| |
| // markExecutable - Mark a basic block as executable, adding it to the BB |
| // work list if it is not already executable... |
| // |
| void markExecutable(BasicBlock *BB) { |
| if (BBExecutable.count(BB)) { |
| // BB is already executable, but we may have just made an edge feasible |
| // that wasn't before. Add the PHI nodes to the work list so that they |
| // can be rechecked. |
| for (BasicBlock::iterator I = BB->begin(); |
| PHINode *PN = dyn_cast<PHINode>(I); ++I) |
| visitPHINode(*PN); |
| |
| } else { |
| DEBUG(std::cerr << "Marking BB Executable: " << *BB); |
| BBExecutable.insert(BB); // Basic block is executable! |
| BBWorkList.push_back(BB); // Add the block to the work list! |
| } |
| } |
| |
| |
| // visit implementations - Something changed in this instruction... Either an |
| // operand made a transition, or the instruction is newly executable. Change |
| // the value type of I to reflect these changes if appropriate. |
| // |
| void visitPHINode(PHINode &I); |
| |
| // Terminators |
| void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ } |
| void visitTerminatorInst(TerminatorInst &TI); |
| |
| void visitCastInst(CastInst &I); |
| void visitBinaryOperator(Instruction &I); |
| void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } |
| |
| // Instructions that cannot be folded away... |
| void visitStoreInst (Instruction &I) { /*returns void*/ } |
| void visitLoadInst (Instruction &I) { markOverdefined(&I); } |
| void visitGetElementPtrInst(GetElementPtrInst &I); |
| void visitCallInst (Instruction &I) { markOverdefined(&I); } |
| void visitInvokeInst (Instruction &I) { markOverdefined(&I); } |
| void visitAllocationInst(Instruction &I) { markOverdefined(&I); } |
| void visitVarArgInst (Instruction &I) { markOverdefined(&I); } |
| void visitFreeInst (Instruction &I) { /*returns void*/ } |
| |
| void visitInstruction(Instruction &I) { |
| // If a new instruction is added to LLVM that we don't handle... |
| std::cerr << "SCCP: Don't know how to handle: " << I; |
| markOverdefined(&I); // Just in case |
| } |
| |
| // getFeasibleSuccessors - Return a vector of booleans to indicate which |
| // successors are reachable from a given terminator instruction. |
| // |
| void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs); |
| |
| // isEdgeFeasible - Return true if the control flow edge from the 'From' basic |
| // block to the 'To' basic block is currently feasible... |
| // |
| bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); |
| |
| // OperandChangedState - This method is invoked on all of the users of an |
| // instruction that was just changed state somehow.... Based on this |
| // information, we need to update the specified user of this instruction. |
| // |
| void OperandChangedState(User *U) { |
| // Only instructions use other variable values! |
| Instruction &I = cast<Instruction>(*U); |
| if (BBExecutable.count(I.getParent())) // Inst is executable? |
| visit(I); |
| } |
| }; |
| |
| RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation"); |
| } // end anonymous namespace |
| |
| |
| // createSCCPPass - This is the public interface to this file... |
| // |
| Pass *createSCCPPass() { |
| return new SCCP(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SCCP Class Implementation |
| |
| |
| // runOnFunction() - Run the Sparse Conditional Constant Propogation algorithm, |
| // and return true if the function was modified. |
| // |
| bool SCCP::runOnFunction(Function &F) { |
| // Mark the first block of the function as being executable... |
| markExecutable(&F.front()); |
| |
| // Process the work lists until their are empty! |
| while (!BBWorkList.empty() || !InstWorkList.empty()) { |
| // Process the instruction work list... |
| while (!InstWorkList.empty()) { |
| Instruction *I = InstWorkList.back(); |
| InstWorkList.pop_back(); |
| |
| DEBUG(std::cerr << "\nPopped off I-WL: " << I); |
| |
| // "I" got into the work list because it either made the transition from |
| // bottom to constant, or to Overdefined. |
| // |
| // Update all of the users of this instruction's value... |
| // |
| for_each(I->use_begin(), I->use_end(), |
| bind_obj(this, &SCCP::OperandChangedState)); |
| } |
| |
| // Process the basic block work list... |
| while (!BBWorkList.empty()) { |
| BasicBlock *BB = BBWorkList.back(); |
| BBWorkList.pop_back(); |
| |
| DEBUG(std::cerr << "\nPopped off BBWL: " << BB); |
| |
| // Notify all instructions in this basic block that they are newly |
| // executable. |
| visit(BB); |
| } |
| } |
| |
| if (DebugFlag) { |
| for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) |
| if (!BBExecutable.count(I)) |
| std::cerr << "BasicBlock Dead:" << *I; |
| } |
| |
| // Iterate over all of the instructions in a function, replacing them with |
| // constants if we have found them to be of constant values. |
| // |
| bool MadeChanges = false; |
| for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) |
| for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { |
| Instruction &Inst = *BI; |
| InstVal &IV = ValueState[&Inst]; |
| if (IV.isConstant()) { |
| Constant *Const = IV.getConstant(); |
| DEBUG(std::cerr << "Constant: " << Const << " = " << Inst); |
| |
| // Replaces all of the uses of a variable with uses of the constant. |
| Inst.replaceAllUsesWith(Const); |
| |
| // Remove the operator from the list of definitions... and delete it. |
| BI = BB->getInstList().erase(BI); |
| |
| // Hey, we just changed something! |
| MadeChanges = true; |
| ++NumInstRemoved; |
| } else { |
| ++BI; |
| } |
| } |
| |
| // Reset state so that the next invocation will have empty data structures |
| BBExecutable.clear(); |
| ValueState.clear(); |
| std::vector<Instruction*>().swap(InstWorkList); |
| std::vector<BasicBlock*>().swap(BBWorkList); |
| |
| return MadeChanges; |
| } |
| |
| |
| // getFeasibleSuccessors - Return a vector of booleans to indicate which |
| // successors are reachable from a given terminator instruction. |
| // |
| void SCCP::getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs) { |
| Succs.resize(TI.getNumSuccessors()); |
| if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { |
| if (BI->isUnconditional()) { |
| Succs[0] = true; |
| } else { |
| InstVal &BCValue = getValueState(BI->getCondition()); |
| if (BCValue.isOverdefined()) { |
| // Overdefined condition variables mean the branch could go either way. |
| Succs[0] = Succs[1] = true; |
| } else if (BCValue.isConstant()) { |
| // Constant condition variables mean the branch can only go a single way |
| Succs[BCValue.getConstant() == ConstantBool::False] = true; |
| } |
| } |
| } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) { |
| // Invoke instructions successors are always executable. |
| Succs[0] = Succs[1] = true; |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { |
| InstVal &SCValue = getValueState(SI->getCondition()); |
| if (SCValue.isOverdefined()) { // Overdefined condition? |
| // All destinations are executable! |
| Succs.assign(TI.getNumSuccessors(), true); |
| } else if (SCValue.isConstant()) { |
| Constant *CPV = SCValue.getConstant(); |
| // Make sure to skip the "default value" which isn't a value |
| for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { |
| if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... |
| Succs[i] = true; |
| return; |
| } |
| } |
| |
| // Constant value not equal to any of the branches... must execute |
| // default branch then... |
| Succs[0] = true; |
| } |
| } else { |
| std::cerr << "SCCP: Don't know how to handle: " << TI; |
| Succs.assign(TI.getNumSuccessors(), true); |
| } |
| } |
| |
| |
| // isEdgeFeasible - Return true if the control flow edge from the 'From' basic |
| // block to the 'To' basic block is currently feasible... |
| // |
| bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { |
| assert(BBExecutable.count(To) && "Dest should always be alive!"); |
| |
| // Make sure the source basic block is executable!! |
| if (!BBExecutable.count(From)) return false; |
| |
| // Check to make sure this edge itself is actually feasible now... |
| TerminatorInst *FT = From->getTerminator(); |
| std::vector<bool> SuccFeasible; |
| getFeasibleSuccessors(*FT, SuccFeasible); |
| |
| // Check all edges from From to To. If any are feasible, return true. |
| for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) |
| if (FT->getSuccessor(i) == To && SuccFeasible[i]) |
| return true; |
| |
| // Otherwise, none of the edges are actually feasible at this time... |
| return false; |
| } |
| |
| // visit Implementations - Something changed in this instruction... Either an |
| // operand made a transition, or the instruction is newly executable. Change |
| // the value type of I to reflect these changes if appropriate. This method |
| // makes sure to do the following actions: |
| // |
| // 1. If a phi node merges two constants in, and has conflicting value coming |
| // from different branches, or if the PHI node merges in an overdefined |
| // value, then the PHI node becomes overdefined. |
| // 2. If a phi node merges only constants in, and they all agree on value, the |
| // PHI node becomes a constant value equal to that. |
| // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant |
| // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined |
| // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined |
| // 6. If a conditional branch has a value that is constant, make the selected |
| // destination executable |
| // 7. If a conditional branch has a value that is overdefined, make all |
| // successors executable. |
| // |
| void SCCP::visitPHINode(PHINode &PN) { |
| if (getValueState(&PN).isOverdefined()) return; // Quick exit |
| |
| // Look at all of the executable operands of the PHI node. If any of them |
| // are overdefined, the PHI becomes overdefined as well. If they are all |
| // constant, and they agree with each other, the PHI becomes the identical |
| // constant. If they are constant and don't agree, the PHI is overdefined. |
| // If there are no executable operands, the PHI remains undefined. |
| // |
| Constant *OperandVal = 0; |
| for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { |
| InstVal &IV = getValueState(PN.getIncomingValue(i)); |
| if (IV.isUndefined()) continue; // Doesn't influence PHI node. |
| if (IV.isOverdefined()) { // PHI node becomes overdefined! |
| markOverdefined(&PN); |
| return; |
| } |
| |
| if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { |
| if (OperandVal == 0) { // Grab the first value... |
| OperandVal = IV.getConstant(); |
| } else { // Another value is being merged in! |
| // There is already a reachable operand. If we conflict with it, |
| // then the PHI node becomes overdefined. If we agree with it, we |
| // can continue on. |
| |
| // Check to see if there are two different constants merging... |
| if (IV.getConstant() != OperandVal) { |
| // Yes there is. This means the PHI node is not constant. |
| // You must be overdefined poor PHI. |
| // |
| markOverdefined(&PN); // The PHI node now becomes overdefined |
| return; // I'm done analyzing you |
| } |
| } |
| } |
| } |
| |
| // If we exited the loop, this means that the PHI node only has constant |
| // arguments that agree with each other(and OperandVal is the constant) or |
| // OperandVal is null because there are no defined incoming arguments. If |
| // this is the case, the PHI remains undefined. |
| // |
| if (OperandVal) |
| markConstant(&PN, OperandVal); // Aquire operand value |
| } |
| |
| void SCCP::visitTerminatorInst(TerminatorInst &TI) { |
| std::vector<bool> SuccFeasible; |
| getFeasibleSuccessors(TI, SuccFeasible); |
| |
| // Mark all feasible successors executable... |
| for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) |
| if (SuccFeasible[i]) { |
| BasicBlock *Succ = TI.getSuccessor(i); |
| markExecutable(Succ); |
| } |
| } |
| |
| void SCCP::visitCastInst(CastInst &I) { |
| Value *V = I.getOperand(0); |
| InstVal &VState = getValueState(V); |
| if (VState.isOverdefined()) { // Inherit overdefinedness of operand |
| markOverdefined(&I); |
| } else if (VState.isConstant()) { // Propagate constant value |
| Constant *Result = |
| ConstantFoldCastInstruction(VState.getConstant(), I.getType()); |
| |
| if (Result) { |
| // This instruction constant folds! |
| markConstant(&I, Result); |
| } else { |
| markOverdefined(&I); // Don't know how to fold this instruction. :( |
| } |
| } |
| } |
| |
| // Handle BinaryOperators and Shift Instructions... |
| void SCCP::visitBinaryOperator(Instruction &I) { |
| InstVal &V1State = getValueState(I.getOperand(0)); |
| InstVal &V2State = getValueState(I.getOperand(1)); |
| if (V1State.isOverdefined() || V2State.isOverdefined()) { |
| markOverdefined(&I); |
| } else if (V1State.isConstant() && V2State.isConstant()) { |
| Constant *Result = 0; |
| if (isa<BinaryOperator>(I)) |
| Result = ConstantFoldBinaryInstruction(I.getOpcode(), |
| V1State.getConstant(), |
| V2State.getConstant()); |
| else if (isa<ShiftInst>(I)) |
| Result = ConstantFoldShiftInstruction(I.getOpcode(), |
| V1State.getConstant(), |
| V2State.getConstant()); |
| if (Result) |
| markConstant(&I, Result); // This instruction constant folds! |
| else |
| markOverdefined(&I); // Don't know how to fold this instruction. :( |
| } |
| } |
| |
| // Handle getelementptr instructions... if all operands are constants then we |
| // can turn this into a getelementptr ConstantExpr. |
| // |
| void SCCP::visitGetElementPtrInst(GetElementPtrInst &I) { |
| std::vector<Constant*> Operands; |
| Operands.reserve(I.getNumOperands()); |
| |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { |
| InstVal &State = getValueState(I.getOperand(i)); |
| if (State.isUndefined()) |
| return; // Operands are not resolved yet... |
| else if (State.isOverdefined()) { |
| markOverdefined(&I); |
| return; |
| } |
| assert(State.isConstant() && "Unknown state!"); |
| Operands.push_back(State.getConstant()); |
| } |
| |
| Constant *Ptr = Operands[0]; |
| Operands.erase(Operands.begin()); // Erase the pointer from idx list... |
| |
| markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Operands)); |
| } |